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Abstract

Background

Acute lesions are among the most important causes of death due to vascular lesions world-

wide. However, there are no accurate genetic markers for Acute myocardial infarction

(AMI). This project will use microarray integration analysis in bioinformatics analysis to find

and validate relevant AMI gene markers.

Methods

Five microarray gene expression datasets were downloaded through the GEO database.

We identified 50 significant DEGs by comparing and analyzing gene expression between 92

AMI and 57 standard samples. The BioGPS database screened differentially expressed

genes specific to the immune system. DEGs were mainly involved in immune-related biolog-

ical processes based on Enrichment analysis. Eight hub genes and three-gene cluster mod-

ules were subsequently screened using Cytoscape and validated using Box plot’s grouping

comparison and ROC curves. Combined group comparison results and ROC curves analy-

sis concluded that AQP9, IL1B, and IL1RN might be potential gene markers for the AMI pro-

cess. We used the StarBase database to predict target miRNAs for eight essential genes.

The expected results were used to screen and obtain target lncRNAs. Then Cytoscape was

used to create CeRNA networks. By searching the literature in PubMed, we concluded that

AQP9, IL1B, and IL1RN could be used as gene markers for AMI, while FSTL3-miR3303p-

IL1B/IL1RN and ACSL4-miR5905p-IL1B could be used as RNA regulatory pathways affect-

ing AMI disease progression.

Conclusions

Our study identified three genes that may be potential genetic markers for AMI’s early diagnosis

and treatment. In addition, we suggest that FSTL3-miR-330-3p-IL1B/IL1RN and ACSL4-miR-

590-5p-IL1B may be possible RNA regulatory pathways to control AMI disease progression.
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Introduction

Acute myocardial infarction (AMI) is a common cardiovascular disease and is one of the most

prevalent cardiovascular diseases. Acute myocardial infarction strongly correlates with the

immune system [1]. Acute myocardial infarction is associated with inflammation of the

patient’s epicardial coronary arteries. It has been shown that plaque rupture is related to sys-

temic inflammation and activation of inflammatory signals from macrophages in the local pla-

que. For example, damage-associated proteins (DAMPs) are released during the post-infarct

phase of the inflammatory response and stimulate the body’s immune response. During this

phase, leukocytes are mobilized, and neutrophils, monocytes, and lymphocytes wander into

the infarcted area. Later, pro-inflammatory signals are suppressed, and leukocyte infiltration is

terminated. The inflammatory and immune response eventually causes irreparable damage to

the myocardial cells and places a heavy burden on them [2]. Therefore, early diagnosis and

treatment of acute myocardial infarction (AMI) can prevent disease progression.

Transcriptome and microarray analysis are becoming more common in AMI studies [3–5].

Studies have shown that the LncRNA SNHG8 regulates acute myocardial infarction [6]. How-

ever, there are no validated genetic markers for acute myocardial infarction at the transcrip-

tome level. Finding new genetic markers at the transcriptome level is crucial for early

detection and effective treatment of AMI. In addition, there are many studies applying bioin-

formatics methods to study biological markers of acute myocardial infarction, such as

weighted gene co-expression network analysis [7], integrated bioinformatics analysis, etc. [8].

However, these studies did not combine genomes into a gene matrix for integrated analysis.

This search for potential mRNAs is achievable through integrated analysis of microarrays in

bioinformatics.

Five microarray datasets from the GEO database were downloaded for the current study.

Robust Multiarray Average (RMA) in R was used to normalize all array data. DEGs were

screened using screening criteria (P<0.05, LogFC>1.5). The online program BioGPS was used

to screen genes expressed explicitly by the immune system for our study. The R software clus-

ter analysis package was used to perform enrichment analysis on the GO and KEGG databases.

We constructed a PPI network using the STRING database (https://string-db.org/) and the

Cytoscape plugins MCODE and cytohubba. We obtained eight central genes expressed explic-

itly by the immune system by extracting and analyzing three cluster modules in the PPI net-

work. After that, we validated the acquired essential genes by group comparison and ROC

curves using the integrated GEO dataset. We used StarBase (version 3.0) (http://starbase.sysu.

edu.cn/index.php) to predict the target miRNAs of the eight essential genes. Long non-coding

RNAs regulating miRNAs were further obtained based on the above miRNA prediction

results. Cytoscape was used to build a CeRNA network of interrelationships between miRNAs

lncRNAs and critical genes. To validate the potential gene markers, we conducted a literature

search. Finally, AQP9, IL1B, and IL1RN were identified as potential key genes involved in

AMI. In addition, we also investigated the RNA regulatory routes of AQP9, IL1B, and IL1RN.

This study provided us with new insights into the complex immune process of AMI at the

transcriptome level and identified potential gene markers and associated RNA regulatory path-

ways for the diagnosis of AMI.

Materials and methods

Analysis workflow

The analytical workflow diagram for this study is shown in Fig 1. We downloaded data from

the GEO database and divided them into two groups(The test and validation sets). The test set
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Fig 1. A. Heat map of gene expression. Heat map of gene expression with expression levels shown as rectangles of

different colors: red indicates high levels of differential genes, while Combined with the relationship between their

expression levels blue indicates low levels of differential genes. B. Vulcano plot. Vulcano plot showing the difference in

DEGs between AMI samples and healthy controls. Genes that are overexpressed are shown in red, while temporarily

unrelated genes are shown in black. Genes that are downregulated are shown in blue.

https://doi.org/10.1371/journal.pone.0264362.g001
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was analyzed after quality control. Fifty differential genes were screened according to the

screening conditions and enriched for analysis. We then combined the 50 screened differential

genes with the PPI network and BIOGPS database to obtain eight essential genes. We validated

these eight critical genes in the validation set data. Finally, we predicted the miRNAs and

lncRNAs of these three hub genes, which led to two regulatory pathways of AMI.

Data acquisition

The data was collected using the GEO database. The following were used as screening criteria.

(1) array data obtained using Homo sapiens gene expression analysis; (2) whole blood and

endothelial cells; (3) files with sample-related information in the data. (4) No duplicates were

analyzed for each subject. GSE29111, GSE19339, GSE97320, and GSE66360, including 92 AMI

samples and 57 standard samples, were merged after QC (quality control), and the combined

dataset was filtered again. They were selected as the test set for differentially expressed gene

analysis and the validation set for group comparisons between immune system-associated

Hub gene expression. GSE48060, including 31 AMI and 21 standard samples, was selected as

the validation set for resistant system-associated Hub gene ROC curves (Table 1).

Data normalization and identification of DEGs
After QC (quality control), the raw mRNA microarray data obtained from the GEO database

were merged, and the combined dataset was filtered. The merged dataset was then normalized

by the R affy package using a robust multi-array average normalization method. The R package

"limma" was used to perform differential genetic analysis between samples. After obtaining P

values, multiple hypothesis testing and correction of multiple hypothesis testing were per-

formed. P-value thresholds were determined based on the false discovery rate. The meaning of

the corrected P-value is the adjusted P-value [9, 10]. Log2 (fold change) >1.5 or -1.5 and a P

value of 0.05 were used as screening criteria.

Heatmap and volcano plot analyses

Heatmaps and volcano plots were created using R software to illustrate the DEGs better. R’s

heatmap package was used to create heatmaps.

Identification of immune system-specific expressed genes

Use the online database BIOGPS (http://biogps.org/) [11] to screen for system-specific expres-

sion of genes in DEGs. The following were selected as screening criteria. (1) transcripts with

expression values >10-fold the median associated with a single organ/system, and (2)

Table 1. Data set information summary.

GEO ID Platform Samples number Source Age Sex (male/female) Attribute (Test set/ Validation set)

AMI normal AMI normal AMI normal

GSE29111 GPL570 36 0 whole blood 56.4±9.2 - 30/6 - Both

GSE19339 GPL570 4 4 blood - - - - Both

GSE97320 GPL570 3 3 blood 53±13 53.7±4.7 - - Both

GSE66360 GPL570 49 50 Endothelial Cells - - - - Both

GSE48060 GPL570 31 21 blood - - - - Set of validations

GPL570: [HG-U133 Plus 2] Human Genome U133 Plus 2.0 Affymetrix Array. "-" indicates that the user did not get any information.

https://doi.org/10.1371/journal.pone.0264362.t001
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expression values in the second-ranked system with only one-third of the expression of the

first system [12]. Genes identified using these criteria were considered to be system-specific.

Enrichment analysis

The R software clusterProfiler package was used in functional enrichment studies such as

Gene Ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG)

pathway enrichment analysis [13, 14]. P values less than 0.05 were used to identify significantly

enriched functions and pathways.

To perform a more accurate enrichment analysis, we used GSEA analysis. This was done by

using the clusterProfiler package for GSEA analysis. The selected datasets were BioCarta,

KEGG, NABA, Reactome, WP [15, 16].

Construction of the PPI network

A PPI network of DEGs with a total score more significant than 0.4 was built with STRING

(https://string-db.org/). The Cytoscape program displayed the PPI network after obtaining

interaction relationships. The MCODE (Minimal Common Oncology Data Elements) plugin

[17] was used to identify significant gene clusters and cluster scores. Use Cytoscape plugin

CytoHubbato to find critical genes in the PPI network [18]. A combination of five methods in

the plugin CytoHubba was used to identify hub genes, including EPC (edge percolation com-

ponent), MCC (leading edge centrality), MNC (maximum neighbour component), Degree

(node connectivity), and Closeness (node connectivity tightness) [19, 20]. A comprehensive

analysis of all the data led to the conclusions, then used to identify critical genes related to the

immune system.

Verification of the hub genes

GSE48060 (5 patients with event sample,26 patients without event sample,21 normal sample)

was used to test these eight immune system-specific vital genes. Statistical analysis of the Stu-

dent’s t-test and group comparison plots were performed using the R software ggplot2 and

ggpubr packages. Five essential genes were expressed at higher levels in MI samples than in

standard samples (P 0.01). AQP9, IL1B, and IL1RN were represented in the AMI samples

above the standard samples (P < 0.05).

ROC curve of the hub genes

AUC is a common method used to calculate the area under the ROC curve, representing the

probability that a classifier will rank a randomly selected positive instance above a selected neg-

ative instance. It is computed as a trapezoidal calculation [21]. In this study, we use the pROC

package for ROC analysis and the ggplot2 package for visualization [22]. For the GSE48060

dataset, we used R language to construct ROC curves based on the expression of eight immune

system-specific key genes. We combined the patient with event and patient without event in

GSE48060 as the AMI patient group, and the normal group was defined as the control group.

And we performed ROC analysis with the pROC package. The area can describe the intrinsic

efficacy of the diagnostic model under the curve (AUC) that combines sensitivity and specific-

ity. These eight highly expressed key genes have better diagnostic value in AMI samples com-

pared to normal samples. For example, IL1RN had the most incredible sensitivity and

specificity in this cohort (AUC: 0.791), as well as S100A12 (AUC: 0.780), CCL4 (AUC: 0.780),

S100A9 (AUC: 0.757), AQP9 (AUC: 0.740), and FPR1 (AUC: 0.694). Based on our current
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data, we predict that AQP9, IL1B, and IL1RN may be effective genetic markers for detecting

ischemic stroke.

Prediction of target miRNAs

Mutations and dysregulation of miRNAs and lncRNAs are inextricably linked to acute myo-

cardial infarction [23, 24]. There are many models available to predict the relationship between

miRNAs and LncRNAs. For example, the models used to predict the interrelationship between

miRNA and disease, such as RWRMDA, HDMP, RKNNMDA, IMCMDA, etc. [25]. There are

also models for predicting the interrelationship between miRNA and mRNA, such as Miranda,

TargetScan, PicTar, etc. [24]. And models for predicting the relationship between lncRNAs

and diseases, such as LNCSIM, LRLSLDA, ILNCSIM, RWRlncD, etc. [23]. and models for pre-

dicting the relationship between miRNAs and lncRNAs, such as LMI-INGI, EPLMI,

LMFNRLMI, NDALMA, etc. [26, 27]. In addition, new algorithms are constantly being dis-

covered, and please refer to the relevant literature for details [28–30]. We predicted hub gene

target miRNAs using the online miRNA database StarBase(version 3.0; http://starbase.sysu.

edu.cn/index.php) [31]. Cytoscape was used to build the mRNA-miRNA co-expression net-

work. We sequentially input the 8 key genes into the miRNA prediction module of the starbase

database and obtained the upstream miRNAs of the eight key genes. To make the prediction

results more accurate, we defined the miRNAs that were judged as valid miRNAs by three or

more methods in the starbase database results to be considered the key genes.

Construction of ceRNA networks

Based on the interaction relationships between known miRNAs, we made predictions in Star-

Base (version 3.0) [31] to screen out lncRNAs that interact with known miRNAs. After that,

Cytoscape was used to build a CeRNA network based on the linkage between mRNAs, miR-

NAs, and lncRNAs.

Statistics analysis

We performed statistical analyses using the rgpubr R package. The R package for ggplot2 was

used to create boxplots. we used the Student’s t-test to see any differences between the two

groups. ROC analysis and ROC curves were performed using the ROCR program.

Results

Identification of DEGs
After QC (quality control), we merged the data set from 92 AMI and 57 standard samples and

filtered the data. After performing differential gene analysis, we obtained two down-regulated

genes and 48 others that were upregulated, giving us a total of 50 DEGs. Heat maps and vol-

cano maps created using the R program can be seen in Fig 1.

Identification of immune system-specific expressed genes

Fifty genes expressed in the organ/system were screened using BioGPS. These genes were

found in the most significant proportion of the immune system. The second most represented

tissue or organ system was the heart (11/50, 22%). This was followed by the digestive system

(10/50, 20%). Finally, the nervous system, respiratory system, urinary system, coagulation sys-

tem, skeletal, endocrine system, and skeletal muscle had the lowest percentage of genes (6/50,

12%) (Table 2).
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Enrichment analysis

The Gene Ontology (GO) plot shows the functions and pathways of gene enrichment. The

results show that immune response, immune-related chemotaxis, has the most significant

enrichment in terms of gene function. GSEA showed genes closely associated with AMI

PATHWAY, CARDIACEGF PATHWAY, etc. The screening thresholds are p 0.05 and Q 0.05.

NES stands for the normalized enrichment score, and p.adjust means to change the p-value

(Fig 2).

Construction of the PPI network

The PPI network generated with STRING demonstrates the interaction relationships between

the proteins encoded by DEGs. The cytoHubba plugin was used to determine the importance

of genes in the genome. We identified eight immune system-associated Hub genes using at

least five cytohubba target prediction tools. These genes scored high in cytohubba’s five target

prediction techniques and are critical for understanding the pathogenesis of AMI (Fig 3).

Verification of the hub genes

To validate the eight immune system-specific hub genes obtained in the GSE48060, we per-

formed Student’s t-test statistics and constructed boxplots using the ggplot2 and ggpubr soft-

ware packages for R. The expression levels of the five hub genes were significantly higher in

the MI samples compared to the standard samples (P 0.01) (Fig 4). expression levels of AQP9,

IL1B, and IL1RN were substantially higher in the MI samples compared to the standard sam-

ples (P 0.05).

ROC curve of the hub genes

For the GSE48060 dataset, we analyzed eight immune system-specific expressions of key genes

using R and constructed ROC curves. The area measured the overall validity and sensitivity of

the diagnostic test under the curve (AUC) [32]. Il1RN had the best diagnostic value of all these

genes (AUC: 0.791). Others with diagnostic significance included S100A12 (AUC: 0.782),

CCL4 (AUC: 0.781) S100A9 (0.757), AQP9 (0.750), FPR1 (0.750), IL1B (0.640), and TREM1

Table 2. Summary of gene information.

System Gene

Nerve system CLEC4E TP53INP2 CD36 FAM198B IL1RN PITX3 XIST USP9Y;

Heart THBD FN1 PLAUR SULF1 TP53INP2 CD36 EFEMP1 FAM198B IL1RN PITX3 THBS1

Skeletal muscle TP53INP2 CD36 FAM198B IL1RN PITX3

Urinary system NR4A2 TP53INP2 CD36 FAM198B IL1RN PITX3 KCNJ15

Immune system THBD TP53INP2 PITX3 MAFB AQP9 CCL4 PLAUR C5AR1 HCAR3 NFIL3 S100A9 RPS4Y1

TREM1 CSF3R KDM5D IL1R2 CD36 IL1B FCER1G FAM198B CD83 IL1RN S100A12 FPR1

Coagulation

system

TP53INP2 ITLN1 CD36 FAM198B IL1RN PITX3

Bone IL1R2 CLEC4E FCER1G CD36 FAM198B IL1RN PITX3

Digestive system THBD C15orf48 MAFB ACSL1 ITLN1 SERPINA1 CD36 FAM198B IL1RN PITX3

Endocrine System CLEC4E TP53INP2 MGP CD36 FAM198B IL1RN PITX3 FN1

Respiratory

system

THBD CXCL16 ITLN1 CCL20 IER3 CD36 FAM198B IL1RN PITX3

Shows the correlation of genes with different systems

https://doi.org/10.1371/journal.pone.0264362.t002
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Fig 2. A, GO Circle plot of biological process. The GO circle plot of biological processes shows the biological

processes of enrichment. The main enrichment processes are leukocyte chemotaxis:. B, GO Circle plot of cellular

component. The GO circle plot of cellular constituents shows the enriched cellular component. The main enriched

cellular component is collagen-containing extracellular matrix. C, GO Circle plot of molecular function. GO circles

plot of molecular functions shows the enriched molecular functions. The main enriched molecular function is

chemokine activity. D. GO Circle of biological process. GO circle of biological processes shows the enriched

biological processes. The main enriched processes are granulocyte chemotaxis, granulocyte migration, neutrophil

chemotaxis, leukocyte chemotaxis, neutrophil migration, myeloid leukocyte migration, cell chemotaxis, leukocyte
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(0.593) (Fig 5). We combined these results with the expression levels of these genes in health

and MI-related samples to identify potentially valid gene markers. Our current samples lead us

to believe that the biomarkers AQP9, IL1B, and IL1RN may contribute to the early detection of

AMI.

Prediction of target miRNAs

According to our method’s definition of valid miRNAs, we screened five genes containing

valid miRNAs from 8 essential genes. We predicted target miRNAs for hub genes with five dif-

ferent miRNA databases. We obtained 293 target miRNAs from eight highly expressed hub

genes. Based on the predicted results, Cytoscape created a hub gene and miRNA co-expression

network (Fig 6).

Construction of ceRNA networks

MiRNAs can silence genes and reduce gene expression through binding to mRNAs. miRNA

function may be influenced by upstream molecules (lncRNAs) that bind miRNA response ele-

ments and thus upregulate gene expression [33]. We used CLIP-Data with high stringency

(> = 5) in the human h19 genome in Starbase 3.0 as well as degradome data to predict

upstream molecules (lncRNAs). There are several miRNA shear sites in one transcript.

migration, blood coagulation, hemostasis. E. GO Circle of cellular component, The GO circle of cellular components

shows the enriched cellular components. The main enriched cellular components are secretory granule lumen,

cytoplasmic vesicle lumen, vesicle lumen, collagen–containing extracellular matrix, platelet alpha granule, external side

of plasma membrane, platelet alpha granule lumen, specific granule, tertiary granule, secretory granule membrane. F.

GO Circle of molecular function, The GO circle of molecular function shows the enriched molecular function. The

main enriched molecular functions are ficolin-1-rich granule, RAGE receptor binding, cytokine activity, chemokine

activity, cytokine binding, receptor-ligand activity, immune receptor activity, signaling receptor activator activity,

chemokine receptor binding, cytokine receptor binding. G. GO Functional enrichment network diagram of

biological process. The GO functional enrichment network diagram of biological processes shows the enriched

biological processes. The main enrichment process is neutrophil chemotaxis. H. GO Functional enrichment network

diagram of cellular component. The GO functional enrichment network diagram for cellular components shows the

enriched cellular components. The main enriched cellular component is platelet alpha granule lumen. I. GO

Functional enrichment network diagram of molecular function. The GO functional enrichment network diagram

for molecular functions shows the enriched molecular functions. The main enriched molecular function is chemokine

activity. J. GSEA Enrichment plot of BioCarta gene sets. GSEA Enrichment plot of BioCarta gene sets showing the

pathway enrichment of 50 differential genes in the BioCarta genome. The main enriched pathways are AMI

PATHWAY, CARDIACEGF PATHWAY, GRANULOCYTES PATHWAY, INFLAM PATHWAY, LYM PATHWAY.

K. GSEA Enrichment plot of KEGG gene sets. The pathway enrichment of 50 differential genes in the KEGG genome

is shown. The main enriched pathways are CELL ADHESION MOLECULES CAMS, CYTOKINE RECEPTOR

INTERACTION, FC GAMMA R MEDIATED PHAGOCYTOSIS, LEUKOCYTE TRANSENDOTHELIAL

MIGRATION, LYSOSOME. L. GSEA Enrichment plot of NABA gene set. GSEA Enrichment plot of NABA gene set

shows the enrichment of the cellular components of the 50 differential genes in the NABA genome. The main enriched

components are BASEMENT MEMBRANES, COLLAGENS, CORE MATRISOME. ECM AFFILIATED, ECM

GLYCOPROTEINS. M. GSEA Enrichment plot of Reactome gene sets. GSEA Enrichment plot of the Reactome

genome showing the functional enrichment of 50 differential genes in the Reactome genome. The main enriched

functions are ADHERENS JUNCTIONS INTERACTIONS, BINDING, AND UPTAKE OF LIGANDS BY

SCAVENGER RECEPTORS, INTERLEUKIN 1 FAMILY SIGNALING, INTRINSIC PATHWAY OF FIBRIN CLOT

FORMATION, SYNTHESIS OF LEUKOTRIENES LT AND EOXINS EX. N. GSEA Enrichment plot of WP Gene

Set. The enrichment plot of WP Gene Set shows the pathway enrichment of 50 differential genes in the WP genome.

The main enriched pathways are CYTOKINES AND INFLAMMATORY RESPONSE, IL1 SIGNALING PATHWAY,

EXTRACELLULAR VESICLES IN THE CROSSTALK OF CARDIAC CELLS, STRUCTURAL PATHWAY OF

INTERLEUKIN 1 IL1, MICRORNAS IN CARDIOMYOCYTE HYPERTROPHY. O. GSEA ridge plot of BioCarta

gene sets. That Shows the pathway enrichment of 50 differential genes in the BioCarta genome. P. GSEA ridge plot of

KEGG gene sets. The pathway enrichment of the 50 differential genes in the KEGG genome is shown. Q. GSEA ridge

plot of NABA gene set. That Shows the cellular component enrichment of the 50 differential genes in the NABA

genome. R. GSEA ridge plot of Reactome gene sets. The functional enrichment of the 50 differential genes in the

Reactome genome is shown. S. GSEA ridge plot of WP Gene Set. That Shows the pathway enrichment of the 50

differential genes in the WP genome.

https://doi.org/10.1371/journal.pone.0264362.g002
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Fig 3. PPI network. MCODE uncovered a DEG PPI network with three cluster components. a Protein-protein

interaction network generated by DEGs. Protein-protein associations are represented by the nodes and edges of the

graph. Red diamonds express upregulated genes, whereas green and blue hexagons represent downregulated genes.

MCODE was able to extract three cluster modules. With the most points, Cluster 1 (b) was the winner, followed by

Cluster 2 (c) and Cluster 3. (d).

https://doi.org/10.1371/journal.pone.0264362.g003
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Fig 4. Box plots for group comparisons. Verification of the eight immune system-specific hub genes that are expressed. ���: p< 0.001,
��: p< 0.01, �: p< 0.05, ns: no significant difference. A significant upregulation of five genes occurs in MI samples compared to standard

samples. A. Group comparisons of AQP9. B. Group comparisons of CCL4. C. Group comparisons of FPR1. D. Group comparisons

of IL1B. E. Group comparisons of IL1RN. F. Group comparisons of S100A9. G. Group comparisons of S100A12. H. Group

comparisons of TREM1.

https://doi.org/10.1371/journal.pone.0264362.g004
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Fig 5. ROC plot. Gene expression ROC curve for the eight immune system-specific hub genes. AUC: the surface area

under the ROC curve A. ROC plot of AQP9. B. ROC plot of CCL4. C. ROC plot of FPR1. D. ROC plot of IL1B. E.

ROC plot of IL1RN. F. ROC plot of S100A9. G. ROC plot of S100A12. H. ROC plot of TREM1.

https://doi.org/10.1371/journal.pone.0264362.g005
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Therefore, we selected the upstream molecules (lncRNAs) with the highest scores in the Star-

base database as the upstream target molecules (lncRNAs). Subsequently, we identified one

target miRNA, nine IL1B target lncRNAs for AQP9, and two target miRNAs, and 14 IL1B tar-

get lncRNAs for IL1RN. ceRNA networks are demonstrations of the interaction relationships

Fig 6. The mRNA-miRNA co-expression network. The mRNA-miRNA co-expression network was designed using Cytoscape. In a

network, hub genes and miRNA targets are co-expressed together. TREM1 contains just six target miRNAs, compared to IL1RN’s

dozens of miRNAs. The nodes represent mRNA and miRNA, while the edges represent the relationship between mRNA and miRNA

interaction.

https://doi.org/10.1371/journal.pone.0264362.g006
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between RNAs. We created the ceRNA network using Cytoscape based on the prediction

results. We screened one down-regulated miRNA and two upregulated lncRNAs reported in

studies for further analysis based on the literature search. These RNA regulatory mechanisms

may help to control the course of AMI by suppressing the expression of pro-inflammatory

cytokines such as IL1B/IL1RN and IL1B (Fig 7).

Discussion

Pathogenesis of AMI differs from patient to patient. Cardiomyocyte necrosis may be pre-

vented, and the quality of life improved for patients with early diagnosis and treatment of

AMI. AMI, on the other hand, still lacks reliable biomarkers. The discovery of novel and effi-

cient genetic biomarkers for the early detection and treatment of AMI is critical.

We finalized 50 DEGs by comparing gene expression in AMI and standard samples.GO

enrichment analysis of DEGs showed that differential genes were mainly enriched in immune

cell migration, especially chemotaxis, and regulation of humoral immune responses.KEGG

analysis was enriched primarily on the AMI pathway, CARDIACEGF pathway, etc.

After screening and validating the immune-related central genes by the PPI network

established by Cytoscape, we identified eight genes differentially expressed in the immune

Fig 7. ceRNA networks. Three ceRNA networks comprised AQP9, IL1B, and IL1RN, as well as possible RNA

regulatory mechanisms.

https://doi.org/10.1371/journal.pone.0264362.g007
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system. ROC analysis is a method used to test the validity of a specific gene as a classifier and

its function.ROC curve analysis showed that all of these genes were statistically significant.

Combined with the relationship between their expression levels in AMI and the progression

of the disease. Significant genes should be expressed at higher levels in patient samples than

in normal samples.AQP9, IL1B, and IL1RN were consistent with statistical significance

(p < 0.05). Therefore, it is reasonable to assume that AQP9, IL1B, and IL1RN may be impor-

tant genetic biomarkers for diagnosing AMI. In addition, we also constructed a lncRNA-

mRNA-miRNA co-expression network to elucidate the pathogenesis of AMI at the tran-

scriptome level.

AQP9, a member of the cell membrane protein family, mainly transports water down the

concentration gradient. An experimental animal study reported that this study demonstrated

by qRT-PCR and Western blot experiments that silencing the AQP9 gene could inhibit the

activation of the ERK1/2 signaling pathway, thereby attenuating the inflammatory response in

AMI rats, inhibiting apoptosis of cardiomyocytes, and improving cardiac function [34]. This

suggests that AQP9 plays an essential role in the pathogenesis of AMI. Consistent with this

study, our study found a statistically significant comparison of AQP9 subgroups in the com-

bined dataset. Furthermore, the ROC curve of AQP9 in the validation dataset showed that it

has a very high diagnostic value for AMI (AUC = 0.74). Therefore, we concluded that AQP9 is

a very effective genetic marker for diagnosing AMI.

IL-1 induces the synthesis and expression of various secondary inflammatory cytokines,

including IL-6. IL-1b, the primary form of circulating IL-1, is activated by caspase-1 cleavage

in the presence of nucleotide-binding oligomerization domain-like receptor family pyridine-

containing domain 3 (NLRP3), which is synthesized as the initial precursor [35]. A study con-

cluded that MCC950, a specific NLRP3 inhibitor, could effectively inhibit the release of inflam-

matory factors IL-1B and IL-1β, thereby suppressing the early inflammatory response after

AMI, alleviating fibrosis, and improving cardiac function in mouse model hearts [36, 37]. In

our study, IL1B was statistically significant in the group comparison between MI and NOR-

MAL groups. Therefore, it is reasonable to assume that IL1B may play an essential role in the

disease progression of AMI.

IL1RN acts as a natural inhibitor of IL-1 by binding to the IL-1R1 receptor, thereby block-

ing IL-1 signaling [38]. A study reported that tH3 of the gene (IL1RN) encoding IL-1Ra, a nat-

ural inhibitor of the pro-inflammatory cytokine IL-1, was associated with an increased risk of

myocardial infarction [39]. Interleukin-1 plays a significant role in the pathogenesis of myo-

cardial infarction [40]. We also found a high diagnostic value of IL1RN for the diagnosis of MI

by the ROC curve of the validation group (AUC = 0.793). Therefore, we concluded that IL1RN

is a valid biomarker for diagnosing AMI.

In addition, our study predicted target miRNAs and lncRNAs for AQP9, IL1B, and IL1RN
and constructed ceRNA networks using Cytoscape. This can reveal the upstream regulatory

mechanisms of genes at the transcriptome level. Among the target miRNAs of AQP9, IL1B,

and IL1RN, the expression of miR-330-3p was associated with plaque rupture of MI [41]. In

addition, it has been claimed that FSTL3 is related to the sensitivity of the heart to ischemic

injury. Therefore, we suggest that FSTL3-miR-330-3p-IL1B/IL1RN may be a potential RNA

regulatory pathway regulating disease progression in MI. In addition, ACSL4 has been

reported in studies related to AMI [42], while miR-590-5p has been shown to inhibit patholog-

ical hypertrophy-mediated heart failure [43]. Therefore, we suggest that ACSL4-miR-590-5p-
IL1B has an essential regulatory role in MI. Of course, the sample size analyzed in our study

was relatively small; therefore, future investigators need to increase the sample size and con-

duct prospective cohort studies to confirm our view further.
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Conclusions

Our study screened three genes (AQP9, IL1B, and IL1RN) that may be potential genetic mark-

ers for MI’s early diagnosis and treatment. In addition, we suggest that FSTL3-miR-330-3p-
IL1B/IL1RN and ACSL4-miR-590-5p-IL1B may be possible RNA regulatory pathways to con-

trol AMI disease progression.
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