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Whole-genome mate-pair sequencing of
apparently balanced chromosome
rearrangements reveals complex structural
variations: two case studies
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Abstract

Background: Apparently balanced chromosome rearrangements (ABCRs) in non-affected individuals are well-
known to possess high reproductive risks such as infertility, abnormal offspring, and pregnancy loss. However,
caution should be exercised in genetic counseling and reproductive intervention because cryptic unbalanced
defects and genome structural variations beyond the resolution of routine cytogenetics may not be detected.

Case presentation: Here, we studied two familial cases of ABCRs were recruited in this study. In family 1, the
couple suffered two abortions pregnancies and underwent labor induction. Single nucleotide polymorphism (SNP)
array analysis of the aborted sample from the second pregnancy revealed a 10.8 Mb heterozygous deletion at
10926.13g26.3 and a 5.5 Mb duplication at 19q13.41-q13.43. The non-affected father was identified as a carrier of
three-way complex chromosomal rearrangement [t (6;10;19)(p22;026;q13)] by karyotyping. Whole-genome mate-
pair sequencing revealed a cryptic breakpoint on the derivative chromosome 19 (der19), indicating that the
karyotype was a more complex structural rearrangement comprising four breakpoints. Three genes, FAM24B, CACN
G8, and KIAA0556, were disrupted without causing any abnormal phenotype in the carrier. In family 2, the couple
suffered from a spontaneous miscarriage. This family had an affected child with multiple congenital deformities and
an unbalanced karyotype, 46,XY,der (11) t (6;11)(q13;p11.2). The female partner was identified as a balanced
translocation carrier with the karyotype 46,XX;t (6;11)(q13;p11.2) dn. Further SNP array and fluorescent in situ
hybridization (FISH) indicated a cryptic insertion between chromosome 6 and chromosome 11. Finally, whole-
genome mate-pair sequencing revealed an extremely complex genomic structural variation, including a cryptic
deletion and 12 breakpoints on chromosome 11, and 1 breakpoint on chromosome 6 .

Conclusions: Our study investigated two rare cases of ABCRs and demonstrated the efficacy of whole-genome
mate-pair sequencing in analyzing the genome complex structural variation. In case of ABCRs detected by
conventional cytogenetic techniques, whole genome sequencing (WGS) based approaches should be considered
for accurate diagnosis, effective genetic counseling, and correct reproductive intervention to avoid recurrence risks.
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Background
Apparently balanced chromosome rearrangements

(ABCRs), including translocation, inversion, and inser-
tion, involve exchange of genomic regions between non-
homologous chromosomes without the gain or loss of
genetic material. Simple ABCR is a two-breakage re-
arrangement, whereas complex chromosomal rearrange-
ment (CCR) involves chromosomal abnormalities with
three or more breakpoints. CCRs are rare in the popula-
tion, with only around 380 cases reported till date [1, 2].
Although most ABCRs are associated with a normal
phenotype, they show high reproductive risks such as in-
fertility, recurrent spontaneous miscarriage, and off-
spring with developmental defects and so on [3-5].

Reproductive risk increases with increase in the num-
ber of breakpoints, and the particular rearrangements as-
sociated with peculiar mis-segregation mode in meiosis.
For example, in reciprocal translocation, small translo-
cated segments are prone to adjacent-1 segregation,
small centric segments are apt for adjacent-2 segrega-
tion, and a small quadrivalent is usually associated with
3:1 disjunction. Indeed, some translocation carriers have
more than 50% risk of bearing an abnormal child,
whereas others have less than 1% risk. Therefore, it is
crucial to accurately diagnose the karyotype of ABCR
carriers with normal phenotype to determine the repro-
ductive risk and choose an appropriate approach to
avoid birth defects, such approaches include spontan-
eous pregnancy combined with prenatal diagnosis, pre-
implantation genetic testing, and use of donor sperm or
egg.

Accurate cytogenetic diagnosis depends on the reso-
lution of the testing techniques used. Previously, identifi-
cation of ABCRs and further breakpoint confirmation
were mainly based on high-quality G-banding of the
metaphase chromosomes. However, due to the limited
resolution of conventional cytogenetic technologies, only
large structural rearrangements (>5Mb) are identified.
As a result, submicroscopic structural rearrangements
could remain undetected, even when high-resolution
banding technology is used. Molecular testing tech-
niques such as FISH, CMA, and WGS have greatly im-
proved the ability to identify ABCRs [6-10]. Recent
studies have reported that WGS can detect extremely
complex balance rearrangements, including genome
structural variations at the molecular level, which other-
wise remain detected by conventional G banding tech-
niques [11].

In this study, we analyzed the structural features of
two cases of CCR using low pass whole-genome mate-
pair sequencing to perform risk evaluation of the ABCR
carriers and to examine complex genome structure vari-
ations in the ABCRs detected by conventional cytogen-
etic technology.
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Case presentation
Family 1: A couple (I-1 and I-2 in Fig. 1a), with the hus-
band aged 32years and the wife aged 27 years, visited
our hospital for genetic counseling and birth guidance.
They had conceived two natural pregnancies, which
were terminated due to the observation of abnormal
fetus during routine prenatal check-ups. In the first
pregnancy, B-ultrasonography at week 13 of pregnancy
revealed fetal growth retardation, as the fetus size was
equivalent to that at 12 W, NT thickening and a small
amount of regurgitation in the reverse tricuspid valve of
the venous catheter were also detected. This pregnancy
was terminated at 13 weeks. In the second pregnancy,
four-dimensional B-ultrasonography at week 20 of preg-
nancy revealed a thickened fetal neck skin fold, lymph-
atic hydrocystoma of the neck, wide eye distance, short
nasal bone, and hydramnios. Amniocentesis and
chromosome microarray analysis of amniotic fluid cells
(AFC) were performed. The pregnancy was terminated
after the prenatal diagnosis showed an abnormal result.
Family 2: This couple (II-3 and II-4 in Fig. 2a), with
both partners aged 36 years, visited our hospital to con-
ceive a healthy baby. They had four natural pregnancies
after marriage. The first and the third pregnancies were
naturally miscarried in the first trimester due to un-
known reasons. The second pregnancy concluded with
the delivery of a healthy daughter having a normal
chromosome karyotype. During the fourth pregnancy,
the couple did not carry out routine ultrasonography
examination and invasive prenatal testing; this preg-
nancy led to the birth of a boy with anal atresia, con-
genital heart disease, and penile scrotal transposition,
who survived only for over 100 days after birth.

Materials and methods

Karyotyping analysis was performed for eight individuals
including I-1 and I-2 in family 1 and I-1, 1-2, II-3, II-4,
1I-3, and III-5 in family 2. SNP array analysis of II-2 in
family 1 was performed. II-4 in family 2 underwent SNP
array analysis and FISH testing. WGS was performed for
both I-1 in family 1 and II-4 in family 2.

Karyotyping analysis, FISH, and SNP array were
performed as described in our previous study [12].
Briefly, metaphase G-banding at the 400-550 band
level was performed using peripheral blood
lymphocytes. Metaphase FISH was performed using
whole chromosome painting probe 6 (WCP6) and
centromere-enumeration probe 11 (CEP 11) (Abbott-
Vysis, Des Plaines, IL, USA). Single nucleotide poly-
morphism (SNP) microarray analysis was performed
using Cytoscan 750K chip (Affymetrix, Santa Clara,
CA, USA) as previously reported [13]. The data were
analyzed using chromosome analysis software ChAS
(Affymetrix, Santa Clara, CA, USA).
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Fig. 1 Molecular cytogenetic analysis for Family 1. a The pedigree of family 1 with the proband (II-2) indicated by an arrow. Black spot, induced
labor; open symbols, unaffected individuals; square with black spots, male carriers; circles, females. b The husband in family 1 was a carrier for a
complex translocation between chromosome 6, 10, and 19 by G-banding analysis. ¢ Whole genome DNA sequencing of peripheral blood from
the carrier revealed four breakpoint rearrangement karyotypes. The genetic material from chromosomes 6, 10, and 19 is indicated as purple,
yellow, and blue lines, respectively. BP stands for breakpoint. d Type IV CCR Hexavalent Configurations. type IV CCR, as refined by whole-genome
mate-pair sequencing in the current study. The additional breakpoint as well as possible recombination at the “middle segment” in type IV CCR
increases the percentage of unbalanced gametes, and subsequent reproductive risk. Genetic material from chromosomes 6, 10, and 19 is shown

DNA was isolated from peripheral blood lympho-
cytes using a QIAamp® DNA blood midi kit (QIA-
GEN, Hilden, Germany). Low-coverage whole genome
massively parallel sequencing was performed in two
carriers for excluding the cryptic chromosome struc-
tural rearrangements. Briefly, a non-size selected
mate-pair library was prepared using ~3pug of gen-
omic DNA and then subjected to 50-bp-end multiplex
sequencing on the Illumina HiSeq™ X10 platform.
After automatically removing adaptor sequences and
low-quality reads, high quality paired-end reads were
aligned to the NCBI human reference genome
(GRCh37/hg19) using SOAP2. Uniquely mapped reads

J

were selected for subsequent analysis as previously
described [12]. After bioinformatics analysis, we ob-
tained the breakpoint regions were identified through
bioinformatic analysis.

Results

Family 1: Chromosome microarray (CMA) testing of
amniotic fluid cells (AFC) using SNP 750 K revealed that
the fetus had an unbalanced chromosome rearrange-
ment between the chromosomes 10 and 19, ie. arr
(hg19)10q26.13q26.3(124,625,736-135,426,386) x 1 (10.8
Mb deletion) and arr (hg19)19q13.41-q13.43(53,487,026-
58,956,816) x 3 (5.5 Mb duplication), respectively. G-
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Fig. 2 Molecular cytogenetic analysis for Family 2. a The pedigree of family 2. b The wife in family 2 showed recombination chromosome 6 and
11 by G-banding analysis. ¢ The results of the CytoScan750K_Array. The figure shows the signal of loss (Red arrow) in chromosome 6. d The
results of WCP 6 (Red signal)/CEP 11 (White signal) FISH show insertion translocation between chromosome 6 and 11. (E) Whole genome DNA
sequencing of peripheral blood from the carrier revealed thirteen breakpoints and rearrangement in the karyotypes with a cryptic deletion on
chromosome 6. Genetic material from chromosomes 6 and 11 are indicated as purple and blue lines, respectively. BP stands for breakpoint

banding karyotype analysis showed that the female part-
ner had a normal karyotype, whereas the male partner
with the karyotype 46,XY,t (6;10;19)(p22;q26;q13) had a
complex translocation between the chromosomes 6, 10,
and 19 (Fig. 1b). To precisely determine the karyotype,
further WGS analysis was performed and two rearrange-
ment breakpoints on chromosome 19 were detected:,
19q13.41 and 19q13.42, respectively (Fig. 1c). The inter-
mediate segment 19q13.41-19q13.42 of the translocated
chromosome 19 was inserted into the derivative
chromosome 10. Finally, the four breakpoints of the
chromosomes 6, 10 and 19 were confirmed to be in-
volved in the complex balanced rearrangement of

karyotypes, and with disruption in three genes, FAM24B,
CACNGS, and KIAA0556.

Family 2: G-banding karyotype analysis of III-5 at his
birth detected a maternal unbalanced translocation. The
male partner (II-3) had a normal karyotype, whereas the
female partner (II-4) with 46,XX,t (6;11)(q13;p11.2) dn
karyotype showed a de novo reciprocal translocation be-
tween the chromosomes 6 and 11, and her karyotype was
interpreted as 46,XX,t (6;11)(q13;p11.2) dn. (Fig. 2b). Both
parents (I-1 and I-2) of the female partner both had a nor-
mal karyotype.

Fluorescence in situ hybridization (FISH) analysis of
the female partner (II-4) with a chromosome 6 painting
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probe revealed that an intermediate segment 6q21-q25.1
was inserted into 11p14.1, the middle region of the short
arm of chromosome 11 (Fig. 2d). WGS was performed
to precisely map the insertion rearrangement, revealing
12 breakpoints in the 106.448-150.463 Mb region of the
long arm of chromosome 6 (6q21-q25.1) that were asso-
ciated with a heterozygous deletion in the 145.943-
147.066 Mb region of the long arm of chromosome 6
(Fig. 2e). Chromosome microarray (CMA) using SNP
(750K, Affymetrix) showed a cryptic heterozygous
microdeletion in the 146—-147 Mb region of chromosome
6q in the female partner (Fig. 2c), confirming the reli-
ability of WGS analysis. The karyotypes of the parents of
the female partner and her healthy daughter were nor-
mal, whereas her affected son inherited the maternal de-
rivative chromosome 11, thus the normal phenotype of
the daughter and the abnormal phenotype of the son
were attributable to the karyotype. Surprisingly, 13
breakpoints in the chromosomes 6 and 11 were identi-
fied in the karyotype of the female partner, indicating
that WGS can detect complex genome structural varia-
tions. Due to insufficient DNA, precise breakpoint ana-
lysis by PCR was not carried out.

Discussion

Detection of ABCR carriers is very important in ABCRs
with normal phenotype owing to a high risk of recurrent
spontaneous miscarriages and birth defects [11, 12, 14].
In this study, two couples from different families had a
history of recurrent adverse pregnancies, suggesting the
necessity for cytogenetic testing. Karyotype analysis and
further WGS revealed that the patients harbored com-
plex chromosomal rearrangements. Our study demon-
strates the advantages of WGS in karyotype analysis.

Submicroscopic chromosomal abnormalities or cryptic
rearrangements with similar chromosome band modes
may remain undetected by conventional techniques due
to the limitations of testing sensitivity [11]. Our study
showed that low-coverage WGS technique has all the
advantages of the conventional testing techniques; as it
can detect the chromosomal rearrangements of large
segments similar to traditional karyotype analysis, and
can also detect submicroscopic copy number variations
similar to a chromosome microarray. In particular, it
can detect cryptic genome structure variations.

Insertion is a rare three-break rearrangement with an
incidence of only 1/80,000, as reported in previous stud-
ies [15]. However, a submicroscopic insertion was found
in each family included in this study. In family 1, a frag-
ment of chromosome 19 was inserted into chromosome
10, while in family 2, a large fragment of chromosome 6
was inserted into chromosome 11. Type IV CCR config-
urations must have formed during the pachytene stage
of meiosis for the carrier in family 1 (Fig. 1d) [1, 16].
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The CCR with an inserted middle segment can produce
new rearrangements and result in higher reproductive
risk, increased unbalanced gamete production, and con-
sequently, affected offspring. Our study indicates that
chromosomal insertion might be much more common
after the testing resolution is increased. As insertion it-
self can lead to the risk of spontaneous abortion and
birth defects, the reproductive risk was found to be
higher in this study than in the previous testing results
showing a three-way translocation in family 1 and a sim-
ple translocation in family 2.

The identification of more submicroscopic chromo-
somal abnormalities might elucidate some unexplained
spontaneous miscarriages and birth defects, and could
provide a basis for accurate genetic counseling. How-
ever, improvement of testing sensitivity may also give
rise to new problems in the interpretation of results and
clinical genetic counseling, such as expressing the com-
plexity of chromosomal structure rearrangement due to
a lack of WGS based nomenclature, determining the
pathogenicity of small fragments of CNV, and explaining
alterations in the pattern of meiotic recombination due
to cryptic genome structural rearrangements. Thus, add-
itional data on genome structural variations using WGS
technique are needed to answer these questions.

Conclusions

In conclusion, we present two rare cases of ABCRs with
cryptic insertion and minute imbalance structural abnor-
malities identified by whole-genome mate-pair sequen-
cing. Our study showed that WGS breakpoint studies
can facilitate improved understanding of complex gen-
omic structural variations. In the future, the incidence of
cryptic CCR should be investigated in a large cohort of
ABCR carriers diagnosed by traditional G banding
karyotype.
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