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MAD1L1 Arg558His and MAD2L1 
Leu84Met interaction with 
smoking increase the risk of 
colorectal cancer 
Rong Zhong1,*, Xiaohua Chen2,3,*, Xueqin Chen1, Beibei Zhu1, Jiao Lou1, Jiaoyuan Li1, 
Na Shen1, Yang Yang1, Yajie Gong1, Ying Zhu1, Jing Yuan4, Xiaoping Xia5 & Xiaoping Miao1

The spindle assembly checkpoint (SAC) has been established as an important mechanism of driving 
aneuploidy, which occurs at a high frequency in the colorectal tumorigenesis. Two important 
components of SAC are MAD1L1 and MAD2L1, which function together in an interactive manner 
to initiate the checkpoint signal. We hypothesize that genetic variants in the binding domains 
of MAD1L1 and MAD2L1 may modulate protein structures and eventually contribute to CRC 
susceptibility. A case-control study including 710 CRC cases and 735 controls was performed to 
examine MAD1L1 Arg558His and MAD2L1 Leu84Met’s conferring susceptibility to CRC. Cytokinesis-
block micronucleus cytome assays were applied to assess the effect of two functional variants on 
chromosomal instability (CIN). Significant associations with CRC risk were observed for MAD1L1 
Arg558His (OR = 1.38,95% CI: 1.09–1.75) and MAD2L1 Leu84Met in a dominant model (OR = 1.48,95% 
CI: 1.09–2.01). Moreover, significant multiplicative gene-smoking interactions were found in MAD1L1 
Arg558His (P = 0.019) and MAD2L184 Leu/Met (P = 0.016) to enhance CRC risk. Additionally, the 
frequencies of lymphocytic micro-nucleated binucleated cells for MAD1L1 Arg558His polymorphism 
were significantly different in the exposed group (P = 0.013), but not in the control group. The study 
emphasized that MAD1L1 Arg558His and MAD2L1 Leu84Met can significantly interact with smoking 
to enhance CRC risk, and the genetic effects of MAD1L1 Arg558His on CIN need to be further clarified 
in follow-up studies.

Colorectal cancer (CRC) remains the third most commonly diagnosed cancer and the fourth leading 
cause of cancer mortality worldwide, accounting for 8.3% of the total cancer cases and 6.3% of cancer 
deaths1. With the progressive “Westernization” of lifestyles, the incidence of CRC seems to have rapidly 
become an epidemic in Asian, especially in China. CRC has been established as a complex disease that 
is strongly influenced by multiple genetic and environmental factors and their complex interactions. 
Genetic factors play a decisive role in the development of CRC when only a fraction of exposed individ-
uals actually develop CRC during their lifetimes.
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Genome instability is the prominent hallmark of human cancers and of chromosomal aneuploidy, 
which is the most common type of genomic instability, occurring at a high frequency in the colorectal 
tumorigenesis2,3. The spindle assembly checkpoint (SAC) is especially essential to ensure accurate chro-
mosome segregation and to prevent the formation of aneuploidy4,5. However, a malfunction of the SAC 
is an important mechanism of driving chromosomal aneuploidy, which advances the carcinogenesis. 
Evidence from molecular analyses has shown that the proper function of SAC is highly dependent on the 
strictly orchestrated expression of its components, and an increase or decrease in one of the functional 
components may lead to the process of an aberrant spindle checkpoint.

Two interactive components of the SAC are the human MAD1L1 mitotic arrest deficient-like 
1(MAD1L1) and MAD2L1 mitotic arrest deficient-like 1(MAD2L1), which function together in a 
hetero-tetrameric complex to initiate the checkpoint signal6,7. First, MAD1L1 has a crucial role in the 
activation and localization of MAD2L1 to unattached kinetochores. Additionally, MAD2L1 is an impor-
tant component of the anaphase-promoting complex or cyclosome (APC/C) inhibitory complex8. In 
fact, MAD2L1 has been shown to inhibit the activity of APC/C through directly binding to CDC20, and 
eventually to regulate the metaphase-anaphase transition until sister chromatids achieve proper align-
ment and microtubule attachment9,10. A depletion of MAD1L1 in mammalian cells has been found to 
inhibit the localization of MAD2L1 to kinetochores, and a disruption of MAD2L1 may not effectively 
bind to CDC20 to regulate the metaphase-anaphase transition11,12. Taken together, the structure changes 
or the loss of MAD1L1 and MAD2L1 may severely disturb the spindle checkpoint function, leading to 
aneuploidy and carcinogenesis13,14.

Therefore, the binding domains of MAD1L1 and MAD2L1 are required for transducing the checkpoint 
signal, and any change in the gene structure may disturb the process of checkpoint signal transduction. 
Genetic variants in the binding domains of MAD1L1 and MAD2L1 may modulate protein structures 
and eventually contribute to CRC susceptibility. MAD1L1 Arg558His (rs1801368) is a missense variant 
at codon 558 that is located in the region that encodes the second leucine zipper domain of MAD1L1, 
and the His allele of MAD1L1 Arg558His was identified to reduce the binding activity of MAD2L1 to 
MAD1L1, with the result of a decreased proficiency in enforcing mitotic arrest. Moreover, MAD1L1 
Arg558His has been previously reported to be associated with lung cancer risk15,16. In addition, the other 
missense polymorphism resulting in Leu84 to Met84 substitution in the MAD2L1 molecule has also been 
found to influence the interaction between MAD1L1 and MAD2L116. Considering the functional mis-
sense variants MAD1L1 Arg558His and MAD2L1, Leu84Met may play an important role in transducing 
the checkpoint signal by potentially influencing the protein activity. An alternative hypothesis has been 
proposed that MAD1L1 Arg558His and MAD2L1 Leu84Met may be associated with the risk of CRC.

Biological evidence has indicated that the MAD1L1 Arg558His and MAD2L1 Leu84Met variants may 
result in a mitotic check-point defect by severely disturbing the domains of MAD1L1 and MAD2L1, 
directly leading to chromosomal instability (CIN). It has been clear that CIN is the important phenotype 
of the carcinogenesis and that it plays a causative role in tumor initiation and progression in CRC biol-
ogy. Consequently, not only were epidemiology studies conducted to explore the association between the 
two variants and the risk of CRC, but also cytokinesis-block micronucleus cytome assays (CBMN) have 
been applied to examine the effect of two functional genetic variants on chromosomal instability (CIN). 
Here a case-control study consisting of 710 CRC cases and 735 controls was performed to examine 
MAD1L1 Arg558His or MAD2L1 Leu84Met conferring susceptibility to CRC in a Chinese Han popula-
tion. Moreover, the frequencies of lymphocytic micronucleated binucleated cells (MNBNCs) in periph-
eral lymphocytes was used to assess the effect of the two candidate SNPs on the formation of aneuploidy.

Results
Subject characteristics.  The baseline characteristics of 710 CRC patients and 735 controls are shown 
in Table 1. The cases and controls were matched well on the distribution of gender (P =  0.520) and age 
group (P =  0.228). Smoking was significantly associated with an increased risk of CRC (P <  0.001), with 
64.1% of them being smokers and 54.6%, controls. Furthermore, a significant difference in the smoking 
level was observed between the case and the control groups (P <  0.001). Among the smokers, the heavy 
smokers—who smoked > 24 packs per year—were overrepresented compared with the controls (64.0% 
vs 49.1%). Compared with nonsmokers, the OR for smokers was 1.95 (95% CI =  1.49–2.54).

Association analysis of candidate SNPs with CRC risk.  The genotype information of the two 
candidate SNPs are presented in Table 2. The genotype distributions of the two SNPs in the controls con-
formed to the Hardy-Weinberg equilibrium (P =  0.872 for MAD1L1 Arg558His, P =  0.311 for MAD2L1 
84Leu/Met). Minor allele frequencies (MAF) of MAD1L1 Arg558His and MAD2L1 84Leu/Met were 
0.461 and 0.059 in controls and 0.524 and 0.087 in cases, respectively. In the logistic regression analysis, 
the two candidate SNPs were independently associated with CRC risk after adjusting for age, sex, and 
smoking status. Compared with individuals carrying the MAD1L1Arg/Arg genotype, individuals with 
Arg/His genotype presented a significantly increased risk of CRC on the borderline level (OR =  1.24, 
95% CI: 0.96–1.60), but a significant association with CRC risk was observed for individuals with the 
His/His genotype, with OR of 1.70 (95% CI =  1.26–2.28). For MAD2L1 84Leu/Met SNP, heterozygous 
or homozygous variant genotypes significantly increased the CRC risk compared with the homozygous 
wild type in dominant genetic models, with OR equal to 1.48 (95% CI: 1.09–2.01).
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Table 3 shows the combined effect of the MAD1L1 Arg558His and MAD2L1 84Leu/Met on the risk 
of CRC. Compared to individuals who carried the combination of MAD1L1 Arg/Arg and MAD2L1 
Leu/Leu genotypes, we observed that individuals with MAD1L1 His/His and MAD2L1 Leu/Met or Met/
Met genotypes had an increased risk of OR for CRC risk, up to 2.92 (95% CI: 1.63–5.24). However, no 
significant multiplicative or additive gene-gene interactions were observed between MAD1L1 Arg558His 
and MAD2L1 84Leu/Met on the risk of CRC.

Stratified and interaction analysis for candidate SNPs with CRC risk.  In the present study, the 
stratified analysis and multiplicative and additive interaction analyses were performed to explore the 
relationship between the two SNPs and smoking (Table 4). When stratified by smoking status, smokers 
with MAD1L1 Arg/His or His/His genotypes exhibited an increased risk of CRC compared with non-
smokers carrying MAD1L1 Arg/Arg genotype, with an OR of 2.88 (95% CI: 1.91–4.35). Interestingly, 
the association was even more prominent in heavy smokers when stratified by smoking level, with OR 
equal to 3.96 (95% CI: 2.56–6.13) for heavy smokers with MAD1L1 Arg/His or His/His genotypes com-
pared with nonsmokers with MAD1L1 Arg/Arg genotype. For MAD2L1 84Leu/Met genotype, smokers 
carrying Met-containing genotypes were observed to confer a 2.63-fold increased risk of CRC compared 
with nonsmokers with wide genotypes (95% CI: 1.71–4.05). Similarly, the risk of CRC was increased 

Variable

Controls 
(n = 735)

Cases 
(n = 710)

P valueN (%) N (%)

Gender 0.520

Male 536(72.9) 507 (71.4)

Female 199 (27.1) 203 (28.6)

Age (y) 0.228

≤50 173 (23.5) 176 (24.8)

51–60 233 (31.7) 249 (35.1)

61–70 264(35.9) 219 (30.8)

>70 65(8.8) 66 (9.3)

Smoking status <0.001

Nonsmoker 334 (45.4) 255 (35.9)

Smoker 401 (54.6) 455 (64.1)

Pack-years smoked <0.001

≤24 pack-years 204(50.9) 164 (36.0)

>24 pack-years 197 (49.1) 291 (64.0)

Table 1.   Distributions of select characteristics among cases and controls.

Genotypes Controls (%) Cases (%) OR (95% CI)† P value

MAD1

  Arg/Arg 215 (29.3) 165 (23.2) Reference

  Arg/His 363 (49.4) 346 (48.7) 1.24(0.96–1.60) 0.091

  His/His 157 (21.4) 199 (28.0) 1.70 (1.26–2.28) 4.489 ×  10−4

  Dominant 1.38 (1.09–1.75) 0.008

  Additive 1.30 (1.12–1.51) 4.634 ×  10−4

MAD2

  Leu/Leu 650 (88.4) 591 (83.2) Reference

  Leu/Met 84 (11.4) 114 (16.1) 1.44 (1.06–1.96) 0.020

  Met/Met 1 (0.1) 5 (0.7) 4.74 (0.55–40.79) 0.156

  Dominant 1.48 (1.09–2.01) 0.011

  Additive 1.49 (1.11–2.00) 0.007

Table 2.   Genotype frequencies of MAD1L1 and MAD2L1 genotypes and their association with CRC 
risk. †ORs and 95% CIs were calculated by unconditional logistic regression after adjusting for sex, age and 
smoking status.
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to 3.48 (95% CI: 1.96–6.21) in heavy smokers when stratified by smoking level. In addition, significant 
multiplicative but not additive gene-smoking interactions were observed for MAD1L1 Arg558His and 
MAD2L1 84Leu/Met to enhance the risk of CRC, with P for multiplicative interaction equal to 0.019 
and 0.016, respectively.

Genetic effects of MAD1L1 and MAD2L1 on MNBNCs frequency.  Both MNBNC frequency and 
genotypes for the two candidate SNPs were examined in the exposed group and the healthy group. 
Figure 1 shows the effect of MAD1L1 Arg558His on MNBNC frequencies in the exposed and the con-
trol groups. No significant statistical difference of MNBNC frequencies was observed for MAD1L1 
Arg558His in the control group (P =  0.580); however, a significant result emerged in the exposed group. 
MNBNC frequencies for individuals with MAD1L1 His/His, Arg/His genotypes and Arg/His genotypes 
in the exposed group were 3.83 ±  2.58(‰), 4.32 ±  2.68(‰) and 6.67 ±  2.99(‰), respectively, with the  
P value equal to 0.013. Furthermore, negative results were also found for MAD2L1 Leu84Met in both 
the exposed and the control groups, with no significantly different distribution of MNBNC frequencies 
for the three genotypes.

Genotypes Controls(n = 735) Cases(n = 710)

MAD1 MAD2 N (%) N (%) OR (95% CI)†; P

Arg/Arg Leu/Leu 196 (26.7) 139 (19.6) Reference

Arg/Arg Leu/Met+ Met/Met 19 (2.6) 26 (3.7) 1.90 (1.00–3.59); 
0.049

Arg/His Leu/Leu 317 (43.1) 294 (41.4) 1.32 (1.01–1.73); 
0.045

Arg/His Leu/Met+ Met/Met 46 (6.3) 52 (7.3) 1.51 (0.95–2.38); 
0.081

His/His Leu/Leu 137 (18.6) 158 (22.3) 1.67 (1.22–2.30); 
0.002

His/His Leu/Met+ Met/Met 20 (2.7) 41 (5.8) 2.92(1.63–5.24); 
3.140 ×  10−4

Pmult / Padd 0.361/0.708

Table 3.   Stratification and interaction analysis between MAD1L1 and MAD2L1 genotypes associated 
with CRC risk. †ORs and 95% CIs were calculated by unconditional logistic regression after adjusting for 
sex, age and smoking status.

Smoking status

MAD1Arg/Arg MAD1Arg/His+ His/His

Pmult / PaddCases/controls OR (95% CI)†; P Cases/controls OR (95% CI)†; P

nonsmoker 52/95 Reference 203/239 1.52 (1.03–2.25); 0.036 0.019/0.557

smoker 113/120 2.22 (1.40–3.52); 
0.001 342/281 2.88 (1.91–4.35); 

4.785 ×  10−7

≤ 24 pack-years 49/65 1.76 (1.03–2.99); 
0.038 115/139 1.91(1.21–3.01); 0.005

> 24 pack-years 64/55 2.87 (1.69–4.87); 
9.907 ×  10−5 227/142 3.96(2.56–6.13); 

7.299 ×  10−10

MAD2 Leu/Leu MAD2 Leu/Met+  Met/Met

Smoking status Cases/controls OR (95% CI)†; P Cases/controls OR (95% CI)†; P Pmult / Padd

nonsmoker 209/299 Reference 46/35 1.74 (1.08–2.82); 0.023 0.016/0.736

smoker 382/351 1.99(1.50–2.63); 
1.432 ×  10−6 73/50 2.63 (1.71–4.05); 

1.132 ×  10−5

≤ 24 pack-years 131/176 1.35 (0.97–1.87); 
0.075 33/28 2.03 (1.17–3.54); 0.012

> 24 pack-years 251/175 2.74 (2.01–3.74); 
2.460 ×  10−10 40/22 3.48 (1.96–6.21); 

2.282 ×  10−5

Table 4.   Stratified and interaction analysis between MAD1L1, MAD2L1 genotypes and smoking status 
associated with the risk of CRC. †ORs and 95% CIs were calculated by unconditional logistic regression 
after adjusting for sex and age. Pmult was calculated using the multiplicative interaction term. Padd was 
calculated using the additive interaction model.
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Discussion
In this study, we conducted a case-control study to explore the association of MAD1L1 Arg558His or 
MAD2L1 Leu84Met with the risk of CRC in a Chinese population. The study demonstrated that both 
MAD1L1 Arg558His and MAD2L1 Leu84Met significantly increased the risk of CRC. Moreover, signifi-
cant multiplicative gene-smoking interactions were found for MAD1L1 Arg558His and MAD2L1 84Leu/
Met to enhance the risk of CRC. In addition, a significant statistical difference was observed for the effect 
of MAD1L1L1 Arg558His on the formation of aneuploidy in the exposed group, but not in the healthy 
control group.

The spindle checkpoint is an intricate multi-protein network that regulates the attachment of sister 
chromatids to the mitotic spindle in the metaphase to anaphase transition. The cell will proceed to 
aneuploidy when improper attachments of chromosomes to the spindle microtubules happen. Previous 
evidence has shown that the chromosomal instability that is induced by the deregulation of the mitotic 
checkpoint gene can been widely observed in colorectal cancers17–19. MAD1L1L1and MAD2L1L1 are two 
important proteins involved in the spindle assembly checkpoint. Biological function analysis has shown 
that MAD1L1 Arg558His cause a deficient metaphase arrest in normal cells15. Moreover, a recent study 
by Guo has also indicated that MAD2L1 84Leu/Met may reduce the spindle checkpoint function by phys-
ically affecting the interaction of MAD2L1 with MAD1L1 as illustrated via the Co-IP assays16. Therefore, 
the two missense variants in the binding domains of MAD1L1 and MAD2L1 exert the function of dis-
turbing the binding activity of MAD1L to MAD2L1. Consequently, our present epidemiological investi-
gation is consistent with the biological evidence, which indicates that MAD1L1 558His and MAD2L1L1 
84Met are associated with the increased risk of CRC. However, an association of SAC components on 
CRC risk have not appeared from much larger GWAS studies. It can be given the explanations that the 
GWAS approach relies on randomly selected SNPs across the genome as markers, most of the associated 
SNPs identified thus far are unlikely to be the actual causal variants. Besides, in order to prevent false 
positives associated, GWAS analysis using very stringent P values, it is possible to miss some of the P 
value which is not reached GWAS request is indeed associated SNP20,21. Furthermore, this case-control 
study first examined the interaction of MAD1L1 Arg558His and MAD2L1 Leu84Met with smoking to 
increase the risk of CRC. One previous finding from De Voer et al. indicated that germ-line mutations 
in the SAC genes BUB1 and BUB3 are associated with an increased risk of CRC19. However, in another 
previous study conducted by Aclavicek et al.22, the genetic variations in the major mitotic checkpoint 
genes, including MAD1L1 and MAD2L1, were found not to be significantly associated with the risk of 
familial breast cancer risk. Further epidemiology studies can also be performed to confirm the results 
and to estimate the effect of the two missense variants on the risk of other cancers.

MAD2L1 and MAD1L1 are two interactive proteins that are involved in stimulating and execut-
ing spindle checkpoint processes. Although biological analyses have shown an attenuated interaction 
between MAD1L1 Arg558His and MAD2L1 Leu84Met, in the present study, we observed no significant 
interaction between them with regard to the risk of CRC, and a similar result was also found on the risk 
of lung cancer in a previous study16. Similar explanations were also addressed about the discrepancy16. 

Figure 1.  Boxplot of the effect of MAD1L1 Arg558His on MNBNCs frequencies. The P values of 
MNBNC frequencies for individuals with MAD1L1 His/His, Arg/His and Arg/His genotypes in the control 
group and the exposed group were 0.580 and 0.013, respectively.
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Nevertheless, further independent comprehensive studies with larger sample sizes are warranted to clar-
ify the results.

In the present study, the most significant finding was that smoking may interact with MAD1L1 
Arg558His and MAD2L1 84Leu/Met to enhance the risk of CRC. Smoking has been firmly established 
as an important causal factor for the development of CRC by a mass of evidence23,24. So far, our search in 
published literature did not yield any evidence of a direct biological function involved in the interaction 
between MAD1L1 Arg558His, MAD2L1 84Leu/Met and smoking. However, it has been reported that the 
important specified carcinogens of cigarette smoke, nicotine and polycyclic aromatic hydrocarbons may 
induce the process of genomic instability by various molecular mechanisms25–28. The malfunction of the 
SAC plays a prominent role in genomic stability, especially in the development of CRC. The missense 
variants of the important mitotic checkpoint gene, which may disturb the spindle checkpoint function, 
seem plausible to interact with smoking to increase the risk of CRC considering the active effect of the 
cigarette smoke on the process of genomic instability. However, biological functional analyses remain 
warranted to dissect the molecular mechanism underlying the significant interaction between MAD1L1 
Arg558His, MAD2L1 84Leu/Met and smoking.

Lastly, the study explored the effect of MAD1L1 Arg558His or MAD2L1 84Leu/Met on the formation 
of aneuploidy. Remarkably, MNBNC frequencies for individuals with MAD1L1 His/His, Arg/His gen-
otypes and Arg/His genotypes were significantly different in the exposed group, but not in the healthy 
control group. MNBNC frequency is an important indicator to assess the level of CIN. The biological 
evidence has indicated that the MAD1L1 Arg558His may indirectly lead to CIN by severely disturbing 
the function of the mitotic check point. As we know, the genetic effect of the variants on the important 
phenotype is modest, and it could be detected by a study with a sufficiently large sample size. However, 
when exposed to some pollutants like e-waste, the genetic effect of variants can emerge by the induction 
of a toxicant. Therefore, it can be concluded that MAD1L1 Arg558His may contribute to CIN potentially 
through environmental exposure. It can also be speculated that the negative result in the healthy control 
group may be due to the relatively low statistical power of detecting the modest effect of the potential 
functional SNPs. Furthermore, the significant effect of MAD1L1 Arg558His on the formation of aneu-
ploidy was also observed in a previous study29. Future studies need to further dissect the genetic effect of 
MAD1L1 Arg558His on chromosomal instability in healthy subjects with enough sample size. However, 
the negative effect of MAD2L1 84Leu/Met on the formation of aneuploidy as found in both the exposed 
and in the healthy control groups. Therefore, independent replication studies with a larger sample size 
are warranted to verify the negative result.

The present study has addressed some limitations, and it has some advantages. First, the sample size 
of the study was not very large, and the statistical power is relatively low for detecting the gene-to-gene 
interaction between MAD1L1 Arg558His and MAD2L1 Leu84Met, and the effect of MAD1L1 Arg558His 
or MAD2L1 Leu84Met on the formation of aneuploidy. Besides, because of the epidemiological back-
ground, we have not addressed the biological functional analyses to dissect the molecular mechanism 
underlying the significant statistical interaction between MAD1L1 Arg558His, MAD2L1 84Leu/Met 
and smoking. Despite these limitations, our study emphasized that MAD1L1 Arg558His and MAD2L1 
Leu84Met variations confer susceptibility to CRC in a Han Chinese population. Also, our findings high-
light the point that two variations can significantly interact with smoking to enhance the risk of CRC. 
The information of the smoking level was detailed and complete, so the OR for MAD1L1 Arg558His 
and MAD2L1 Leu84Met that are stratified by different smoking levels were able to be estimated in the 
present study. In addition, the study showed that MAD1L1 Arg558His may contribute to CIN potentially 
through the induction of environmental exposure. Nevertheless, follow-up studies are needed to uncover 
the biological mechanism behind the significant statistical interaction between MAD1L1 Arg558His, 
MAD2L1 84Leu/Met and smoking, and further clarify the genetic effect of MAD1L1 Arg558His on 
chromosomal instability.

Methods
Subject.  The present study included 710 CRC patients with newly diagnosed CRC and 735 cancer-free 
controls. Patients were consecutively recruited between January 1, 2010 and November 31, 2013 at Tongji 
Hospital of Huazhong University of Science and Technology (HUST), Wuhan, central China. Cancer-free 
individuals living in Wuhan city and its surrounding regions were randomly selected from a healthy 
screening conducted at the same hospital during the same time. All subjects were unrelated Han Chinese. 
The inclusion criteria for patients included histopathologically confirmed CRC, without previous chemo-
therapy or radiotherapy, and no restriction in regards to sex, age, or disease stage. The selection criteria 
for controls included cancer-free individuals and frequency matched to cases for sex and age within five 
years. At recruitment, written informed consent was obtained from each subject, and blood samples and 
demographic characteristics, including sex, age, and smoking habits, were collected by the interviewers. 
The detailed definitions of smoking status were described previously30. For smokers, the smoking level 
was determined by the number of packs per year smoked, which was calculated to indicate the cumula-
tive cigarette dose level [packs per year =  (cigarettes per day/20) ×  (years smoked)]. The median pack per 
year value of the controls was used as the cut-off point to categorize the light from the heavy smokers.

The participants who were included in the CBMN to estimate the genetic effect of two functional 
genetic variants on chromosomal instability were selected from a typical e-waste recycling site in southeast 
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China as the exposure group and a nearby village (50 km away from the exposure site) without known 
sources of industrial pollution as the control group31. Seventy exposed subjects and 70 control subjects 
were randomly selected from these two groups. This study was conducted under the approval of the 
institutional review boards of Tongji Medical College of Huazhong University of Science and Technology.

SNPs and genotyping.  Genomic DNA was extracted from 2 ml of peripheral blood samples using 
the approved guideline of the Relax Gene Blood DNA System DP319-02 (Tiangen, Beijing China). 
Candidate SNPs were genotyped using PCR-based restriction fragment length polymorphism (RFLP) 
methods which were carried out in accordance with the approved guidelines, without knowledge of 
the case or control status of the subjects. The PCR primer pairs used for amplifying DNA containing 
the MAD1L1 Arg558His or MAD2L1 Leu84Met sites were described previously16. The PCR program 
was heating to 95 °C for 2 minutes followed by 35 cycles of 94 °C for 30 seconds, 63.5 °C (for MAD1L1) 
or 62 °C (for MAD2L1) for 30 seconds, 72 °C for 45 seconds, and a final elongation step of 72 °C for 
10 minutes. Restriction enzymes BstUI or AlwNI (New England Biolabs, Beverly, Massachusetts, USA) 
were used to distinguish the MAD1L1 Arg558His or MAD2L1 Leu84Met genotypes, respectively. Quality 
control was monitored by including a 5% duplicate, with a 100% concurrence rate of the duplicate sets. 
The average call rate for the candidate SNPs genotyped was > 99%.

Genomic DNA was extracted from the 2 ml of peripheral blood samples using the Relax Gene Blood 
DNA System DP319-02 (Tiangen, Beijing China). Candidate SNPs were genotyped using the TaqMan 
real-time polymerase chain reaction (PCR) Assay (Applied Biosystems, Foster city, CA) without knowl-
edge of the case or control status of the subjects. The PCR program included heating to 95 °C for 10 min-
utes followed by 50 cycles of 92 °C for 15 seconds and 60 °C for 90 seconds. The ABI Prism 7900HT 
Sequence Detection System was applied to read the reacted plates and to analyze the endpoint fluores-
cence. Quality control was monitored by including a 5% duplicate and negative control, with a 100% 
concurrence rate of the duplicate sets. The average call rate for the candidate SNPs genotyped was > 99%. 
All the experimental protocols were approved by TIANGEN BIOTECH (BEIJING) CO., LTD and New 
England Biolabs, MA, USA.

MNBNCs frequency.  70 independent exposed subjects and 70 control subjects were selected to deter-
mine the genotypes of MAD1L1 Arg558His and MAD2L1 Leu84Met, and the corresponding MNBNC 
frequency. The genotype method was described in the previous paragraph. The frequency of MNBNCs 
was detected by the method that was carried out in accordance with the approved guidelines and was 
described in detail in the previous study32. Briefly, 0.5 ml of a heparinized blood sample was added to 
4.5 ml of medium with 15% fetal calf serum, 100 IU/mL penicillin and 20 μ g/mL phytohemagglutinin 
(Sigma, St. Louis, MO, USA). After 44 hours of incubation and stimulation with phytohemagglutinin, 
cytochalasin B (Sigma, St. Louis, MO, USA) was added to the cultures at a final concentration of 6 μ g/
mL. Cells were harvested after 72 hours of incubation. Slides were prepared and stained with 10% Giemsa 
solution. The number of micronucleated binucleated cells in 1000 binucleated lymphocytes (MNBNCs 
frequency) was counted under a light-microscopy (Olympus C X21, Germany), according to the previ-
ously described criteria33.

Statistical analysis.  The Hardy-Weinberg equilibrium (HWE) for genotypes was assessed by a 
goodness-of-fit X2 test in the control groups. In the baseline analysis, the X2 test was applied to examine 
the differences between cases and controls in distribution of sex, age, smoking status and smoking level. 
The one-way ANOVA was used to determine the differences of MNBNC frequency for individuals with 
different genotypes. Co-dominant, dominant, and additive genetic models were assumed in the associa-
tion analysis. Because minor allele frequencies (MAF) of MAD1L1 Arg558His and MAD2L1 84Leu/Met 
were 0.461 and 0.059 in controls, we calculated the power for the sample size of 710 patients and 735 
controls as follows: for SNP with MAF of 0.059, the power for our sample size to detect an OR of 1.50 
was 0.51; for SNP with MAF of 0.461, the power to detect an OR of 1.50 is 0.97. Interaction between 
SNPs was subsequently systematically investigated by a pair-wise analysis under multiplicative and addi-
tive interaction models. The P-values for multiplicative interaction were calculated using a multiplicative 
interaction term included in the multivariate logistic regression model in SPSS software. The P values for 
the additive interaction were calculated by a bootstrapping test of goodness-of-fit of the null hypothesis 
for no departure from an additive model vs. an alternative hypothesis for a departure from an additive 
model using Stata 10.0 (Stata Corporation, College Station, TX).
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