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Successive exposure to moderate hypoxia does
not affect glucose metabolism and substrate
oxidation in young healthy men
Takuma Morishima1 and Kazushige Goto2*
Abstract

Introduction: Exposure to hypoxia has been suggested to acutely alter glucose regulation. However, the effects of
successive exposure to moderate hypoxia on postprandial glucose regulation and substrate oxidation pattern after
multiple meals have not been elucidated.

Purpose: We examined the effects of successive exposure to moderate hypoxia on metabolic responses and
substrate oxidation pattern.

Methods: Eight healthy men (21.0 ± 0.6 yrs, 173 ± 2.3 cm, 70.6 ± 5.0 kg, 23.4 ± 1.1 kg/m2) completed two
experimental trials on separate days: a rest trial under normoxic conditions (FiO2 = 20.9%) and a rest trial under
hypoxic conditions (FiO2 = 15.0%). Experimental trials were performed over 7 h in an environmental chamber. Blood
and respiratory gas samples were collected over 7 h. Standard meals were provided 1 h (745 kcal) and 4 h
(731 kcal) after entering the chamber.

Results: Although each meal significantly increased blood glucose and serum insulin concentrations (P < 0.05),
these responses did not differ significantly between the trials. There were no significant differences in areas under
the curves for glucose or insulin concentrations over 7 h between the trials. No significant differences were
observed in blood lactate, serum cortisol, free fatty acid, or glycerol concentrations over 7 h between the trials. The
oxygen consumption ( _VO2) and carbon dioxide production ( _VCO2) 3 h after entering the chamber were
significantly higher in the hypoxic trial than in the normoxic trial (P < 0.05). However, the differences did not affect
respiratory exchange ratio (RER). The average values of _VO2, _VCO2, and RER did not differ between the trials.

Conclusion: Seven hours of moderate hypoxia did not alter postprandial glucose responses or substrate oxidation
in young healthy men.
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Introduction
There is an increasing body of evidence indicating the
health benefits of exposure to hypoxia or exercise under
hypoxic conditions. Rest or exercise under hypoxic condi-
tions decrease body fat mass (Wiesner et al. 2010), blood
pressure (Schobersberger et al. 2003), and arterial stiffness
(Vedam et al. 2009; Nishiwaki et al. 2011) in various popu-
lations. Although several effects on metabolic and cardio-
vascular parameters have been proposed, the beneficial
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effects of hypoxic stimulation on glucose metabolism are
especially attractive. People who live at high altitudes have
lower blood glucose levels and lower risk of type 2 dia-
betes compared to those living at sea level (Picon Reategui
1963; Zubiate 2001; Castillo et al. 2007). In addition, lower
values in the homeostatic model assessment (HOMA)
have been found in people living at high altitudes, suggest-
ing that high-altitude populations have higher insulin sensi-
tivity (Baracco et al. 2006; Lindgarde et al. 2004). Although
the mechanism underlying the glucose-lowering effect of
sustained stays at high altitude is not fully understood,
specific metabolic responses under hypoxic conditions may
be involved because hypoxia itself stimulates glucose
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transporter (GLUT) 4-mediated glucose transport via sev-
eral signaling pathways (Constable et al. 1988; Ploug et al.
1987; Cartee et al. 1991; Youn et al. 1994). Hypoxia pro-
motes glucose uptake via an insulin-independent pathway
(Youn et al. 1991, 1994) that stimulates GLUT 4 transloca-
tion to the plasma membrane.
Improvements in glucose metabolism via hypoxia have

also been observed in data from laboratory-based experi-
ments. Kelly et al. (2010) reported that plasma glucose
response to a 75 g glucose load was significantly attenu-
ated under severely hypoxic conditions (a simulated alti-
tude of 4300 m) in healthy adults. Thus, severe hypoxic
stimulation (a simulated altitude of > 4000 m) has a pre-
ventive effect on postprandial hyperglycemia. However,
as the use of severe hypoxia would not be appropriate
due to the risk of acute mountain sickness (e.g., head-
ache, nausea, and anorexia), exposure to moderate hyp-
oxia (a simulated altitude of < 3000 m) is more practical
in terms of application for patients with impaired
glucose tolerance. Mackenzie et al. (2011) demonstrated
that blood glucose concentration was reduced after 1 h
of exposure to moderate hypoxia (FiO2 = 14.6%). How-
ever, they only examined fasting glucose response after a
short duration (1 h) of moderate hypoxia, and postpran-
dial glucose responses over a day have not been eluci-
dated when multiple meals are consumed.
The present study was performed to examine the effects

of exposure to 7 h of moderate hypoxia on postprandial
metabolic responses. We hypothesized that moderate hyp-
oxia would attenuate postprandial blood glucose responses
over a day.

Methods
Subjects
Eight healthy men (21.0 ± 0.6 yrs, 173 ± 2.3 cm, 70.6 ±
5.0 kg, 23.4 ± 1.1 kg/m2) participated in this study. The
subjects were not participating in any training programs
at the start of the study. All of the subjects were in-
formed about the purpose of the study and experimental
procedures, and written informed consent was obtained.
The study was approved by the Ethics Committee for
Human Experiments at Ritsumeikan University, Japan.
Experimental design
The two experimental trials were carried out in a
randomized crossover design. Each trial was separated
by at least 7 days. The experimental trials consisted of
two different measurements as follows: a rest trial under
normoxic conditions (FiO2 = 20.9%) and a rest trial
under hypoxic conditions (FiO2 = 15.0%). All trials were
completed in an environmental chamber in which the
temperature and relative humidity were maintained at
24°C and 40%, respectively.
The experimental protocol is shown in Figure 1. The two
experimental trials were performed over 7 h following an
overnight fast (at least 10 h). Throughout the experimental
trials, subjects rested on a chair reading books or watching
DVDs. Standard meals were provided 1 h and 4 h after
entering the environmental chamber, and subjects were
instructed to consume the meals within 7 min. The first
meal consisted of 68.4% carbohydrate, 10.1% protein, and
21.5% fat (745 kcal). The second meals consisted of 66.9%
carbohydrate, 10.1% protein, and 23.0% fat (731 kcal).

Measurements on experimental trial days
Following an overnight fast, the subjects visited the la-
boratory in the morning and rested before the first blood
collection. After a 30 min rest, a polyethylene catheter
was inserted into an antecubital vein and a baseline
blood sample was collected. Subsequently, respiratory
gas, heart rate (HR) (Accurex Plus; Polar Electro Oy,
Kempele, Finland), and percutaneous oxygen saturation
(SpO2) (Smart Pulse; Fukuda Denshi, Tokyo, Japan) were
recorded. During experimental trials, blood samples
were collected at baseline and at 1 h (immediately before
first meal), 1.25 h, 1.5 h, 1.75 h, 2 h, 3 h, 4 h (immediately
before the second meal), 4.25 h, 4.5 h, 4.75 h, 5 h, 6 h, and
7 h (14 points in total, Figure 1). Respiratory gases were
collected and analyzed using an automatic gas analyzer
(AE300S, Minato Medical Science Co., Ltd, Osaka, Japan)
at every hour (7 points in total). Appropriate calibra-
tions of the O2 and CO2 sensors and the volume trans-
ducer were performed using calibration gases and 2 L
syringe immediately before baseline measurement.
From respiratory gas samples, oxygen consumption
( _VO2), carbon dioxide production ( _VCO2), and ventila-
tory volume ( _VE) were determined. All respiratory vari-
ables were averaged in each 3-min period. The respiratory
exchange ratio (RER) was determined from the _VO2 and
_VCO2 measurements. HR and SpO2 were recorded every
30 min (14 points in total).
Blood analysis
Blood glucose, lactate, serum insulin, free fatty acid (FFA),
glycerol, and cortisol concentrations were measured using
whole-blood or serum samples. Serum samples were
obtained by centrifugation for 10 min, and were stored
at –80°C until analysis. The blood glucose and lactate
concentrations were measured immediately after blood
collection. Blood glucose and lactate concentrations were
determined using an automated glucose analyzer (Free
Style; Nipro Corporation, Osaka, Japan) and lactate
analyzer (Lactate Pro 2; Arkray Inc., Kyoto, Japan), re-
spectively. The glucose concentrations were analyzed in
duplicate. The intraclass coefficient for duplicate measure-
ments was 0.99. Serum insulin and FFA concentrations



Entering environmental chamber

BS; Blood sampling GAS; Respiratory gas samplingDiet

Exposure to normoxia or hypoxia

Pre 1 2 3 4 5 6 7
(h)

BS

HR, SpO2

GAS

Figure 1 Overview of the study design.
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were measured by chemiluminescent enzyme immune
assays (Fujirebio Inc., Tokyo, Japan) at a clinical laboratory
(SRL Inc., Tokyo, Japan). Serum glycerol concentrations
were measured in duplicate by enzyme-linked immuno-
sorbent assay (Cayman Chemical Company, Ann Arbor,
MI). Serum cortisol concentrations were measured by
radioimmunoassay (RIA) using commercially available kits
(Immunotech, Marseille, France). The intraassay coeffi-
cients of variation (CVs) were 1.1% for serum insulin, 2.2%
for serum FFA, 3.3% for serum glycerol, and 4.4% for
serum cortisol measurements.

Statistical analysis
Data are expressed as means ± SE. Two-way analysis of
variance (ANOVA) with repeated measures was used to
test the interaction (trial × time) and main effect (trial,
time). When ANOVA revealed a significant interaction
or main effect, the Tukey–Kramer test was performed
for post hoc analysis to identify differences. In all ana-
lyses, P < 0.05 was taken to indicate significance.

Results
SpO2 and HR
Figure 2 shows the time courses of changes in SpO2 and
HR over 7 h. There were significant interaction (trial ×
time) and main effects for time and trial (P < 0.05) in
SpO2. In the normoxic trial, SpO2 did not change at any
time point over the 7 h experimental period. The hypoxic
trials showed significantly lower values of SpO2 compared
to the normoxic trial at all time points (P < 0.05). Average
values of SpO2 during the 1–7 h after entering the cham-
ber were 98 ± 1% for the normoxic trial and 95 ± 2% for
the hypoxic trial (P < 0.05).
There were significant interaction (trial × time) and

main effects for time and trial (P < 0.05) in HR. In the nor-
moxic trial, HR did not change significantly over the 7 h
experimental period. However, HR was significantly ele-
vated at 2.5 h relative to the baseline value in the hypoxic
trial (P < 0.05), and the value remained elevated through-
out the rest of the measurement period. HR was signifi-
cantly higher in the hypoxic trial than the normoxic trial
at 4 h, 4.5 h, and 6.5 h (P < 0.05).

Blood glucose and serum insulin responses
Figure 3 shows the time course of changes in the area
under the curve (AUC) over 7 h for blood glucose and
serum insulin concentrations. No significant interaction
(trial × time) was found in blood glucose response.
Although a significant main effect was observed for time
(P < 0.05), there was no significant main effect of trial in
blood glucose responses. When the time courses of
changes in blood glucose concentrations over 7.5 h were
compared, the AUC values did not differ significantly
between the two trials.
Serum insulin response over 7 h was similar to the

blood glucose response, and there was no significant inter-
action (trial × time). Although a significant main effect for
time was found (P < 0.05), there was no significant main
effect for trial. The AUC values for serum insulin concen-
trations over 7 h did not differ significantly between nor-
moxic and hypoxic trials.

Blood lactate, serum cortisol, FFA, and glycerol responses
Figure 4 shows the time courses of changes in blood lac-
tate, serum cortisol, FFA, and glycerol concentrations
over 7 h. For blood lactate responses, there was no sig-
nificant interaction (trial × time). Although a significant
main effect for time was observed (P < 0.05), there was
no significant main effect for trial in blood lactate re-
sponses. In the hypoxic trial, blood lactate concentration
decreased significantly at 1.25 h relative to the baseline
value (P < 0.05). At 5 h (at 1 h after second meal), blood
lactate concentration increased significantly relative to
the baseline value in the normoxic trial. There was no
significant interaction (trial × time) or main effect for
time or trial (P < 0.05) in serum cortisol concentration.
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Serum FFA responses did not show a significant inter-
action (trial × time). Although a significant main effect
for time was observed (P < 0.05), there was no significant
main effect for trial in serum FFA responses.
There was no significant interaction (trial × time) or

main effect for time or trial (P < 0.05) in serum glycerol
concentration.
Respiratory gas parameters
Table 1 shows the time courses of changes in respiratory
gas parameters. No significant differences in baseline
variables (1 h after entering the chamber) were observed
between the trials. For _VO2 responses, there was no inter-
action (trial × time). However, significant main effects
for time and trial were observed (P < 0.05). _VO2 was
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significantly elevated at 5 h and 7 h relative to the value at
1 h in the normoxic trial (P < 0.05) and at 3 h in the hyp-
oxic trial (P < 0.05). At 3 h, _VO2 was significantly higher in
the hypoxic trial compared to the normoxic trial (P < 0.05).
However, average values of _VO2 over 7 h were not
significantly different between the two trials.
Although there was no significant interaction (trial ×

time) in _VCO2, significant main effects for time and trial
were observed (P < 0.05). _VCO2 was significantly elevated
at 5 h, 6 h, and 7 h relative to the value at 1 h in the
normoxic trial, and at all time points in the hypoxic trial.
At 3 h and 6 h, _VCO2 was significantly higher in the
hypoxic trial compared to the normoxic trial. However,
average values of _VCO2 over 7 h were not significantly
different between the two trials.
Although there was no significant interaction (trial ×

time) in _VE, significant main effects for time and trial
were observed (P < 0.05). In the normoxic trial, _VE did not
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Figure 4 Time courses of changes in blood lactate, serum cortisol, FFA, and glycerol concentrations over 7 h. (A); blood lactate,
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change significantly over the 7 h experimental period.
However, _VE was significantly elevated at all time points
relative to the value at 1 h in the hypoxic trial (P < 0.05).
At 3–6 h, _VE was significantly higher in the hypoxic trial
than in the normoxic trial (P < 0.05). Average values of _VE
over 7 h were significantly higher in the hypoxic trials than
in the normoxic trial (P < 0.05).
There was no significant interaction (trial × time) in

RER. Although a significant main effect for time was ob-
served (P < 0.05), there was no significant main effect for
trial. Although RER did not change significantly over 7 h
Table 1 Respitatory gas parameters

1 h 2 h 3 h
_VO2 (ml/min) Normoxia 254 ± 10 268 ± 12 267 ± 15

Hypoxia 251 ± 15 278 ± 15* 291 ± 19*†

_VCO2 (ml/min) Normoxia 211 ± 10 222 ± 10 221 ± 12

Hypoxia 198 ± 14 225 ± 15 241 ± 17*†

_VE (ml/min) Normoxia 8.5 ± 0.4 7.9 ± 0.4 8.0 ± 0.5

Hypoxia 8.7 ± 0.5 9.1 ± 0.5* 10.0 ± 0.5*†

RER Normoxia 0.83 ± 0.02 0.82 ± 0.01 0.83 ± 0.01

Hypoxia 0.78 ± 0.02 0.81 ± 0.02 0.83 ± 0.02

Mean ± SE. *P < 0.05 vs. 1 h. †P < 0.05 vs. Normoxia.
in the normoxic trial, significant increases relative to the
value at 1 h were observed at 4 h, 5 h, 6 h, and 7 h in
the hypoxic trial (P < 0.05). However, average values of
RER over 7 h were not significantly different between
the two trials.

Discussion
We investigated the effects of 7 h of exposure to moderate
hypoxia on metabolic responses to multiple meals. Our
main finding was that postprandial glucose responses and
substrate oxidation patterns were not significantly
4 h 5 h 6 h 7 h Average

266 ± 18 282 ± 13* 271 ± 11 294 ± 17* 272 ± 13

272 ± 15 285 ± 17* 291 ± 13* 272 ± 9 277 ± 14

224 ± 16 244 ± 14* 239 ± 10* 260 ± 12* 232 ± 11

234 ± 15* 246 ± 16* 256 ± 11*† 245 ± 9 235 ± 13

8.6 ± 0.7 8.6 ± 0.6 9.0 ± 0.4 9.6 ± 0.4 8.6 ± 0.4

9.9 ± 0.6*† 10.4 ± 0.6*† 10.4 ± 0.4 10.1 ± 0.5* 9.8 ± 0.5†

0.84 ± 0.01 0.86 ± 0.02 0.88 ± 0.02 0.89 ± 0.03 0.85 ± 0.01

0.86 ± 0.02* 0.85 ± 0.02* 0.88 ± 0.01* 0.89 ± 0.01* 0.85 ± 0.01
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affected by 7 h of moderate hypoxia. In the present
study, physiological effects of hypoxia were confirmed
by comparisons of _VO2 , _VCO2 , HR and SpO2 between
hypoxic and normoxic trials. However, there were no
differences in blood glucose, serum insulin, glycerol or
FFA responses over 7 h. This suggests that exposure to
moderate hypoxia does not exert any change in the
blood glucose responses to mixed meals.
Exposure to hypoxia has been suggested to acutely alter

glucose regulation. Mackenzie et al. (2011) reported that
blood glucose concentration was significantly reduced
after 1 h of moderate hypoxia. In contrast, in the present
study, the time courses of changes in blood glucose
concentration were not significantly affected by 1 h or 7 h
of exposure to moderate hypoxic conditions. Differences
in subject characteristics may explain these contradictory
outcomes between the study of Mackenzie et al. (2011)
and the present study. Although the previous study by
Mackenzie et al. (2011) recruited patients with type 2 dia-
betes, the subjects in the present study were healthy adults
with normal glycemic regulation. Patients with type 2 dia-
betes have lower glucose uptake ability by insulin (Gierach
et al. 2014) and insulin-independent signaling pathways
(Barnes et al. 2002; Sriwijitkamol et al. 2006) due to in-
creased fat mass (Saltiel and Olefsky 1996) or impaired
mitochondrial function (Khan et al. 2014). Nonetheless,
sustained elevation of blood glucose concentration is
thought to enable enhanced glucose uptake by hypoxic
stimuli. In the case of healthy individuals with normal
glycemic regulation, blood glucose regulation appears to
be robust, at least under moderate hypoxic conditions. In
addition, SpO2 levels of the present subjects in the hypoxic
trial were modest (95 ± 2%) and may have been insufficient
to augment glucose uptake. Chen et al. (2009) reported
that glucose uptake in the heart was significantly pro-
moted by moderate hypoxia when SpO2 levels were below
80%. Therefore, the influence of hypoxia on postprandial
glycemic regulation is not conclusive, and further studies
are necessary to determine whether moderate hypoxia
over a day improves glycemic regulation in patients with
type 2 diabetes. Moreover, as muscle contraction is a
strong stimulus for glucose uptake (Holloszy 2003), the
combined effects of hypoxia and exercise on postprandial
glucose response should be investigated.
The _VO2 and _VCO2 at 3 h after entering the chamber

were significantly higher in the hypoxic trial than the nor-
moxic trial. The elevated _VO2 and _VCO2 could be associ-
ated with slightly higher values of VE in the hypoxic trial. It
is well known that acute hypoxic exposure induces hyper-
ventilation (Dempsey and Forster 1982; Easton et al. 1986),
which may cause an overestimation of CO2 production
(Ferrannini 1988). However, RER did not differ between the
trials in the present study. In addition, there were no signifi-
cant differences in serum FFA or glycerol concentrations
between the trials, suggesting that the substrate oxidation
pattern did not change with exposure to moderate hypoxia.
Several previous studies have indicated that hypoxia in-
creases carbohydrate oxidation (Brooks et al. 1991; Roberts
et al. 1996a, b). Enhanced reliance on plasma glucose oxida-
tion for energy production under hypoxic conditions leads
to the promotion of carbohydrate oxidation during rest or
exercise (Brooks et al. 1992; Peronnet et al. 2006). Although
the present results do not support this suggestion, previous
studies have indicated enhancement of carbohydrate oxida-
tion by hypoxia in elite endurance athletes, with marked
differences between endurance athletes and sedentary indi-
viduals (Havel et al. 1963, 1964; Hurley et al. 1986; Bircher
and Knechtle 2004). Furthermore, most previous studies
(Brooks et al. 1991, 1992; Roberts et al. 1996a, b; Peronnet
et al. 2006) used severe hypoxia (altitude > 4000 m).
Therefore, differences in the levels of hypoxia (i.e., alti-
tude) between previous studies and the present study may
explain the contradictory outcomes.

Conclusion
7 h of moderate hypoxia did not alter postprandial glucose
response or substrate oxidation in healthy young men. Al-
though the present study was carried out in healthy individ-
uals, further experiments in those with impaired glycemic
regulation are required.
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