

Received 14 December 2016 Accepted 17 December 2016

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland

Keywords: crystal structure; hydrazine; dinitrobenzene; di-tert-butylphenol; 3,5-di-tert-butyl-4-hydroxybenzaldehyde; 2,4-dinitrophenylhydrazine; hydrogen bonding.

CCDC reference: 1523249

Supporting information: this article has supporting information at journals.iucr.org/e

OPEN d ACCESS

Crystal structure of (*E*)-2,6-di-*tert*-butyl-4-{[2-(2,4-dinitrophenyl)hydrazinylidene]methyl}phenol

Md. Serajul Haque Faizi,^a Necmi Dege,^b Ashanul Haque,^a Valentina A. Kalibabchuk^c* and Mustafa Cemberci^b

^aDepartment of Chemistry, College of Science, Sultan Qaboos University, PO Box 36, Al-Khod 123, Muscat, Sultanate of , Oman, ^bOndokuz Mayıs University, Arts and Sciences Faculty, Department of Physics, 55139 Samsun, Turkey, and ^cDepartment of General Chemistry, O. O. Bohomolets National Medical University, Shevchenko Blvd. 13, 01601 Kiev, Ukraine. *Correspondence e-mail: kalibabchuk@ukr.net

The essential part (including all the non-hydrogen atoms except two methyl carbons) of the molecule of the title compound, $C_{21}H_{26}N_4O_5$, lies on a mirror plane, which bisects the *t*-butyl groups. The conformation of the C=N bond of this Schiff base compound is *E*, and there is an intramolecular $N-H\cdots O$ hydrogen bond present, forming an *S*(6) ring motif. In the crystal, molecules are linked *via* $O-H\cdots O$ hydrogen bonds, forming zigzag chains propagating along the *a*-axis direction. There are no other significant intermolecular contacts present.

1. Chemical context

Sterically hindered phenol anti-oxidants are widely used in polymers and lubricants. They can protect polymers by increasing both their process stability and their long-term stability against oxidative degradation (Yamazaki & Seguchi, 1997; Silin et al., 1999). Hydrazones and Schiff bases have attracted much attention for their excellent biological properties, especially for their potential pharmacological and antitumor properties (Küçükgüzel et al., 2006; Khattab, 2005; Karthikeyan et al., 2006; Okabe et al., 1993). 2,4-Dinitrophenylhydrazine is frequently used as a reagent for the characterization of aldehydes and ketones (Furniss et al., 1999). Its derivatives are widely used as dyes (Guillaumont & Nakamura, 2000). They are also found to have versatile coordinating abilities towards different metal ions (Raj & Kurup, 2007). The present work is a part of an ongoing structural study of Schiff bases and their utilization in the synthesis of quinoxaline derivatives (Faizi et al., 2016a), fluorescence sensors (Faizi et al., 2016b) and coordination compounds (Faizi & Prisyazhnaya, 2015). We report herein on the synthesis and crystal structure of the title Schiff base compound with a sterically hindered phenol group.

Figure 1

The molecular structure of the title compound, with atom labelling [symmetry code: (i) $x, -y + \frac{1}{2}, z$]. Displacement ellipsoids are drawn at the 30% probability level. The intramolecular N-H···O hydrogen bond is shown as a dashed line (see Table 1)

2. Structural commentary

The molecular structure of the title compound is shown in Fig. 1. All the non-hydrogen atoms except C16 and C19 lie on a crystallographic mirror plane at $y = \frac{1}{4}$: the complete *tert*-butyl groups are generated by mirror symmetry. The conformation of the C7—N1 bond of this Schiff base compound is *E*, and there is an intramolecular N2–H2···O1 hydrogen bond present, forming an *S*(6) ring motif (Fig. 1 and Table 1). The N1–N2 bond length is 1.385 (6) Å and the N1=C7 bond length is 1.278 (7) Å. The bond distances and angles in the title compound are comparable to those found in a closely related structure (Fun *et al.*, 2013).

3. Supramolecular features

In the crystal, molecules are linked by $O-H\cdots O$ hydrogen bonds, forming zigzag chains propagating along the *a*-axis direction (Fig. 2 and Table 1). There are no other significant intermolecular contacts present.

Table 1		
Hydrogen-bond geometry	(Å,	°).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$\begin{array}{c} N2 - H2 \cdots O1 \\ O5 - H5 O \cdots O1^{i} \end{array}$	0.86	1.96	2.583 (8)	129
	0.82 (2)	2.28 (5)	2.782 (7)	120 (4)

Symmetry code: (i) $x + \frac{1}{2}, y, -z + \frac{3}{2}$.

4. Database survey

There are very few examples of similar compounds in the literature. To the best of our knowledge, the recent report (Bhardwaj & Singh, 2015) of a similar compound with an hydroxy group in the *ortho* position, capable of visual and reversible sensing of cyanide in DMSO solution, has not been characterized crystallographically. A search of the Cambridge Structural Database (CSD, Version 5.37, update May 2016; Groom *et al.*, 2016) revealed the structure of one very similar compound, *viz.* 1-(2,4-dinitrophenyl)-2-[(*E*)-2,4,5-trimethoxy-benzylidene]hydrazine (II) (Fun *et al.*, 2013), in which the 4-phenol group in the title compound is replaced by a trimethoxy group. In (II), the dihedral angle between the two benzene rings is $3.15 (11)^{\circ}$, compared to 0° in the title compound, owing to the mirror symmetry.

5. Synthesis and crystallization

A mixture of 3,5-di-*tert*-butyl-4-hydroxybenzaldehyde 0.100 g (0.427 mmol) and 2,4-dinitrophenylhydrazine (0.085 g, 0.427 mmol) in methanol was refluxed for 3 h in the presence of a catalytic amount of glacial acetic acid. After cooling, the red-coloured precipitate was washed with hot methanol several times, and then dried, giving a red-coloured shiny crystalline compound in high yield 170 g (96%). Yellow block-like crystals of the title compound (m.p. 372–373 K) were obtained by slow evaporation of a solution in dichloromethane and ethanol ($5:1 \nu/\nu$).

Figure 2

A view of the zigzag chains in the crystal structure of the title compound. The hydrogen bonds are shown as dashed lines (see Table 1). For clarity, only the H atoms involved in hydrogen bonding have been included.

research communications

Table 2 Experimental details.

Crystal data	
Chemical formula	$C_{21}H_{26}N_4O_5$
M _r	414.46
Crystal system, space group	Orthorhombic, Pnma
Temperature (K)	296
a, b, c (Å)	18.7651 (10), 6.9193 (4), 17.259 (1)
$V(Å^3)$	2240.9 (2)
Z	4
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	0.09
Crystal size (mm)	$0.22 \times 0.15 \times 0.11$
Data collection	
Diffractometer	STOE IPDS 2
Absorption correction	Integration (X-RED32; Stoe & Cie, 2002)
T_{\min}, T_{\max}	0.982, 0.994
No. of measured, independent and	14854, 2270, 912
observed $[I > 2\sigma(I)]$ reflections	
R _{int}	0.105
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.606
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.071, 0.215, 0.96
No. of reflections	2270
No. of parameters	178
No. of restraints	2
H-atom treatment	H atoms treated by a mixture of
	independent and constrained refinement
$\Delta \rho_{\text{min}} \Delta \rho_{\text{min}}$ (e Å ⁻³)	0.390.16
$r_{\rm max} = r_{\rm min} \left(\right)$	

Computer programs: X-AREA and X-RED32 (Stoe & Cie, 2002), SHELXT (Sheldrick 2015a), SHELXL2016/4 (Sheldrick, 2015b), Mercury (Macrae et al., 2008), WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The OH H atom was located in a difference Fourier map and refined with a distance restraint of 0.82 (2) Å with $U_{\rm iso}({\rm H}) = 1.5 U_{\rm eq}({\rm O})$. The NH and C-bound H atoms were included in calculated positions and allowed to ride on the parent atoms: N $-{\rm H} = 0.86$ Å, C $-{\rm H} = 0.93$ –0.96 Å with $U_{\rm iso}({\rm H}) = 1.5 U_{\rm eq}({\rm C}$ -methyl) and $1.2 U_{\rm eq}({\rm N},{\rm C})$ for other H atoms.

Acknowledgements

The authors are grateful to Ondokuz Mayıs University, Arts and Sciences Faculty, Department of Physics, Samsun, Turkey, for the X-ray data collection, and Drs Igor Fritsky and Graham Smith for helpful discussions.

References

- Bhardwaj, S. & Singh, A. K. (2015). J. Hazard. Mater. 296, 54-60.
- Faizi, M. S. H., Ali, A. & Potaskalov, V. A. (2016a). Acta Cryst. E72, 1366–1369.
- Faizi, M. S. H., Gupta, S., Mohan, V. K., Jain, K. V. & Sen, P. (2016b). Sens. Actuators B Chem. 222, 15–20.
- Faizi, M. S. H. & Prisyazhnaya, E. V. (2015). Acta Cryst. E71, m175– m176.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Fun, H.-K., Chantrapromma, S., Nilwanna, B., Kobkeatthawin, T. & Boonnak, N. (2013). Acta Cryst. E69, o1203–o1204.
- Furniss, B. S., Hannaford, A. J., Smith, P. W. G. & Tatchell, A. R. (1999). Vogel's Textbook of Practical Organic Chemistry, 5th ed. London: Longmans.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Guillaumont, D. & Nakamura, S. (2000). Dyes Pigments, 46, 85-92.
- Karthikeyan, M. S., Prasad, D. J., Poojary, B., Bhat, K. S., Holla, B. S. & Kumari, N. S. (2006). *Bioorg. Med. Chem.* 14, 7482–7489.
- Khattab, S. N. (2005). Molecules, 10, 1218–1228.
- Küçükgüzel, G., Kocatepe, A., De Clercq, E., Şahin, F. & Güllüce, M. (2006). *Eur. J. Med. Chem.* **41**, 353–359.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Okabe, N., Nakamura, T. & Fukuda, H. (1993). Acta Cryst. C49, 1678– 1680.
- Raj, B. N. B. & Kurup, M. R. P. (2007). Spectrochim. Acta Part A, 66, 898–903.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Silin, M. A., Kelaren, V. I., Abu-Ammar, V., Putkaradze, D. Kh. & Golubeva, I. A. (1999). Pet. Chem. 40, 209–214.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.
- Yamazaki, T. & Seguchi, T. (1997). J. Polym. Sci. A Polym. Chem. 35, 2431–2439.

supporting information

Acta Cryst. (2017). E73, 96-98 [https://doi.org/10.1107/S2056989016020107]

Crystal structure of (*E*)-2,6-di-*tert*-butyl-4-{[2-(2,4-dinitrophenyl)hydrazinyl-idene]methyl}phenol

Md. Serajul Haque Faizi, Necmi Dege, Ashanul Haque, Valentina A. Kalibabchuk and Mustafa Cemberci

Computing details

Data collection: *X-AREA* (Stoe & Cie, 2002); cell refinement: *X-AREA* (Stoe & Cie, 2002); data reduction: *X-RED32* (Stoe & Cie, 2002); program(s) used to solve structure: SHELXT (Sheldrick 2015a); program(s) used to refine structure: *SHELXL2016/4* (Sheldrick, 2015b); molecular graphics: *Mercury* (Macrae *et al.*, 2008); software used to prepare material for publication: *WinGX* (Farrugia, 2012) and *PLATON* (Spek, 2009).

(E)-2,6-Di-tert-butyl-4-{[2-(2,4-dinitrophenyl)hydrazinylidene]methyl}phenol

Crystal data

 $C_{21}H_{26}N_4O_5$ $M_r = 414.46$ Orthorhombic, *Pnma* a = 18.7651 (10) Å b = 6.9193 (4) Å c = 17.259 (1) Å $V = 2240.9 (2) Å^3$ Z = 4F(000) = 880

Data collection

STOE IPDS 2 diffractometer Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus Plane graphite monochromator Detector resolution: 6.67 pixels mm⁻¹ rotation method scans Absorption correction: integration (X-RED32; Stoe & Cie, 2002)

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.071$ $wR(F^2) = 0.215$ S = 0.962270 reflections 178 parameters 2 restraints $D_x = 1.228 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 6871 reflections $\theta = 1.1-26.2^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 296 KBlock, yellow $0.22 \times 0.15 \times 0.11 \text{ mm}$

 $T_{\min} = 0.982, T_{\max} = 0.994$ 14854 measured reflections 2270 independent reflections 912 reflections with $I > 2\sigma(I)$ $R_{int} = 0.105$ $\theta_{\max} = 25.5^{\circ}, \theta_{\min} = 1.6^{\circ}$ $h = -22 \rightarrow 22$ $k = -8 \rightarrow 8$ $l = -20 \rightarrow 20$

Secondary atom site location: difference Fourier map Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0904P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$

$\Delta \rho_{\rm max} = 0.39 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

 $\Delta \rho_{\rm min} = -0.16 \text{ e} \text{ Å}^{-3}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.3313 (3)	0.250000	0.5101 (4)	0.172 (3)	
O2	0.2860 (3)	0.250000	0.3982 (3)	0.1219 (18)	
O3	0.4249 (4)	0.250000	0.1717 (3)	0.1208 (19)	
O4	0.5398 (4)	0.250000	0.1781 (3)	0.134 (2)	
05	0.7461 (2)	0.250000	0.8580 (3)	0.0968 (15)	
H5O	0.738 (3)	0.250000	0.9045 (15)	0.145*	
N1	0.5301 (3)	0.250000	0.5745 (3)	0.0688 (13)	
N2	0.4674 (3)	0.250000	0.5319 (3)	0.0755 (14)	
H2	0.426908	0.250000	0.555180	0.091*	
N3	0.3381 (3)	0.250000	0.4404 (4)	0.0986 (19)	
N4	0.4801 (5)	0.250000	0.2079 (4)	0.0960 (18)	
C1	0.4705 (4)	0.250000	0.4537 (3)	0.0683 (16)	
C2	0.4077 (3)	0.250000	0.4074 (4)	0.0738 (17)	
C3	0.4119 (4)	0.250000	0.3273 (4)	0.0743 (17)	
H3	0.370779	0.250000	0.297265	0.089*	
C4	0.4780 (4)	0.250000	0.2928 (4)	0.0776 (17)	
C5	0.5396 (4)	0.250000	0.3361 (4)	0.0778 (18)	
H5A	0.583662	0.250000	0.311488	0.093*	
C6	0.5360 (3)	0.250000	0.4143 (3)	0.0707 (16)	
H6	0.578077	0.250000	0.442879	0.085*	
C7	0.5207 (3)	0.250000	0.6478 (4)	0.0686 (16)	
H7	0.474375	0.250000	0.666931	0.082*	
C8	0.5798 (3)	0.250000	0.7027 (3)	0.0642 (15)	
C9	0.6498 (3)	0.250000	0.6776 (3)	0.0677 (15)	
H9	0.659076	0.250000	0.624701	0.081*	
C10	0.7066 (3)	0.250000	0.7293 (3)	0.0666 (16)	
C11	0.6887 (3)	0.250000	0.8089 (4)	0.0739 (17)	
C12	0.6187 (3)	0.250000	0.8373 (3)	0.0663 (15)	
C13	0.5656 (3)	0.250000	0.7812 (3)	0.0656 (15)	
H13	0.518293	0.250000	0.797276	0.079*	
C14	0.7841 (3)	0.250000	0.7007 (4)	0.0775 (18)	
C15	0.7881 (4)	0.250000	0.6117 (4)	0.098 (2)	
H15A	0.764903	0.136762	0.592106	0.146*	
H15B	0.837191	0.250000	0.596024	0.146*	
C16	0.8233 (2)	0.4334 (8)	0.7297 (3)	0.1114 (18)	
H16A	0.797329	0.546218	0.713820	0.167*	
H16B	0.870376	0.437202	0.708115	0.167*	
H16C	0.826331	0.430459	0.785250	0.167*	

supporting information

C18	0.6013 (3)	0.250000	0.9242 (3)	0.0755 (18)	
C19	0.6312 (3)	0.4323 (7)	0.9640 (2)	0.0973 (16)	
H19A	0.679150	0.408097	0.980849	0.146*	
H19B	0.602137	0.464417	1.007856	0.146*	
H19C	0.631039	0.537943	0.927893	0.146*	
C20	0.5207 (4)	0.250000	0.9375 (4)	0.102 (2)	
H20A	0.500334	0.363387	0.914288	0.154*	
H20B	0.511112	0.250000	0.991999	0.154*	

Atomic displacement parameters (A	Ų)	
-----------------------------------	----	--

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
01	0.081 (4)	0.362 (10)	0.073 (4)	0.000	0.007 (3)	0.000
O2	0.083 (4)	0.164 (5)	0.118 (4)	0.000	-0.024 (3)	0.000
03	0.147 (5)	0.135 (5)	0.080 (4)	0.000	-0.034 (4)	0.000
O4	0.147 (5)	0.177 (6)	0.078 (4)	0.000	0.013 (4)	0.000
05	0.077 (3)	0.136 (4)	0.078 (3)	0.000	-0.017 (3)	0.000
N1	0.072 (3)	0.078 (3)	0.056 (3)	0.000	0.000 (3)	0.000
N2	0.063 (3)	0.103 (4)	0.061 (3)	0.000	-0.005 (3)	0.000
N3	0.068 (4)	0.145 (6)	0.083 (4)	0.000	-0.009 (4)	0.000
N4	0.130 (6)	0.091 (4)	0.068 (4)	0.000	-0.009 (4)	0.000
C1	0.083 (4)	0.059 (4)	0.064 (4)	0.000	-0.008 (4)	0.000
C2	0.078 (5)	0.081 (4)	0.063 (4)	0.000	-0.010 (4)	0.000
C3	0.082 (5)	0.063 (4)	0.078 (5)	0.000	-0.022 (4)	0.000
C4	0.102 (5)	0.066 (4)	0.065 (4)	0.000	-0.007 (4)	0.000
C5	0.086 (5)	0.077 (4)	0.070 (4)	0.000	0.001 (4)	0.000
C6	0.072 (4)	0.079 (4)	0.061 (4)	0.000	-0.004 (3)	0.000
C7	0.067 (4)	0.069 (4)	0.069 (4)	0.000	0.003 (4)	0.000
C8	0.069 (4)	0.066 (4)	0.058 (4)	0.000	0.001 (3)	0.000
C9	0.077 (4)	0.068 (4)	0.058 (3)	0.000	-0.001 (4)	0.000
C10	0.069 (4)	0.068 (4)	0.063 (4)	0.000	0.003 (3)	0.000
C11	0.064 (4)	0.080 (4)	0.078 (4)	0.000	-0.016 (4)	0.000
C12	0.069 (4)	0.070 (4)	0.060 (4)	0.000	-0.011 (3)	0.000
C13	0.061 (4)	0.072 (4)	0.064 (4)	0.000	0.002 (3)	0.000
C14	0.075 (4)	0.076 (4)	0.082 (4)	0.000	0.001 (4)	0.000
C15	0.084 (5)	0.125 (6)	0.084 (5)	0.000	0.019 (4)	0.000
C16	0.086 (3)	0.122 (4)	0.126 (5)	-0.028 (3)	0.000 (3)	0.000 (4)
C18	0.076 (4)	0.090 (5)	0.061 (4)	0.000	-0.004 (3)	0.000
C19	0.115 (4)	0.109 (4)	0.068 (3)	-0.002 (3)	-0.002 (3)	-0.013 (3)
C20	0.089 (5)	0.147 (7)	0.071 (4)	0.000	0.017 (4)	0.000

Geometric parameters (Å, °)

01—N3	1.209 (7)	С9—Н9	0.9300	
O2—N3	1.219 (7)	C10—C11	1.415 (8)	
O3—N4	1.210(7)	C10—C14	1.536 (8)	
O4—N4	1.232 (8)	C11—C12	1.401 (8)	
O5—C11	1.370 (7)	C12—C13	1.390 (8)	

O5—H5O	0.816 (19)	C12—C18	1.536 (8)
N1—C7	1.278 (7)	С13—Н13	0.9300
N1—N2	1.385 (6)	C14—C15	1.538 (9)
N2—C1	1.352 (7)	C14—C16	1.549 (6)
N2—H2	0.8600	C14—C16 ⁱ	1.549 (6)
N3—C2	1.424 (8)	C15—H15A	0.96
N4—C4	1.466 (8)	C15—H15B	0.96
C1—C6	1.405 (8)	C15—H15A ⁱ	0.96
C1—C2	1.422 (8)	C16—H16A	0.9600
C2—C3	1.385 (8)	C16—H16B	0.9600
C3—C4	1.374 (8)	C16—H16C	0.9600
С3—Н3	0.9300	C18—C20	1.530 (9)
C4—C5	1.376 (9)	C18—C19	1.542 (5)
C5—C6	1.352 (8)	C18—C19 ⁱ	1.542 (5)
С5—Н5А	0.9300	C19—H19A	0.9600
С6—Н6	0.9300	C19—H19B	0.9600
C7—C8	1 458 (8)	C19—H19C	0.9600
C7—H7	0.9300	C20—H20A	0.96
C_{8} C_{13}	1 380 (7)	C20_H20R	0.96
$C_8 = C_9$	1.383(8)	C_{20} $H_{20}\Lambda^{i}$	0.96
C_{0}	1.305 (8)	C20—1120A	0.90
09-010	1.390 (0)		
С11—О5—Н5О	118 (4)	C12—C11—C10	124.2 (6)
C7—N1—N2	114.1 (5)	C13—C12—C11	115.4 (5)
C1—N2—N1	119.6 (5)	C13—C12—C18	121.9 (5)
C1—N2—H2	120.2	C11—C12—C18	122.7 (5)
N1—N2—H2	120.2	C8—C13—C12	123.0 (6)
01—N3—O2	120.6 (6)	C8—C13—H13	118.5
01-N3-C2	119.7 (6)	C12—C13—H13	118.5
02—N3—C2	119.7 (6)	C10-C14-C15	111.5 (5)
03—N4—04	1242(7)	C10-C14-C16	110.2(3)
03—N4—C4	119 5 (8)	C_{15} C_{14} C_{16}	107.4(4)
04—N4—C4	116 3 (7)	$C10-C14-C16^{i}$	107.1(1) 1102(3)
$N_2 - C_1 - C_6$	121 3 (6)	C_{15} C_{14} C_{16}^{i}	107.4(4)
$N_2 - C_1 - C_2$	121.8 (6)	C_{16} C_{14} C_{16}	110.0 (6)
C_{6}	117.0(5)	C_{14} C_{15} H_{15A}	109.3
C_{3} C_{2} C_{1}	120.9 (6)	C14 $C15$ $H15R$	109.5
$C_3 C_2 N_3$	116.9 (6)	H15A C15 H15B	109.2
C_{1} C_{2} N3	122.3 (6)	C_{14} C_{15} H_{15} A_i	109.0 109.3(4)
$C_1 = C_2 = R_3$	122.5(0) 118.9(6)	$H_{15A} = C_{15} = H_{15A}^{i}$	109.5 (4)
C4 = C3 = C2	110.9 (0)	H15P C15 H15Ai	109.7
$C_4 = C_5 = H_3$	120.5	$\begin{array}{cccc} \text{HI3B} & $	109.0
$C_2 = C_3 = 115$	120.5	C14 $C16$ $H16P$	109.5
$C_3 = C_4 = C_3$	121.3(0) 117.2(7)	$U_1 + U_1 $	109.5
C_{3} C_{4} N_{4}	11/.2(7)	$\frac{1110A}{0} = 0.00 = 0.000$	109.3
$C_{4} = C_{4}$	121.3(7)		109.5
C = C = C = C = C = C = C = C = C = C =	120.1 (7)	$H_1(D = C_1(-H_1)C_$	109.5
	120.0	H10B - C10 - H10C	109.5
C4—C5—H5A	120.0	C20-C18-C12	110.9 (5)

C5—C6—C1	121.7 (6)	C20—C18—C19	107.1 (4)
С5—С6—Н6	119.2	C12—C18—C19	110.9 (3)
С1—С6—Н6	119.2	C20—C18—C19 ⁱ	107.1 (4)
N1—C7—C8	122.6 (6)	C12—C18—C19 ⁱ	110.9 (3)
N1—C7—H7	118.7	C19—C18—C19 ⁱ	109.8 (5)
С8—С7—Н7	118.7	С18—С19—Н19А	109.5
C13—C8—C9	119.4 (6)	C18—C19—H19B	109.5
C13—C8—C7	119.4 (6)	H19A—C19—H19B	109.5
C9—C8—C7	121.2 (5)	C18—C19—H19C	109.5
C8—C9—C10	121.8 (6)	H19A—C19—H19C	109.5
С8—С9—Н9	119.1	H19B—C19—H19C	109.5
С10—С9—Н9	119.1	C18—C20—H20A	109.3
C9—C10—C11	116.2 (6)	C18—C20—H20B	109.5
C9—C10—C14	121.4 (5)	H20A—C20—H20B	109.6
C11—C10—C14	122.4 (5)	C18—C20—H20A ⁱ	109.3 (5)
05-011-012	121.4 (6)	H20A—C20—H20A ⁱ	109.6
05-011-010	114.4 (6)	H_{20B} C_{20} $H_{20A^{i}}$	109.6
	(-)		
C7—N1—N2—C1	180.000(1)	C7—C8—C9—C10	180.000(1)
N1—N2—C1—C6	0.000 (1)	C8—C9—C10—C11	0.000 (2)
N1—N2—C1—C2	180.000 (1)	C8—C9—C10—C14	180.000(1)
N2—C1—C2—C3	180.000 (1)	C9—C10—C11—O5	180.000(1)
C6—C1—C2—C3	0.000(1)	C14—C10—C11—O5	0.000(1)
N2-C1-C2-N3	0.000(1)	C9-C10-C11-C12	0.000 (2)
C6-C1-C2-N3	180.000 (1)	C14—C10—C11—C12	180.000 (1)
O1—N3—C2—C3	180.000 (1)	O5—C11—C12—C13	180.000 (1)
O2—N3—C2—C3	0.000(1)	C10-C11-C12-C13	0.000 (2)
O1—N3—C2—C1	0.000(1)	O5-C11-C12-C18	0.000 (2)
O2—N3—C2—C1	180.000 (1)	C10-C11-C12-C18	180.000 (2)
C1—C2—C3—C4	0.000(1)	C9—C8—C13—C12	0.000 (2)
N3—C2—C3—C4	180.000 (1)	C7—C8—C13—C12	180.000 (1)
C2—C3—C4—C5	0.000(1)	C11—C12—C13—C8	0.000 (2)
C2—C3—C4—N4	180.000 (1)	C18—C12—C13—C8	180.000 (2)
O3—N4—C4—C3	0.000(1)	C9—C10—C14—C15	0.000 (2)
O4—N4—C4—C3	180.000 (1)	C11—C10—C14—C15	180.000 (1)
O3—N4—C4—C5	180.000 (1)	C9—C10—C14—C16	119.2 (4)
O4—N4—C4—C5	0.000 (1)	C11—C10—C14—C16	-60.8 (4)
C3—C4—C5—C6	0.000(1)	C9-C10-C14-C16 ⁱ	-119.2 (4)
N4—C4—C5—C6	180.000 (1)	C11—C10—C14—C16 ⁱ	60.8 (4)
C4—C5—C6—C1	0.000(1)	C13—C12—C18—C20	0.000 (2)
N2-C1-C6-C5	180.000 (1)	C11-C12-C18-C20	180.000 (2)
C2-C1-C6-C5	0.000 (1)	C13—C12—C18—C19	-118.8 (4)
N2—N1—C7—C8	180.000 (1)	C11-C12-C18-C19	61.2 (4)
N1-C7-C8-C13	180.000 (1)	C13-C12-C18-C19 ⁱ	118.8 (4)
N1—C7—C8—C9	0.000 (2)	C11-C12-C18-C19 ⁱ	-61.2 (4)
C13—C8—C9—C10	0.000 (2)		

Symmetry code: (i) x, -y+1/2, z.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
N2—H2…O1	0.86	1.96	2.583 (8)	129
O5—H5 <i>O</i> …O1 ⁱⁱ	0.82 (2)	2.28 (5)	2.782 (7)	120 (4)

Symmetry code: (ii) x+1/2, y, -z+3/2.