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Abstract

Species that differ in their social system, and thus in traits such as group size and dispersal timing, may differ in their use of
resources along spatial, temporal, or dietary dimensions. The role of sociality in creating differences in habitat use is best
explored by studying closely related species or socially polymorphic species that differ in their social system, but share a
common environment. Here we investigate whether five sympatric Anelosimus spider species that range from nearly solitary
to highly social differ in their use of space and in their phenology as a function of their social system. By studying these
species in Serra do Japi, Brazil, we find that the more social species, which form larger, longer–lived colonies, tend to live
inside the forest, where sturdier, longer lasting vegetation is likely to offer better support for their nests. The less social
species, which form single-family groups, in contrast, tend to occur on the forest edge where the vegetation is less robust.
Within these two microhabitats, species with longer-lived colonies tend to occupy the potentially more stable positions
closer to the core of the plants, while those with smaller and shorter-lived colonies build their nests towards the branch tips.
The species further separate in their use of common habitat due to differences in the timing of their reproductive season.
These patterns of habitat use suggest that the degree of sociality can enable otherwise similar species to differ from one
another in ways that may facilitate their co-occurrence in a shared environment, a possibility that deserves further
consideration.
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Introduction

Recent comparative studies of species or populations exhibiting

different social behaviors have offered new insights into the

ecological conditions that favor sociality (reviewed by [1]). In

general, these investigations begin by identifying environmental

factors, such as climatic variables, abundance of natural enemies,

and resource availability, which correlate with natural variation in

social traits (e.g. [2–9]). Some studies have then tested the impact

of these environmental gradients by manipulating specific

ecological factors [9,10], or by transplanting organisms across

environmental gradients [9,11] or into common gardens [12].

Thus, we now know that many extrinsic factors may affect the

costs and benefits of sociality, thereby shaping the distribution of

social and less social species.

When comparing between social and non-social organisms in

the same lineages (including Allodapine and Halictine bees

[13,14]; aphids [15]; thrips [16]; and social spiders [17,18]), we

can identify variation in a few key, inter-related traits that

characterize the social categories. These traits, in turn, have been

linked to some of the environmental factors listed above. (1)

Dispersal behavior. In non-social species, every individual should

disperse from the natal colony and found a new nest indepen-

dently, whereas in social species, individuals may remain together

for multiple generations. Differences in dispersal behavior can

therefore result in variation in the length of time that a nest is used,

being relatively short-lived in non-social species, and relatively

long-lasting in social ones. In general, previous studies have

focused on the risk of dispersal as a force favoring the formation of

social groups. These risks can be higher, for instance, in arid

environments, where dispersal can only occur during rare and

unpredictable rainstorms (e.g. [16,19]), or in habitats with greater

predation pressure (e.g. [10]). (2) Group size. This characteristic is

likely to interact with a range of ecological factors. For example,

larger groups will require burrows or nests that are many times

larger than those required by solitary organisms, which can impose

constraints on the positions where social organisms can nest. On

the other hand, social individuals may be better protected from

predators by such simple mechanisms as the selfish herd effect

[20–22]. (3) Cooperation. By working together, social organisms

may be able to increase their efficiency relative to solitary

individuals. For example, cooperation in nest maintenance or

brood care may allow a larger workforce to focus on attaining food

resources or defending against natural enemies (e.g. [23,24]).

Thus, a relatively straightforward shift in social behavior can result
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in a whole suite of differences in the way that organisms interact

with their environment.

So far, most of these differences, both in the environmental

factors that influence sociality and in the social traits themselves,

have been observed and measured in allopatry [1]. Investigating

the ecology of sociality in species living in sympatry, however,

offers the possibility of exploring how such species differ from one

another in a shared environment. Here, we investigate the

ecological characteristics of five sympatric, congeneric spider

species that range from almost solitary to highly social. We ask

whether species differ in their use of space and time as a function

of their social system, with the degree of sociality defined in this

context by the size and duration of the nest. Based on earlier

studies of differentiation between otherwise similar species that

differ in body size (e.g. [25,26]), we expect that the degree of

sociality (i.e. differences in nest size and longevity) could contribute

to differentiation in habitat use.

We first consider two alternative hypotheses: species exhibiting

similar social traits could either occupy similar habitat types (e.g.

open habitat vs. forest) due to similar resource or space

requirements (H1) or segregate in separate environments to

possibly avoid competing for the same resources (H2). The null

hypothesis is that the species utilize space with no reference to

their social system (or other shared characteristics) (H0). If H1 is

supported, we further ask whether other habitat dimensions, at

either other spatial scales or in time, contribute to the separation of

similar species in niche space. If our results are consistent with H2,

we further investigate how species with different degrees of social

behavior differ in their utilization of shared resources. A

complementary study investigated the dietary differences between

these species [27].

Methods

Species descriptions
Anelosimus (Theridiidae, Araneae) species exhibit social behav-

iours ranging from nearly solitary to subsocial (non-territorial

periodic social) and highly social (non-territorial permanent social)

[23,28]. Social species occupy a shared nest for multiple

generations, where group members cooperate in brood rearing,

prey capture, and nest maintenance. Depending on the species

and habitat, these social spider nests may grow to contain

hundreds to thousands of individuals. In contrast, the nests of

subsocial species typically contain a single-family group, as adults

usually nest solitarily and the offspring disperse prior to reaching

reproductive maturity [23]. The period of cooperation and

cohabitation by siblings may be shorter in some species, creating

a continuum between solitary and subsocial strategies [29]. There

is no evidence of any cooperation or even regular contact

occurring between spiders from different nests in any members

of this genus.

The five Anelosimus species that co-occur in Serra do Japi, Brazil

differ from one another in their social system [30]. Anelosimus

dubiosus Keyserling is the most social, as its colonies may last

multiple generations without dispersing and new nests appear to

be initiated by inseminated females dispersing alone or in small

groups from the same source nest [31]. Anelosimus jabaquara Levi

seems to be intermediate between social and subsocial since

dispersal from the natal nest appears to be partial– some females

remain to reproduce thus yielding colony sizes comparable to

those of A. dubiosus [32]. These two species are found at the

southern edge of the tropical zone in Brazil (,20–25u S), where

they often occur in sympatry ([28,33] also MO Gonzaga,

unpublished data).

Anelosimus studiosus Hentz and Anelosimus baeza Agnarsson are

typical subsocial species, with dispersal occurring primarily at

subadult instars each generation. Both species are distributed

throughout South America in areas outside the lowland tropical

rainforest (e.g., at higher elevations, higher latitudes, or drier

habitats) [17,28]. Anelosimus studiosus extends into North America

where the more northern populations may form groups of multiple

females and their offspring [3,34]. The fifth species, Anelosimus

nigrescens Keyserling, is considered nearly-solitary due to the early

dispersal of immature individuals, the reduced maternal care

phase, and elevated degree of aggression among siblings ([33,35]

also MO Gonzaga and J Vasconcellos-Neto, unpublished data).

Anelosimus nigrescens is found in Brazil’s Atlantic coastal forest, as

well as in Guyana and possibly Venezuela ([36] also MO

Gonzaga, unpublished data). All five species build irregular

three-dimensional webs (Fig. 1), which are occupied for periods

reflective of their degree of sociality–fractions of a generation, for

the less social species, to multiple generations, for the more social

ones. The webs are used both to intercept prey and to shelter the

inhabitants from predators and from the elements. The phyloge-

netic relationships of these species are shown in Fig. 2a

(reconstructed from [33]). A complementary study found that

these four species differ in the size of the prey that they capture

and consume, although there is some overlap. In general, species

with larger nests capture larger prey, while species with smaller

nests capture smaller prey. A full range of prey sizes was available

throughout the habitat [27].

Habitat description
Serra do Japi is a Brazilian protected area located between the

latitudes 23u12’–23u22’S and longitudes 46u57’–47u05’W, com-

prising an area of about 354 Km2. The vegetation is composed

mainly of semi-deciduous forest, markedly seasonal, with leaf fall

occurring especially during the dry and relatively cool autumn and

winter seasons (from April to September). The habitat is

dominated by Myrtaceae, Lauraceae, Meliaceae, Caesalpinaceae,

Mimosaceae, Euphorbiaceae and Fabaceae. Our study area was

located from about 1000 m–1200 m altitude and covered about

3 km2. Rains are concentrated in the first months of the summer

(from October to January) and annual precipitation is about

1350 mm in the region [37–39]. The protected area does not

allow manipulation or destructive sampling, so we limited

ourselves to observing and measuring existing colonies.

Sampling
We surveyed the nests of the five Anelosimus species along six

transects (200 m65 m) in Serra do Japi in November, 2005. Each

transect was initiated at a randomly selected colony using the T-

squared sampling method [40]–six points were randomly chosen

along the accessible roads or trails within the reserve; we then

found the nearest colony (of any species) to that point. We initiated

each transect at the nearest neighbour of the first colony, and

proceeded along a randomly selected compass bearing. Having a

starting point near a road (as opposed to anywhere on the map)

helped ensure at least some representation of edge habitat, which

was represented in all six transects in proportions ranging from 10

to 40%. The forest edge consisted of shrubby habitat along human

created edges (roads, trails, and overgrown pastures) and along

natural streams and swamps. The forest interior consisted of a

closed-canopy forest of a height up to about 25 m, with a mix of

trees and shrubs. We acknowledge that some of the forest interior

habitat that we surveyed may have been influenced by the edge

effect, although in our sample, the plants recorded as used and
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Figure 1. Photographs of the study organisms. Webs of Anelosimus jabaquara (A, scale bar 10 cm), A. baeza (B), A. studiosus (C), A. nigrescens
(D), and A. dubiosus (E, B–E scale bar 5 cm). Also shown are male and female of A. nigrescens (F), female of A. baeza (G), and female of A. jabaquara (H,
F-H scale bar 2.5 cm).
doi:10.1371/journal.pone.0034592.g001
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available for web construction by the spiders differed considerably

between these two habitat types.

The nests of most Anelosimus spider species consist of three-

dimensional baskets built with dense webbing. The area of the

largest horizontal cross section of the basket is proportional to the

number of individuals in a colony [41]. Above the basket, the

‘‘prey capture’’ area of the nest consists of a mesh of looser threads

where most prey items are intercepted. Nests of some species,

including A. nigrescens among the species investigated here, lack the

basal basket, but rather build nests consisting entirely of the looser

‘‘prey capture’’ webbing. For each nest encountered, we measured

two nest- and seven habitat-specific variables: the cross-section

area of the nest basket and the prey capture webbing height, as

well as the distance from the forest edge, canopy cover, forest

height, vegetation substrate identity, vegetation substrate diameter

at breast height, nest height above the ground, and the location of

the nest on the plant (detailed variable descriptions listed in

Table 1). We measured the same habitat variables at 20 randomly

positioned points along each transect in order to assess the habitat

available to the spiders. In December, 2010 we added 4 additional

transects that followed parallel trajectories along the forest edge

and the forest interior at two sites in Serra do Japi. At 20 random

points along these transects, we measured plant height, diameter at

50 cm (knee) height, diameter at breast height, and the length and

width of the longest branch available for the spiders to build on.

These variables were combined to form a ‘vegetation sturdiness’

index to allow for more systematic comparisons between the forest

edge and forest interior habitat (Table 1).

In the original transects, we collected voucher specimens from

nests for which species identification was not possible in the field.

These individuals were then reared until adulthood in the lab and

identified. We also documented the instars of the spiders in each

nest (Table 1). Because the protected area prohibited destructive

sampling, we were not able to collect vouchers from some nests

that were positioned high above the ground, and these colonies

were not included in this analysis. This inability to identify the

highest nests may have skewed our height above ground

comparisons, since the highest nests were not included.

Analysis
Overview of differences among species. In total, we

analyzed the characteristics of 34 A. nigrescens, 58 A. baeza, 7

A. studiosus, 52 A. jabaquara, and 31 A. dubiosus nests. We

performed a non-linear principal components analysis (PCA) on all

nest size, habitat, and temporal variables except plant substrate

identity (9 variables, Table 1) using the dudi.mix function in R

2.10. We omitted the plant substrate variable from this analysis,

because we observed spider nests on 19 different plant families,

and the individual treatment of each of these categories made the

results of the PCA difficult to interpret. We calculated the

relationships between all of the variables used in the principal

components analysis (Table 2) and used ANOVA and the

Dunnett-Tukey-Kramer (DTK) test to determine whether there

were significant differences among the species along the first three

principal component axes. The DTK test adjusts for unequal

variances and unequal sample sizes.

Interspecific differences in habitat use. For the metrics

that differed between species in the principal component analysis,

we further investigated biologically relevant variables. Because our

forest position metrics (distance from forest edge, forest height, and

canopy cover) and nest size measurements (nest size and prey

capture height) were highly correlated, we evaluated only distance

from forest edge and nest size here. We used ANOVA and the

DTK test to compare the nest size, and the Kruskal-Wallis test and

a posthoc test (equivalent to the Tukey test) to compare the

distance from the forest edge across the five species. In order to

determine whether the habitat positions of the species were

independent of phylogenetic relationships, we estimated the

divergence time of the five species using published sequence

data for cytochrome c oxidase subunit I and NADH

dehydrogenase subunit I mitochondrial genes [33] using the

neighbour joining method in Mega 4.1 [42]. We then compared

the distance from forest edge among the five species based on their

divergence time and nest size using phylogenetically independent

contrasts in the ‘ape’ package in R 2.10.

Comparison of Forest Edge and Forest Interior

Habitats. We calculated a vegetation sturdiness index from

the variables measured along forest interior and forest edge

transects using the first axis of a PC analysis, and calculated the

difference between the two habitats using a Welch T-test. We also

compared the distribution of Asteraceae and Myrtaceae relative to

the distance from the forest edge using a Welch T-test.

Interspecific differences in nest position. For the local

scale variables, we compared the species living within the same

type of habitat (forest edge or forest interior). We used the

Binomial test to determine whether plant substrates were used by

each species more than expected based on their abundances, the

Wilcoxon test for pairwise comparisons of nest height above the

ground, and the Pearson Chi-squared test (in R 2.10) to investigate

pairwise differences in nest position relative to plant substrate

DBH and the nest location on the plant (branch tips, mid-branch

or plant core/trunk).

Interspecific differences in phenology. We used the

Pearson Chi-squared test (in R 2.10) to investigate pairwise

differences in phenology; for this analysis, we used four life-cycle

categories representing the most common instar: juvenile,

subadult, adult, and adult with eggsac.

Species distribution versus null expectation. We tested

whether each species differed in their spatial position from the null

expectation by performing a permutation test on each PC axis. In

R 2.10, we compared the sum-squared deviation of each group

mean from the overall mean of the observed data with the results

from 10,000 randomized permutations of the dataset. We also

investigated how each species was distributed relative to the

available habitat by performing a non-linear PCA on observed

nest positions versus the possible nest positions quantified at each

of 20 random points along every transect. We compared the first

two PC axes using ANOVA and DTK tests.

Intraspecific variation. We explored whether there were

any intraspecific patterns in the distribution of nest sizes relative to

the habitat position (distance from forest edge) or nest height

above ground using Pearson’s correlation, or relative to the plant

substrate DBH or the nest location on the substrate using

ANOVA. We excluded A. studiosus from these intraspecific

comparisons due to our small sample size. Statistical tests were

carried out in R 2.10.

Corrections for Multiple Comparisons. In order to

reduce the chances of committing type I errors in our analyses,

we used the Holm-Bonferroni correction method to rank our

statistical data and adjust the alpha for each of the 68 interspecific

comparisons. Under these conditions, our functional threshold

alpha value was approximately 0.002. Because this correction is

conservative (18 comparisons with p,0.05 were considered non-

significant with this method, but the false discovery rate for this

study should be approximately 3–4 type I errors), we also discuss

our marginally non-significant data in light of the power of each

analysis. We treated the intraspecific data separately, and used the

Holm-Bonferroni correction to adjust our alpha for the four

Spatio-Temporal Differences in Social Spiders
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comparisons performed on each species. All unspecified statistical

analyses were performed in JMP 5.1 (SAS Institute, Cary, NC).

Results

Overview and interspecific differences in habitat use
Overall, we found that species with large, long-lived nests (more

social; Fig. 2) tended to occur in forested habitat characterized by

sturdier vegetation consisting of larger plants with longer, thicker

branches (vegetation comparison: t = 23.1, df = 82, p = 0.0027),

while species with smaller, shorter lived nests (less social) tended to

occur in more open, forest edge habitats on smaller, flimsier plants

(ANOVA, PCA axis 1: F(4, 172) = 32.9, p,0.0001; Figs. 2, 3). The

nest sizes differed from one another by an order of magnitude

(Fig. 2; F(4, 177) = 34.2, p,0.0001), and species with larger nests

built further inside the forest (Kruskal wallis test: x2 = 57.69,

DF = 4, p,0.0001). The phylogenetically independent contrast

result suggests that this pattern cannot be explained solely by

phylogenetic niche conservatism (F(1, 3) = 17.63, p = 0.025).

The highly correlated measures of nest size and position relative

to the forest edge (Table 2) strongly influenced the first principal

component axis (more negative values reflect larger nests that are

positioned further inside the forest), which accounted for 22.5% of

the observed variation in nest position (Fig. 3, Table 3). Species in

similar environments also tended to build nests on the same type of

plant. Along the forest edge, A. baeza nests were found on

Asteraceae plants (Binomial test: p = 0.0009), and the nests of the

other two species were also frequently found on Asters, although

this trend was non-significant (A. nigrescens: p = 0.02; A. studiosus:

p = 0.3). Inside the forest, the intermediate social species A.

jabaquara was found on Myrtaceae plants more often than expected

by chance (Binomial test: p = 0.0002), and A. dubiosus showed a

similar non-significant trend (p = 0.07). The distribution of each

plant type follows a similar pattern, with Asteraceae occurring

nearer the forest edge than Myrtaceae, on average (Welch’s T-test,

t = 4.97, DF = 25, p,0.0001). These findings are consistent with

our first hypothesis, that species with similar social systems share

similar habitat requirements (H1).

Interspecific differences in nest position
Inside the forest, we found that the social species A. dubiosus,

with large nests that may be expected to remain intact through

many generations (over the course of months or years), tended to

occupy seemingly sturdier and longer-lasting nest positions than

the intermediate social A. jabaquara. In general, A. dubiosus nests

were found closer to the ground (x2 = 9.65, p = 0.0019) and on

shorter plants (x2 = 62.5, p,0.0001) than A. jabaquara. Interest-

ingly, A. dubiosus nests were also located on the core of the plant,

while A. jabaquara nests were positioned closer to the tips of

branches (x2 = 228.0, p,0.0001). This difference was reflected in

the positions of these species along principal component axis 2,

where more positive values indicate nests that are closer to the

ground and built on the core of the plant (F(4, 172) = 12.1,

p,0.0001; Fig. 3, Table 3).

Among the less social species found at the forest edge, we found

more subtle differences in the nest position of each species (Figs. 3,

4). In this case, A. nigrescens tended to nest closer to the ground

relative to A. baeza (x2 = 13.2, p = 0.0003;) and A. studiosus (x2

= 6.76, p = 0.0093), but the latter species did not differ from one

another (x2 = 1.54, DF = 1, p = 0.22). The nests of A. nigrescens also

tended to be found more often on the branch tips than those of A.

baeza (x2 = 6.07, p = 0.048) and A. studiosus (x2 = 13.2, p = 0.0003).

Table 1. A description of the variables measured in Serra do Japi.

Measurement Description

Spider Nest Characteristics

Nest Size Area of the largest horizontal cross section of the nest basket; A. nigrescens sometimes has a less clearly
defined nest basket, so we measured the longest and widest horizontal web cross section(Purcell and Avilés
2007)

Prey Capture Web Height Greatest vertical extent of the loose webbing above the basket (Purcell and Avilés 2007)

Habitat-Scale Spatial Measurements

Distance from Forest Edge Distance from the nest to the nearest forest edge, measured up to 10 m and estimated at longer distances

Percent Canopy Cover Visual estimate of the percent of canopy cover directly above the nest

Forest Height An estimate of the average height of the canopy above the nest

Local-Scale Spatial Measurements

Plant Identity (Substrate) Identity of the plant supporting the nest (classified to family)

Height Above Ground The distance from the lowest part of the nest’s basket to the ground below it

Plant Diameter at Breast Height (DBH) The size of the plant supporting the nest, classified in categories: 0: plants shorter than1.4 m; small: up to
10 cm diameter; medium: up to 40 cm; large: greater than 40 cm

Nest Position on Plant Position of the nest on the plant: branch tip, middle of the branch, core of the plant

Vegetation sturdiness index An index based on: plant height, DBH, diameter at 50 cm (knee) height, length and diameter of the longest
branch. The index is the first axis of a principal component analysis (see Appendix S1).

Temporal Measurement

Spider Instar Most nests contained a single instar (juvenile 1–4, subadult, adult, egg sac present); when two instars were
represented, we assigned the nest to the category representing the most common instar. For analyses, juvenile
instars were grouped into one category.

We determined the spider nest characteristics, habitat- and local-scale spatial measurements (except vegetation sturdiness index) and temporal measurement for each
spider nest along each transect. In addition, we measured the habitat- and local-scale spatial (except vegetation sturdiness index) variables at 20 randomly selected
points along each transect in 2005. The vegetation sturdiness index was calculated based on measurements taken in 2010 at 20 randomly selected points along two
sets of two parallel transects, one of each along the forest edge and the other inside the forest.
doi:10.1371/journal.pone.0034592.t001

Spatio-Temporal Differences in Social Spiders

PLoS ONE | www.plosone.org 5 April 2012 | Volume 7 | Issue 4 | e34592



Again, the two subsocial species did not differ from one another in

nest position (x2 = 1.35, p = 0.51), nor did we find any difference in

the size of the plants used (Fig. 4, Appendix S1). These differences

were reflected by differentiation along the third PC axis (Fig. 3; F(4,

172) = 7.92, p,0.0001). The sample size for A. studiosus was small,

however, so the comparison between the two subsocial species has

little power.

Interspecific differences in phenology
Among the three forest edge species, we also found a significant

difference in the age structure of the colonies (Fig. 5). We found

that the nearly solitary species A. nigrescens and the subsocial species

A. studiosus were further advanced into their reproductive season at

the time of our study than the subsocial A. baeza, as judged by the

proportion of colonies containing adults and eggsacs (age structure

difference: x2 = 34.9, DF = 3, p,0.0001; x2 = 23.6, DF = 3,

p,0.0001, respectively). In spite of our small sample of A.

studiosus, we found a marginally non-significant difference in the

age structure of A. nigrsescens and A. studiosus (x2 = 11.5, DF = 3,

p = 0.0093); the former species seems to have a longer reproduc-

tive season, given the broad range of ages observed in nests during

this two week observation period (Fig. 5). Inside the forest, a

previous study found that the more social species, A. jabaquara and

A. dubiosus, differ in their phenology by about one month [31],

which is consistent with our qualitative result that a higher

proportion of A. dubiosus nests contained adults (Fig. 5).

Species differences versus null expectation
We were able to reject our null hypothesis (H0) that species

utilize space without reference to their social system, as the

distribution of these species differed from our null model

(permutation test, PC axis 1: p,0.0001; PC axis 2: p = 0.003;

the results from the PC axis 2 comparison were marginally non-

significant with Holm-Bonferroni correction) and from the null

expectation given our measure of available habitat (PCA, axis 1:

F(5, 303) = 16.9, p,0.0001; see Appendix S1). We also found that

the position of A. dubiosus nests on the substrate (both the height of

nests and the position of nests on branches or plant core) did not

differ from the random expectation with respect to available nest

positions; A. jabaquara and the three forest edge species, in contrast,

tended to build nests on taller plants and more toward the branch

tips than would be expected by chance (PCA, axis 2: F(5, 303)

= 14.4, p,0.0001).

Intraspecific variation
Within species, we found a positive correlation between nest size

and distance from the forest edge, although this correlation was

only significant in A. nigrescens (Pearson’s correlation r = 0.47,

df = 32, p = 0.0054; other species: A. baeza r = 0.23, df = 56,

p = 0.086; A. jabaquara r = 0.18, df = 50, p = 0.20; A. dubiosus

r = 0.090, df = 29, p = 0.63). Larger nests of species A. baeza and A.

jabaquara were built lower (closer to the ground) than small ones,

although these correlations were not significant following correc-

tions for multiple comparisons (A. nigrescens r = 20.19, df = 32,

p = 0.28; A. baeza r = 20.26, df = 56, p = 0.050; A. jabaquara

r = 20.32, df = 50, p = 0.022; A. dubiosus r = 20.095, df = 29,

p = 0.61). There were also some subtle relationships between nest

size and the nest position and plant substrate DBH in A. baeza and

A. jabaquara. In particular, larger A. jabaquara nests tended to occur

on larger plants (F(3, 48) = 3.77, p = 0.017). Similarly, small A. baeza

nests tended to be found on slender plants, although there were

larger nests both on plants with larger DBH and short plants that

did not reach breast height (F(3, 54) = 4.11, p = 0.011). Neither A.

dubiosus nor A. nigrescens showed a significant pattern in nest size

Figure 2. The phylogenetic relationship, nest size, and distance
from forest edge are shown for the five focal species. The bold
lines in the phylogeny diagram (a) represent highly social spider species
(phylogeny redrawn from [33]). The five species that we observed in
Serra do Japi, which were used in our analyses, are labeled in this figure.
Other species are shown to demonstrate the phylogenetic distances
between focal species. These species differ in the median nest size by
an order of magnitude, with more social species building larger nests
(b). The more social species tend to occur further from the forest edge
than the subsocial and nearly solitary species (c) The boxplots show the
median and the upper and lower quartiles. The whiskers encompass the
1.5x the interquartile range, and circles represent outliers. Letters show
statistically significant differences between species (Dunnett-Tukey-
Kramer test for b, posthoc test on Kruskal-Wallis for c).
doi:10.1371/journal.pone.0034592.g002
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Figure 3. Three of the five species investigated show significant differences in their mean position along three principal
component axes. The 95% confidence intervals for each species show moderate overlap between Anelosimus studiosus with A. baeza and A.
nigrescens, but this may be due to the small sample size of A. studiosus. The social and intermediate social species (A. dubiosus and A. jabaquara)
segregate from the subsocial and nearly solitary species (A. studiosus, A. baeza and A. nigrescens) along the first PC axis, which correlates with the
distance from the forest edge (more negative values indicate that nests occur further inside the forest). Along the second PC axis, A. dubiosus differs
from the other four species; more positive values indicate nests that are closer to the ground and built on the core of the plant. The three subsocial
and nearly solitary species differ along the third PC axis, which reflects the local nest position and instar. The star represents the point where the
confidence intervals measuring the position of Anelosimus jabaquara intercepts the y and z axis.
doi:10.1371/journal.pone.0034592.g003

Table 3. Principal components analysis results, indicating the
weight of each variable on each PC axis as well as the
eigenvalue and % of the variance accounted for by each axis.

PC Axis

Variable 1 2 3 4

Nest Size 20.567 0.504 20.458 0.331

Prey Capture
Web Size

20.622 0.510 20.401 0.288

Distance From
Forest Edge

20.647 20.042 0.149 20.468

Canopy Cover 20.677 20.224 0.416 0.206

Forest Height 20.829 20.191 0.181 20.116

Height Above
Ground

0.160 20.688 20.522 0.074

DBH (Ord.L) 20.352 20.593 20.145 0.297

DBH (Ord.Q) 0.107 0.142 0.507 0.462

Location on
Plant (Ord. L)

20.381 20.350 20.275 20.310

Location on
Plant (Ord. Q)

0.098 0.357 20.291 20.473

Instar (Ord.L) 20.309 0.149 0.284 20.319

Instar (Ord.Q) 0.123 0.247 0.073 20.165

Eigenvalue 2.7 1.8 1.4 1.2

% Variance 22.5 15 12 10

The ordinal variables (DBH, location on plant, and instar) are converted to
polynomials in this function, and the contribution of both components is
shown.
doi:10.1371/journal.pone.0034592.t003

Figure 4. We compare local scale spatial variables, including nest
height above ground, vegetation substrate diameter at breast
height, and nest location on substrate. Comparisons of forest edge
species (left panel) and forest interior species (right panel) show that
species in both habitats show some differences in nest position. Significant
differences between comparisons are shown with different letters.
doi:10.1371/journal.pone.0034592.g004
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relative to plant subsrate DBH (F(2, 28) = 1.25, p = 0.30; F(2, 31)

= 1.34, p = 0.28, respectively), and no species exhibited a

significant pattern in size of nests relative to their position on the

plants following Holm-Bonferroni correction, although the largest

A. baeza nests tended to occur on mid-branch locations (A. baeza

F(2, 55) = 3.23, p = 0.047; A. nigrescens F = 0.17; p = 0.85; A.

jabaquara F(2, 49) = 1.76, p = 0.18; A. dubiosus F(2, 28) = 0.48,

p = 0.62).

Discussion

Social species differ from their non-social relatives in a number

of basic traits, including dispersal propensity (and, by extension,

nest longevity), group size, and level of cooperation among group

members. We are interested in how these differences might impact

the way species interact with their environments and the potential

role they may play in determining the species composition of a

given guild. Studies that have investigated ecological differences in

habitats where just one social system occurs have led to useful

insights regarding the ecological factors that may be responsible

for the evolution and maintenance of sociality. How sociality

influences habitat use, on the other hand, is more effectively

studied by looking at closely related species or socially polymor-

phic species that differ in their social system, but occupy a shared

environment. Here, we explore differences in habitat use among

five congeneric and sympatric species of spiders that range in

social behavior from nearly solitary to fully social. We ask whether

their degree of sociality might be an important axis that allows

otherwise similar species to differentiate from one another in their

shared environment.

We found that the five sympatric Anelosimus spider species at

Serra do Japi varied in their nest sizes by an order of magnitude

overall (Fig. 2). We observed differentiation in the micro-habitats

these species occupied, which correlated with their level of sociality

along several spatial axes (Fig. 3). We found that the two most so

cial species, with larger nests and colonies (A. dubiosus and A.

jabaquara), tended to be further inside the forest where their nests

can occupy sturdier vegetation, while the three less social species

with smaller nests (A. nigrescens, A. baeza and A. studiosus) were

generally found at the forest edge where plant substrates were less

robust (Fig. 2). Within each microhabitat, the species differed from

one another in the average height above ground their nests

occupied and on their positions relative to the core of the plant,

with the differences being more marked between the two forest

interior species (Fig. 4). The forest edge species also differed in

their phenology (Fig. 5), and a previous study demonstrated

phenological differences between the two forest interior species

[31].

The finding that species closer on the sociality scale occupy

similar habitat types is consistent with a process of habitat filtering

[43], where species exhibiting similar functional traits tend to

occur together in shared environments. In this case, the functional

differences may emerge from the different nest construction needs

of social versus subsocial species in this system. More social species

may require sturdier plants to support their larger, longer-lived

nests and the presence of branches above the nest to allow the

construction of enough prey capture webbing to support the

greater number of individuals in the colonies [44]. Plants were

indeed larger and with longer and sturdier branches inside the

forest than at the forest edge (Appendix S1). The distribution of

social and less social species may also simply parallel the

distribution of their preferred plant substrate; the Asters used by

the subsocial and nearly solitary species tended to occur on the

forest edge while Myrtaceae used by the more social species

occurred inside the forest. Alternatively, the five species differ in

how phylogenetically close they are to each other (Fig. 2a), so

phylogenetic niche conservatism could shape their distribution. In

the case of the distance from forest edge measure, however, our

phylogenetically independent contrast suggests differences among

species (based on nest size as a proxy for degree of sociality) cannot

be explained by phylogenetic relationships alone. Moreover, we

observe that even within species, larger nests tend to be found

further inside the forest, which suggests that the forest interior may

be a more suitable habitat for the species that have larger nests on

average.

At a more local scale, our data are consistent with our second

hypothesis that similar species should segregate from one another

to avoid competition (H2). Both on the forest edge and inside the

forest, species differed both in the height of their nests above the

ground and in the position of their nests on the plant substrate

(Fig. 4). This pattern again lends support to the idea that the more

social species may require sturdier nest positions, since the longest-

lived nests in each environments tended to be found on the core of

the plants, while the species that occupy more ephemeral nests

were found towards the branch tips. This pattern could emerge

either actively or passively, with longer-lived nests requiring more

robust nest positions, and shorter-lived nests able to persist on a

wider range of substrates. Even within species, larger nests tend to

be closer to the ground and built on larger substrate, suggesting

Figure 5. The bars show the most common instar present in
each of the observed nests. Significant pairwise differences in age
structure (Holm-Bonferroni corrected Chi-squared tests, with juveniles
comprising a single category) are shown with letters to the right of each
species diagram for the subsocial species. A previous long-term study
found Anelosimus jabaquara and A. dubiosus to be offset by one month
in their phenology [31], so we show the age structure of these species
here for comparative purposes.
doi:10.1371/journal.pone.0034592.g005
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that nest construction requirements contribute to the interspecific

pattern. Alternatively, given the fact that all species build nests in a

range of positions, it is possible that certain nest positions are

better than others for all species, and that the interspecific

differences that we observe result primarily from competition for

nest sites.

Differences in phenology among forest edge species (Fig. 5) and

forest interior species [31] may allow the species to disperse and

rear young at different times of the year. Interestingly, the two

species with the greatest age structure difference–A. baeza and A.

studiosus (Fig. 5)–are also the two most similar in their social

phenotype. The species with the intermediate phenology, A.

nigrescens, is the least social, with dispersal occurring during the

early juvenile stage (MO Gonzaga, unpublished data). In addition

to the phenological difference between the forest interior species

[31], A. jabaquara tend to disperse prior to sexual maturity, while A.

dubiosus dispersers are solitary or small groups of gravid females.

We speculate that differences in the timing and mode of dispersal

can potentially reduce competition for nest sites and prey. A

concurrent study found that nest size strongly influences the size of

prey captured, so these species may differ in the timing of each

nest stage, thereby partitioning prey sizes during some key stages

of their life cycle [27].

Further study is needed to disentangle the mechanisms that

contribute to the observed patterns in this system [45]. So far, our

observations are based on correlative evidence, so many other

factors, such as uncharacterized behavioural differences or

potential differences in the physiological requirements of each

species, could contribute to the observed pattern of nest

distribution. In order to disentangle the relative contribution of

degree of sociality from other species characteristics, we plan to

expand this comparison to other species and to other habitats

(manipulation was not permitted in Serra do Japi, but would

open up many interesting possibilities in other habitats with

sympatric species). Based on the observed distribution patterns,

we speculate that habitat filtering due to the structural

requirements of different nest sizes may be the dominant

mechanism separating the more and the less social species

between the forest edge and interior habitats. Within each

habitat, the segregation of co-occurring species may reflect

either competition for nest sites, leading to character displace-

ment (a possibility for the two closely related forest interior

species), or the assemblage of this community, coincidentally or

otherwise, with species with differing microhabitat requirements

(a possibility for the phylogenetically more distant forest edge

species). Although nest sites may seem unlimited, the use of

specific plant types, nest architectural constraints, high nest

densities for this genus (0.055 nests/m2, or roughly one nest per

18 m2), and possible competition with other web-building

spiders could reduce the number of effective nest sites.

Competition for optimal web placement may in turn lead to

character displacement in web position and the timing of

dispersal, as Herberstein [46] observed in Linyphiid spiders.

Alternatively, these particular species may have been assembled

due to pre-exisiting microhabitat preferences and substrate

requirements, resulting in species that are unlikely to compete

for the same positions on a plant. Many arthropods are known

to seek nesting sites with specific abiotic conditions (e.g. [47–

49]). If each species were adapted to subtly different microcli-

matic conditions or had different substrate requirements based

on the typical size and longevity of their nests this could drive or

contribute to the observed patterns.

More broadly, traits associated with differences in the degree

of sociality may contribute to guild assemblages in other

organisms, although this idea has not been explicitly explored

in many empirical systems (but see [27]). Ant community

assemblages, for example, are often assessed through placement

of baits, where species are ranked in a dominance hierarchy. In

general, dominant species are not found to co-occur in shared

habitat, but frequently overlap with subordinate species (e.g.

[50]). Competitive species often exhibit large colony sizes with

rapid recruitment and/or major workers [51], so variation in

socially important traits may also mediate these assemblages.

Nest size differences and nest structural requirements may also

shape the membership of ant (and other social insect)

assemblages, but this possibility has not been extensively

investigated due to the challenge of assessing subterranean nests

(but see [52]). Differences in the level of sociality may be even

more important in organisms exhibiting a broader range of social

systems similar to what we observed in the spiders, including

wasps and bees, aphids, thrips, as well as many bird and

mammal taxa. Even in microbes, the diversity of assemblages has

been proposed as a factor that could increase the potential for

evolution of cooperative behavior in some species under some

conditions [53].

Conclusion
We have presented evidence that sympatric social and subsocial

Anelosimus spiders in Serra do Japi, Brazil exhibit differences in

their use of spatio-temporal resources. We believe that this study

provides an important first step that can be further pursued to

improve our understanding of the way that social structure

impacts how individuals or colonies interact with their environ-

ment. In this case, we have found that the degree of sociality may

have important consequences for the nest construction require-

ments (reflected in the vegetation substrate and the position of the

nests) of these spider species. Such functional differences, in turn,

may facilitate the coexistence of otherwise similar species whose

social structure enables them to differentiate in their diet [27],

their habitat requirements, and/or the timing of key life cycle

events.
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