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Background: The aim of this paper was to identify an immunotherapy-sensitive
subtype for estrogen receptor-positive breast cancer (ER+ BC) patients by exploring
the relationship between cancer genetic programs and antitumor immunity via
multidimensional genome-scale analyses.

Methods: Multidimensional ER+ BC high-throughput data (raw count data) including
gene expression profiles, copy number variation (CNV) data, single-nucleotide
polymorphism mutation data, and relevant clinical information were downloaded from
The Cancer Genome Atlas to explore an immune subtype sensitive to immunotherapy
using the Consensus Cluster Plus algorithm based on multidimensional genome-
scale analyses. One ArrayExpress dataset and eight Gene Expression Omnibus (GEO)
datasets (GEO-meta dataset) as well as the Molecular Taxonomy of Breast Cancer
International Consortium dataset were used as validation sets to confirm the findings
regarding the immune profiles, mutational features, and survival outcomes of the three
identified immune subtypes. Moreover, the development trajectory of ER+ BC patients
from the single-cell resolution level was also explored.

Results: Through comprehensive bioinformatics analysis, three immune subtypes of
ER+ BC (C1, C2, and C3, designated the immune suppressive, activation, and
neutral subtypes, respectively) were identified. C2 was associated with up-regulated
immune cell signatures and immune checkpoint genes. Additionally, five tumor-related
pathways (transforming growth factor, epithelial–mesenchymal transition, extracellular
matrix, interferon-γ, and WNT signaling) tended to be more activated in C2 than in C1
and C3. Moreover, C2 was associated with a lower tumor mutation burden, a decreased
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neoantigen load, and fewer CNVs. Drug sensitivity analysis further showed that C2 may
be more sensitive to immunosuppressive agents.

Conclusion: C2 (the immune activation subtype) may be sensitive to immunotherapy,
which provides new insights into effective treatment approaches for ER+ BC.

Keywords: breast cancer, immune signature, TCGA, GEO, molecular subtypes, ER+, genomic mutation, single-
cell sequencing

INTRODUCTION

Breast cancer (BC) is the most common cause of cancer-
related death among females worldwide (Torre et al., 2017).
The 5-year survival rate of BC patients is poor according to
2019 data (DeSantis et al., 2019). Estrogen receptor-positive
(ER+) BC is the most common subtype of BC, accounting for
approximately 75% of all BC cases (Burstein et al., 2010). The
current treatments for ER+ BC include surgery, chemotherapy,
and molecular targeted therapy (Bayraktar et al., 2019). However,
treatment has been hindered by resistance in ER+ BC, which is
related to the molecular heterogeneity and complex biological
processes in these cases (Koren and Bentires-Alj, 2015). Thus,
novel treatments are needed to improve the prognosis of
ER+ BC patients.

Endocrine treatment is an important targeted therapy for
patients with ER+ BC. However, quite a few BC patients with
localized disease and most BC patients with metastasis develop
resistance to endocrine therapy (No authors listed, 1998; Hurvitz
and Pietras, 2008; Osborne and Schiff, 2011). Immunotherapy
has gradually attracted the interest of many BC researchers. It is
well known that an active immune microenvironment can hinder
tumor growth and metastasis. Studies have suggested that tumor-
infiltrating lymphocytes (TILs) were correlated with better cancer
prognosis (Fridman et al., 2012). For example, Chu et al. (2019)
reported that CD103(+) TILs predicted favorable prognosis in
patients with esophageal squamous cell carcinoma. Hida et al.
(2019) suggested that diffusely distributed TILs were a marker of
improved prognosis in triple-negative BC (Adams et al., 2015).
Loi et al. (2013) conducted a phase III randomized adjuvant trial
of lymph node-positive BC patients (comparing doxorubicin plus
docetaxel- vs doxorubicin-based chemotherapies) and revealed
the prognostic and predictive values of TILs; the ER+ BC patients
generally had low TIL levels, though a small proportion had
very high TIL levels. However, no studies have reported a clear
association between TILs and prognosis in ER+ BC patients’
prognoses thus far, since the outcomes of the ER+ subgroup
are highly heterogeneous (Ali et al., 2014; Dieci et al., 2015;
Luen et al., 2016).

Therefore, our aim was to explore the relationship
between the genomic landscape and antitumor immunity
via multidimensional genome-scale analyses to identify an
immune subtype of ER+ BC patients that may be sensitive

Abbreviations: BC, breast cancer; CNVs, copy number variations; SNP, single-
nucleotide polymorphism; TCGA, The Cancer Genome Atlas; TMB, tumor
mutation burden; TILs, tumor-infiltrating lymphocytes; PFS, progression-free
survival; DFS, disease-free survival; DLDA, diagonal linear discriminant analysis;
TGF-β, transforming growth factor-β; EMT, epithelial–mesenchymal transition.

to immunotherapy. RNA-sequencing data from The Cancer
Genome Atlas (TCGA) database was used to identify three
discrete immune subtypes of ER+ BC (regarded as immune
suppressive, activation, and neutral phenotypes). Somatic
mutation data and copy number variation (CNV) data were
used to explore the associations between genetic features and
the three immune subtypes. Additionally, a Gene Expression
Omnibus (GEO)-meta dataset (composed of nine small
datasets) and a Molecular Taxonomy of BC International
Consortium (METABRIC) dataset were used as validation
sets to confirm the value of the three identified immune
subtypes. Moreover, the drug sensitivity of each ER+ BC
immune subtype and the development trajectory of ER+ tumor
microenvironment were investigated. The results improve our
understanding of the immune microenvironment of the primary
tumors in ER+ BC patients and provide new insights into
immunotherapy for ER+ BC.

MATERIALS AND METHODS

Data Presentation and Filtering
TCGA Dataset
Level 3 multidimensional BC high-throughput data including
gene expression profiles, CNV data, single-nucleotide
polymorphism (SNP) mutation data, and relevant clinical
information were downloaded from TCGA using the
“TCGAbiolinks” package (Colaprico et al., 2016). We excluded
samples based on the following criteria: (1) incomplete overall
survival (OS) or recurrence-free survival (RFS) data; (2)
no ER+ BC samples; (3) para-cancer tissue samples of BC
patients; and (4) datasets containing less than 40 samples.
Thereafter, immune-associated genes were retrieved from the
ImmPort database1 (Bhattacharya et al., 2014). Eventually, gene
expression data involving 1,811 immune-associated genes and
787 BC patients were used as the training dataset to identify a
potentially immunotherapy-sensitive immune subtype among
ER+ BC patients.

GEO-Meta Dataset
An ArrayExpress dataset (E-TABM-158, 83 samples) and
eight GEO datasets (GSE1456, GSE2034, GSE2603, GSE45255,
GSE4922, GSE6532, GSE7390, and GSE9195, containing 77, 209,
46, 58, 211, 201, 134, and 77 samples, respectively) along with
a METABRIC dataset (1,435 samples) were used as external
validation sets to confirm the findings regarding the immune

1http://www.immport.org
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profiles, mutational features, and survival outcomes of the
identified immune subtypes. As both GEO and ArrayExpress
data were obtained using an Affymetrix microarray chip, we
integrated the data to create the GEO-meta dataset (1,096
samples in total) for subsequent analyses. All GEO-meta sub-
datasets contained progression-free survival (PFS)/RFS/disease-
free survival (DFS) information, whereas only a few GEO-meta
sub-datasets contained OS data. Therefore, only PFS/RFS/DFS
were used to conduct a survival analysis in the GEO-meta
dataset (while OS data were also used in the corresponding
TCGA and METABRIC analyses). The GEO-meta ER+ BC
samples with complete PFS/RFS/DFS data were included in the
following analysis.

METABRIC Dataset
Level 3 METABRIC data including gene expression profiles,
CNV data, SNP mutation data, and matched clinical information
were obtained from the cBioPortal database (Pereira et al.,
2016). The eligible criteria were the same as above. The detailed
clinical information of all the included samples is shown in
Supplementary Table 1.

Data Preprocessing
The immune-associated genes from the ImmPort database were
used to identify the immune subtypes of ER+ BC and the
immune cell profiles of these subtypes. The raw count matrix
of level 3 TCGA mRNA data was converted to transcripts
per million data. Genes with no expression in >50% of the
samples were removed. Consequently, a TCGA training dataset
consists of 1,295 immune-associated genes, and 787 ER+ BC
samples were used in the cluster analysis. Regarding the GEO-
meta sub-datasets, the raw data (CEL files) were normalized
using the “rma” function in the “affy” package (Gautier et al.,
2004). Regarding the METABRIC dataset, the normalized gene
expression data were manually obtained directly from the
cBioPortal website and used for subsequent analysis. In addition,
the batch effects between different datasets were eliminated with
the ComBat empirical Bayes method using the “sva” package
(Chakraborty et al., 2012).

Identification of ER+ BC Subtypes in the
Training Dataset and Validation of
Molecular Subtypes in the GEO-Meta
Dataset and METABRIC Dataset
To identify ER+ BC subtypes based on immune-associated gene
expression profiles, the “ConsensusClusterPlus” 1.50.0 package
(Wilkerson and Hayes, 2010) was applied to generate a consensus
matrix plot. This involved 1,000 iterations, a maximum of eight
clusters, sampling of 80% of the samples at each iteration, and
use of the partitioning around medoids clustering method. The
optimal cluster number was determined based on cumulative
distribution function curves of the consensus score. The samples
from two validation datasets were then classified according to
specified classifiers trained in the TCGA dataset by using diagonal
linear discriminant analysis (DLDA), which is a machine learning

approach available in the “classpredict” package developed using
BRB-ArrayTools modules (Simon et al., 2007).

Immune Profiles in ER+ BC Subtypes
First, the “GSVA” package and single-sample gene set enrichment
analysis (ssGSEA; Bindea et al., 2013) were conducted with the
expression signatures of 24 types of immune cells from a previous
study (Hanzelmann et al., 2013). The resultant enrichment score
for each of the 24 immune cell signatures represented the absolute
enrichment of a particular gene set in each sample in the datasets
(Subramanian et al., 2005). Second, for further validation, the
“MCPcounter” package was also used to evaluate the absolute
abundance of eight immune cell populations and two stromal
cell populations based on gene expression profiles (Becht et al.,
2016). Third, the “ESTIMATE” package was used to the estimate
immune score and stromal score (Yoshihara et al., 2013), which
were compared between subtypes. Fourth, the expression level
of about 30 potentially targetable immune checkpoint molecules
was compared between each subtype (Kim et al., 2019; Toor
et al., 2019). Lastly, tumor mutation burden (TMB), neoantigen
load, and CNV were compared between the subtypes, with the
predicted neoantigen loads being calculated based on a previous
analysis (Rooney et al., 2015). Thus, immune signature scores,
immune checkpoint gene expression, and mutational features
were compared between the three subtypes. The differences were
assessed using the Mann–Whitney U test, with the Bonferroni
correction being used to correct for multiple comparisons.
Meanwhile, the LASSO regression model was used to construct
a scoring system to quantify immune subtypes for individuals.
The LASSO regression model was implemented via a publicly
available R package “glmnet” (Engebretsen and Bohlin, 2019).

Prediction of the Benefit of Each
Subclass From Immunotherapy and
Targeted Therapy
Data from 47 melanoma patients treated with immunotherapy (a
programmed cell death protein [PD]-1 inhibitor or a cytotoxic
T-lymphocyte-associated protein [CTLA]-4 inhibitor) were used
to assess the potential responses to immunotherapy of our three
immune subtypes. This was done by assessing the similarities in
gene expression profiles between our subtypes and the melanoma
patients using a SubMap analysis in GenePattern (Roh et al.,
2017). Additionally, sensitivity to two ER+ BC-targeted drugs
(tamoxifen and fulvestrant) was evaluated in a SubMap analysis
based on Genomics of Drug Sensitivity in Cancer cell line data
(Iorio et al., 2016). 48 BC cell lines were ranked based on the half
maximal inhibitory concentration (IC50) value, with 50% of cell
lines with the highest IC50 values being considered drug resistant
and the remainder being considered drug sensitive.

Single-Cell Development Analysis
We used single-cell data (GSE114725) to explore the
development trajectory of the tumor microenvironment in
ER+ BC patients. In total, 14,800 cells from four ER+ patients
out of eight BC patients in the original dataset were included
in our study. The raw count matrix of single-cell data was
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downloaded from the GEO database. We successfully annotated
3,903 cells using “SingleR” packages (Aran et al., 2019), and a
development trajectory analysis was performed using “Monocle”
packages (Qiu et al., 2017). Furthermore, the annotation results
regarding the 3,903 cells reported by Azizi et al. (2018) were used
to validate our annotation results.

Additional Statistical Analyses
Chi-square and Fisher’s exact tests were used to assess
the associations between conventional clinical variables [age,
ethnicity, cancer site, cancer stage, human epidermal growth
factor receptor 2 (HER2) status, progesterone receptor status,
and number of positive lymph nodes] and our three immune
subtypes. Kaplan–Meier curves and log-rank tests were used
to compare the survival of patients with the three immune
subtypes. All analyses were performed using R software, unless
otherwise specified.

RESULTS

ER+ BC Were Divided Into Three
Subtypes Based on the
ConsensusClusterPlus Algorithm
The study flowchart is presented in Figure 1A. The batch
effect was removed from the standardized data before consensus
clustering. The t-distributed stochastic neighbor embedding
(t-SNE) performance before and after removing the batch
effect is shown in Figures 1B,C, respectively. The expression
profiles of 1,295 immune-associated genes were used to classify
patients into K that consists of two to eight clusters, using
the ConsensusClusterPlus algorithm (Figure 1D). K = 3 was
optimal based on the cumulative distribution function curves
of the consensus score (Figures 1E,F). The three subtypes were
presented on a two-dimensional scatter plot based on the t-SNE
algorithm and could be distinguished well (Figure 1G), which
was largely concordant with the previous consensus clustering
shown in Figures 1E,F.

The distributions of conventional clinic-related variables
among the three molecular subtypes from the TCGA cohort
are shown in Table 1. The association between age and three
subtypes was significant (p = 0.0003). Meanwhile, there were also
significant differences for age, HER2 status, number of positive
lymph nodes, and ethnicity in C2 patients (p = 0.0003, p < 0.001,
and p < 0.0015, respectively), whereas the other clinical variables
are statistically non-significant.

Immune Cell Profiles of the Three
Subtypes
The enrichment scores regarding the 24 immune cell signatures
for each TCGA sample are shown in Figure 2A (top). Most
of these immune signatures were up-regulated in C2 compared
with C1 and C3, while Th2 cells were the most highly up-
regulated cells in C1 and plasmacytoid dendritic cells (pDCs)
and CD56 (bright) natural killer (NK) cells were mainly up-
regulated cells in C3 (Supplementary Figure 1). Additionally,

the distribution of eight immune cells and two stromal cells
identified using the MCPcounter algorithm confirmed our
initial immune cell signature results (Figure 2A, middle, and
Supplementary Figure 2). Thereafter, the ESTIMATE algorithm
was used to calculate immune and stromal scores. As expected,
C2 had a higher score than C1 and C3 (p< 0.001; Figures 2A–C).

We also examined the expression level of >30 immune
checkpoint molecules that have been reported to play important
roles in T-cell regulation in the TCGA dataset (Kim et al.,
2019; Toor et al., 2019). Most of the immune checkpoint
molecules were more obviously up-regulated in C2 than in C1,
and TNFRSF14 was the most regulated immune checkpoint
molecule in C3 (Figure 2A, bottom; Supplementary Figures 3A,
4, 5). Taking into account the consistency of the up-regulated
immune cell signatures and the immune checkpoint molecules
in C2, followed by C3 and then C1, we designated C1, C2,
and C3 as the immune suppressive, activation, and neutral
subtypes, respectively.

We then compared the survival data between the three
immune subtypes. Unexpectedly, both OS and DFS were
longer for C2 (the immune activation subtype) than for
C1 (the immune suppressive subtype; Figures 2D,E and
Supplementary Figures 3B,C). The findings were contrary
to current mainstream perception (Zhang et al., 2020), which
suggests that increased immune cell infiltration leads to
worse prognosis. Meanwhile, the samples were converted
into dichotomous variables (C2 group and non-C2 group),
and an eight-gene immune signature was developed and
used to construct a scoring system to quantify immune
subtypes for individuals using the following risk score formula:
0.10394∗GAST+ 0.56421∗HFE+ 0.80564∗PLXNA3+ 0.40455∗P
LXNC1+ 0.1667∗SEMA3A+ 0.26431∗TNFRSF11B+ 1.16759∗Z
C3HAV1− 0.12962∗CCL14 (Supplementary Figures 3D,E).

Studies have reported that tumor-associated signatures such as
the transforming growth factor (TGF)-β signature and epithelial–
mesenchymal transition (EMT) signature play important roles
in tumor progression and drug resistance (Oshimori et al.,
2015; Xu et al., 2018; Tripathi et al., 2019). Unsurprisingly,
the five tumor progression pathways [TGF-β signaling, EMT,
extracellular matrix (ECM), interferon (IFN)-γ, and WNT
signaling] were more activated in C2 than in C1 and C3
(Figure 2A, middle, and Supplementary Figure 2). This
indicates that C2 may involve relatively advanced tumor stages,
leading to increased immune cell recruitment to combat
the tumor cells.

C2 Was Associated With a Lower TMB, a
Decreased Neoantigen Load, and Fewer
CNVs
Studies have reported that the genomic and mutational landscape
is related to antitumor immunity. For example, Takahashi et al.
(2020) revealed an association between a biologically aggressive
phenotype in BC with a high mutation rate and an anticancer
immunity counterbalance. Additionally, aneuploidy has been
reported to be involved in immune evasion, which may reduce
the effect of immunotherapy (Davoli et al., 2017). To explore
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FIGURE 1 | Identification of immune-associated subtypes of ER+ BC in the TCGA dataset. (A) Flowchart of the present study. (B) The t-SNE distribution of all the
enrolled patients before removing batch effects. Each point represents a single sample; different colors represent the included sub-datasets. (C) The t-SNE
distribution of all the enrolled patients after removing batch effects. (D) The cumulative distribution function (CDF) curves in consensus cluster analysis. CDF curves
of consensus scores by different subtype numbers (k = 2, 3, 4, 5, 6, 7, and 8) were displayed. (E) Relative change in area under the CDF curve for k = 2–8. (F) The
consensus score matrix of all samples when k = 3. The higher the consensus score was, the more likely they were assigned to the same group. (G) The t-SNE
distribution of TCGA ER+ BC samples by expression profile of global immune genes. Each point represents a single sample; different colors represent the three
subtypes.

whether the TMB, neoantigen load, and CNV affect the immune
microenvironment in ER+ BC patients in the TCGA dataset, we
conducted a comprehensive analysis to examine the associations
between these factors and the immune subtypes. The variants
were mostly missense mutations, and SNPs were the most

common variant type (Figures 3A,B). Figure 3C presented a
panoramic view of ER+ mutations in each immune subtype:
PIK3CA, TP53, CDH1, GATA3, and TTN were the genes
with the highest mutation rates. C2 had a significantly lower
TMB (Figure 3D) and a significantly decreased neoantigen
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TABLE 1 | Association of three immune subtypes with clinical variables in the
TCGA and METABRIC cohorts.

Characteristic TCGA cohort METABRIC cohort

C1 C2 C3 p-value C1 C2 C3 p-value

Age 0.0003 < 0.001

≥60 222 120 48 595 250 45

<60 184 177 36 303 221 21

Site 0.41 0.31

Left 216 143 44 459 220 33

Right 190 154 40 390 227 32

Unknown 49 24 1

Stage 0.69 0.96

Stage I 74 56 10 229 135 18

Stage II 229 160 49 372 207 26

Stage III 88 71 24 44 23 1

Stage IV 6 4 1 6 3 0

Unknown 9 6 0 1 1 0

HER2
status

0.0003 0.3

Positive 76 31 13 58 38 7

Negative 202 186 35 840 433 59

Indeterminate 128 80 36

PR status 0.32 0.26

Positive 342 259 66 621 307 42

Negative 62 37 18 277 164 24

Indeterminate 2 1 0

No. of positive lymph nodes < 0.001 0.12

0 149 127 30 491 250 44

≥1 170 146 46 407 221 22

Unknown 87 24 8

Ethnicity 0.0015

Hispanic/Latino 15 12 3

Not Hispanic/Latino 301 237 78

Unknown 90 48 3

HER2: human epidermal growth factor receptor 2; PR: progesterone receptor.

load (Figure 3E) compared with C1. Furthermore, C2 had
the significantly lowest CNV regarding both amplification and
deletion (Figures 3F,G).

We further applied the MutSigCV algorithm to identify driver
genes based on the TCGA mutation data, and 27 mutated genes
were identified (FDR < 0.05, Supplementary Table 2). Among
these genes, two (CDH1 and PIK3R1) were the marker genes
(Supplementary Table 3) of three identified immune subtypes.
It should be noted that CDH1 was a marker gene in all three
subtypes. In other words, CDH1 expression was significantly
different in each of the three subtypes, suggesting that CDH1
may be the mutation driver gene that modified the three immune
subtypes. Unlike CDH1, PIK3R1 was a specific marker gene of
the immune neutral subtype.

Three Immune Subtypes Were Validated
in the GEO-Meta and METABRIC
Datasets
The three immune subtypes identified in the TCGA training
cohort were validated in two external cohorts using a
DLDA classifier.

In the GEO-meta cohort, consistent with the TCGA cohort,
C2 was shown to have high levels of most of the immune
cell signatures (Figure 4A, top), while Th2 cells were most
distinctly up-regulated in C1 and CD56 (bright) NK cells
were most obviously up-regulated in C3. Additionally, Th17,
Treg, and NK cells were also up-regulated in C3. Eosinophils
were the most highly up-regulated cells in C1 (Supplementary
Figure 6). Similar results were obtained using the MCPcounter
algorithm except that the neutrophils were down-regulated
in C2 (Figure 4A, middle). The ESTIMATE algorithm also
demonstrated that the immune, stromal score and tumor
purity were highest in C2 (Figure 4A, middle; Figures 4B–D,
Supplementary Figure 7). Moreover, C2 had high expression
levels of the immune checkpoint molecules (Figure 4A, bottom;
Supplementary Figures 8A, 9, 10), and the Kaplan–Meier
survival analysis revealed that C2 was associated with improved
prognosis (Figure 4E and Supplementary Figure 8B).

In the METABRIC cohort, a majority of immune cells, most
immune checkpoint molecule expression levels, and the immune
score were increased in C2 (Figures 5A–D and Supplementary
Figures 11, 12, 14, 15). TMB and neoantigen load were
significantly lower in C1 and C2 than in C3, while there
was no significant difference in TMB between C1 and C2,
although it was lower in C2 than in C1 (Figures 5E,F and
Supplementary Figure 13). Regarding CNV, C2 had the lowest
CNV regarding amplification, which was significant (Figure 5G),
while no significant differences in deletion were observed among
C1, C2, and C3 (Figure 5H). In addition, the OS was better in
C2 than in C1 (Figure 5I and Supplementary Figure 13E). The
distributions of conventional clinical variables among the three
immune subtypes in the METABRIC cohort are shown in Table 1.

The observations in both GEO-meta and METABRIC datasets
were highly consistent with those in the TCGA cohort, indicating
the robustness of our immune subtype classification.

Predictions of Differential Sensitivity to
Immunotherapy and Targeted Therapies
As the effectiveness of immunotherapy varies due to different
immune cell infiltration patterns (Li J. et al., 2018) and expression
levels of immune checkpoint molecules, it was important to
explore the potential immunotherapy sensitivity of each immune
subtype. Using SubMap analysis, we mapped the expression
profiles of three immune subtypes (C1, C2, and C3) with another
published cohort involving 47 melanoma patients who were
treated with a PD-1 or CTLA-4 immune checkpoint inhibitor.
A significant association was observed when comparing the
expression profile of C2 patients with that of the CTLA-4
inhibitor-responsive group (p < 0.05) in all three datasets
assessed (Figures 6A–C and Supplementary Table 4). This
indicates that C2 patients are more likely to respond to anti-
CTLA-4 immunotherapy. Similar results were obtained when
comparing the expression profile of C2 patients with that of the
PD-1 inhibitor-responsive group, indicating that C2 patients may
also respond to anti-PD-1 immunotherapy.

Moreover, we investigated the sensitivity of immune subtypes
to targeted drugs (tamoxifen and fulvestrant) using SubMap
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FIGURE 2 | Immune profiles of the three identified subclasses in the TCGA dataset. (A) The enrichment scores of 24 immune cell signatures and clinicopathologic
features across three subclasses were presented in the upper panel. The middle panel indicated the abundance profile of 10 immune-related cells (eight immune
cells and two stromal cells, MCPcounter algorithm) and immune-associated scores (ESTIMATE algorithm) as well as enrichment score of tumor
progression-associated pathways (ssGSEA algorithm). The lower panel displayed the expression profile of immune checkpoint molecules across three subclasses.
The heatmap represents the relative value of indicators, with red for high value and green for low value. Boxplot of the immune score (B) and stromal score (C) from
ESTIMATE of three subclasses. The horizontal lines indicated 5, 25, 50, 75, and 95%. Comparisons between subtypes were performed by the Kruskal–Wallis test,
and the p-values were labeled above each boxplot with asterisks (N.S. represents no significance, *p < 0.05, and ****p < 0.0001). Kaplan–Meier curves show the
distinct OS (D) and RFS (E) of patients in the immune activation (C2) class and immune suppressive class (C1). p-values were obtained using the log-rank test.
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FIGURE 3 | Genomic and mutational landscape of three subtypes in TCGA cohort. (A) Barplot of variant classification distribution among TCGA ER+ BC patients.
(B) Bar plot of variant type distribution among TCGA ER+ BC patients. (C) Oncoprint of mutation status of top 30 highly mutated genes across three subtypes (left)
and ordered by mutation load (right). (D–G) Represent the boxplot of tumor mutation load, neoantigen load, copy number amplifications and copy number deletions,
respectively. Comparisons between subtypes were performed by the Kruskal–Wallis test, and the p-values were labeled above each boxplot with asterisks (N.S.
represents no significance, *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001).

analysis. Unexpectedly, C3 rather than C2 exhibited a significant
association with the fulvestrant-sensitive group in both the
TCGA and METABRIC cohorts (p < 0.05; Figures 6D–F).

A similar but non-significant trend was observed in the GEO-
meta cohort (p = 0.1; Figure 6E). Regarding tamoxifen, no
significant associations were observed between any of the
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FIGURE 4 | Validation of the three immune-related subtypes in the GEO-meta cohort. (A) The enrichment scores of 24 immune cell signatures across three
subclasses were presented in the upper panel. The middle panel indicated the abundance profile of 10 immune-related cells (eight immune cells and two stromal
cells, MCPcounter algorithm) and immune-associated scores (ESTIMATE algorithm) as well as enrichment score of tumor progression-associated pathways
(ssGSEA algorithm). The lower panel displayed the expression profile of immune checkpoint molecules across three subclasses. The heatmap represents the relative
value of indicators, with red for high value and green for low value. Boxplot of the immune score (B) and stromal score (C) as well as tumor purity (D) from ESTIMATE
algorithm of three subclasses. (E) Kaplan–Meier curves show the distinct RFS of patients in the immune activation (C2) class and immune suppressive class (C1).
p-values were obtained using the log-rank test. (N.S. represents no significance, values are significant at **P < 0.01, and ****p < 0.0001 as indicated).

immune subtypes and the tamoxifen-sensitive or tamoxifen-
resistant groups (Supplementary Table 4).

Single-Cell Development Trajectory
Analysis
The effectiveness of immunotherapy varies at different stages
due to the different immune cell infiltration patterns and

expression levels of immune checkpoint molecules (Li J. et al.,
2018). The significant heterogeneity makes it difficult to identify
effective treatment targets. However, single-cell data reflecting
the diverse immune phenotypes help to avoid this issue. These
data are useful for exploring tumor development trajectories
and identifying more precise and effective treatment targets
or biomarkers. The development trajectories of four patients,
analyzed using Monocle, are presented in Figure 7A. As expected,
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FIGURE 5 | Validation of the three immune-related subtypes in the Metabric cohort. (A) The enrichment scores of 24 immune cell signatures across three
subclasses were presented in the upper panel. The middle panel indicated the abundance profile of ten immune-related cells (eight immune cells and two stromal
cells, MCPcounter algorithm) and immune-associated scores (ESTIMATE algorithm) as well as enrichment score of tumor progression-associated pathways
(ssGSEA algorithm). The lower panel displayed the expression profile of immune checkpoint molecules across three subclasses. The heatmap represents the relative
value of indicator, with red for high value and green for low value. (B–D) Showed boxplot of immune score and stromal score as well as estimate score from
ESTIMATE algorithm of three subclasses, respectively. (E–H) Represent the boxplot of tumor mutation load, neoantigen load, copy number amplifications, and copy
number deletions, respectively. Comparisons between subtypes were performed by the Kruskal–Wallis test, and the p-values were labeled above each boxplot with
asterisks. (I) Kaplan–Meier curves show the distinct OS of patients in immune activation (C2) class and immune suppressive class (C1). p-values were obtained
using the log-rank test. (N.S. represents no significance, *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001).
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FIGURE 6 | Prediction of the benefit of each subtype from immunotherapy and targeted therapy. Significance of each subclass’s drug sensitivity toward immune
inhibitors (PD-1 and CTLA-4) in TCGA (A), GEO (B), and METABRIC (C) cohorts. Significance of each subclass’s drug sensitivity toward targeted drugs (tamoxifen
and fulvestrant) in TCGA (D), GEO (E), and METABRIC (F) cohorts.

the SingleR annotation results (Figure 7B) indicated similar
development trajectories to those reported by Azizi et al.
(Figure 7C) and Garvan et al. (Figure 7D and Supplementary
Table 5), reflecting the same transition from innate immunity
to adaptive immunity and the same immune cell infiltration
pattern during tumor development. Three patients (BC1, BC2,
and BC4) had most of the cells associated with adaptive
immunity and were at a relatively late stage of the development
trajectory, suggesting that these patients may be C2 patients
(belonging to the immune activation subtype) or that these

patients may have advanced-stage cancer and may be sensitive
to immunotherapy.

DISCUSSION

In this study, we explored ER+ BC immune subtypes, identifying
a subtype that may be sensitive to immunotherapy. Our ER+
BC subtype classification was developed based on level 3
multidimensional BC high-throughput data from the TCGA
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FIGURE 7 | Single-cell development trajectory analysis of ER+ BC patients. (A) Development trajectory distribution of four ER+ BC patients. Different colors
represent different patients. (B) Development trajectory annotated by the SingleR package. (C) Development trajectory annotated by Azizi et al. (D) Development
trajectory annotated by Garvan. Different colors represent different immune microenvironment-associated cells.

database. In addition, the GEO-meta dataset (composed of nine
small datasets) and a METABRIC dataset were used to validate
the identified immune subtypes. As a result, three subtypes of
ER+ BC (C1, C2, and C3) were identified as immune suppressive,
immune activation, and immune neutral subtypes, respectively,
via a comprehensive bioinformatics analysis. Additionally, the
immune cell signatures, activated signaling pathways, mutation
features, and drug sensitivity of the subtypes were further
explored. The results exhibited that C2 was related to many

immune cell signatures and high expression levels of immune
checkpoint genes, suggesting that C2 may be sensitive to CTLA-4
inhibitors and PD-1 inhibitors.

Previous studies have revealed several molecular subtypes of
BC. For example, a study reported the genetic determinants of BC
immune phenotypes based on integrative genome-scale analysis
(Hendrickx et al., 2017), and Denkiewicz et al. (2019) identified
BC subtype-specific microRNAs based on survival analysis to
explore the roles of microRNAs in transcriptomic regulation.
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In our study, we mainly concentrated on the overall immune
profiles, which may offer more detailed information about the
immune landscape of ER+ BC. Among our three subtypes, C2
exhibited an overall up-regulated immune profile relative to C1
and C3, indicating that C2 has increased lymphocyte infiltration.
Additionally, C2 was associated with lower TMB, a decreased
neoantigen load, and fewer CNVs. These findings suggest that the
tumor microenvironment of C2 exhibits an increased immune
status. Moreover, Figure 2A shows that pDCs and CD56
(bright) NK cells were mainly up-regulated in C3 in the TCGA
cohort. A previous study reported that the level of circulating
CD56 (bright) NK cells was inversely correlated with survival
in melanoma patients (de Jonge et al., 2019). Schuster et al.
suggested that pDCs surrounded and infiltrated some tumors
such as malignant melanoma, head and neck cancer, ovarian
cancer, and BC. We speculated that subtype C3 ER+ BC patients
may have an unfavorable prognosis, as the presence of pDCs
has been reported to be associated with poor prognosis (under
the premise that these cells are unstimulated; Schuster et al.,
2019). Our results confirmed this speculation (Supplementary
Figures 3C, 8B). In addition, Th2 cells were the most highly up-
regulated cells in C1 rather than in C2. The relationship between
Th2 cells and cancer prognosis differs among cancer types. For
example, Schreck et al. (2009) found that increased Th2 cells
were related to significantly increased DFS in classical Hodgkin’s
lymphoma. In contrast, Chen et al. (2016) speculated that high
expressions of Th2-related cytokines in hypopharyngeal cancer
may contribute to cancer progression and metastasis, which may
lead to poor prognosis. Those contradictory results may indicate
that C2 was associated with a good prognosis, which indicated
that the combined effect of immune cell infiltration in C2 may be
favorable for prognosis.

A previous study indicated that neither neoantigen load nor
TMB was related to T-cell response, while CNV may influence the
immune response (Yang et al., 2020). Additionally, McGranahan
et al. (2016) suggested that neoantigen quality instead of
quantity could play a significant role in immune reactivity.
In clinical practice, physicians may take immune molecular
subtype, neoantigen quality, and CNV into consideration
when identifying cancer patients, with a higher likelihood
of responding to immunotherapy. Interestingly, identifying
difference in the mutational features among immune subtypes
may lead to biomarker identification. For example, Hao and
Guo (2019) found that epidermal growth factor receptor
mutation served as a novel prognostic factor related to immune
infiltration in lower-grade glioma, while Zeng et al. (2016)
suggested that the BRAF V600E mutation was associated
with suppressive tumor immune microenvironment. We
analyzed the TMB, neoantigen load, and CNV in the three
immune subtypes. The result showed that C2 was significantly
associated with a lower TMB, a decreased neoantigen load,
and fewer CNVs in the TCGA and METABRIC datasets,
which may provide insights into the identification of novel
ER+ BC biomarkers.

Cancer immunotherapy aims to trigger a self-sustaining
cancer-related immune response while minimizing therapy-
associated autoinflammation (Karasaki et al., 2017). Several

studies suggested that the immune checkpoints PD-1, CTLA-4,
and T-cell immunoglobulin and mucin-domain containing-
3 (TIM-3; Liu et al., 2017; Naoum et al., 2018; El Dika
et al., 2019) are crucial indicators sustaining the pro-tumor
immune microenvironment. They are also considered as perfect
targets for carcinoma immunotherapy. Figure 6 indicates that,
based on comparisons of expression profiles, the C2 patients
are more likely to respond to anti-CTLA-4 and anti-PD-1
immunotherapy. However, the frequent resistance exhibited
against immune checkpoint inhibitors indicates that PD-1
or CTLA-4-targeted monotherapy may not fully offset the
immunosuppression in the tumor microenvironment (Li X.
et al., 2018). We hypothesize that other related immune
checkpoints could be targeted in order to increase antitumor
immunity. Nevertheless, the identification of C2 (the immune
activation subtype) in this study may help to guide the
choice of monotherapy or combination therapy for ER+ BC
patients. Further validation in clinical trials is required before
clinical application.

Figure 2 showed that five tumor-related pathways (TGF-β
signaling, EMT, ECM, IFN-γ, and WNT signaling) were more
activated in C2 than in C1 and C3. Previous research suggested
that the TGF-β pathway has bidirectional effects in cancers
(Metelli et al., 2018). In premalignant cells, TGF-β served as a
tumor suppressor by inhibiting cell proliferation and facilitating
apoptosis, whereas, in advanced tumors, TGF-β facilitated
metastasis and induced a protumor immune microenvironment
(David and Massagué, 2018). Donato et al. (2020) suggested that
proliferation and migration of neural crest-derived cells involved
the activation of the EMT pathway. Schomberg et al. (2020) found
that luteolin-mediated inhibition of melanoma cell growth may
involve simultaneously affecting various pathways such as the
ECM, oncogenic signaling, and immune response pathways. Gao
et al. (2016) suggested that the loss of the IFN-γ pathway genes
in tumor cells may underlie resistance to anti-CTLA-4 treatment.
Sun et al. (2019) found that miR-22 and miR-214 targeting BCL9L
inhibited proliferation, metastasis, and EMT by down-regulating
Wnt signaling in colon cancer. Nevertheless, clinical evidence
and clinical trials are required to verify the combined effects
of the above five pathways on tumor immunotherapy. Further
exploration of these pathways may help to develop targeted
antitumor therapy.

This study has several advantages that need to be expounded
upon. Firstly, this is the first study to comprehensively
describe the immune profile of ER+ BC cases, with data from
three databases (TCGA, GEO-meta, and METABRIC datasets)
involving a very large sample (3,318 samples) being combined
to identify the ER+ BC immune subtypes. In other words, we
performed multiple validations involving multiple datasets in
order to confirm the identified immune subtypes, which made
our findings more reliable. Secondly, three algorithms (ssGSEA,
MCPcounter, and ESTIMATE) were applied to investigate
the immune cell signatures in each immune subtype, and
similar results were obtained, which indicated the robustness
of our immune subtype classification. Thirdly, we explored the
characteristics of each subtype not only based on gene expression
but also based on mutational features (TMB, neoantigen load,
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and CNV). Additionally, we predicted the drug susceptibility
of each subtype and explored the developmental trajectory
of BC patients. This multidimensional analysis provides a
comprehensive picture of the clinical significance of each
immune subtype and provides a foundation for improving
clinical treatment.

CONCLUSION

We identified and verified a novel immune subtype classification
of ER+ BC, which involves three robust subtypes: the immune
suppressive, activation, and neutral subtypes. Patients with
C2 (the immune activation subtype) represent the optimal
candidates for anti-PD-1 and anti-CTLA-4 immunotherapy.
Our classification may help to predict the prognosis of ER+
BC patients and provide clinicians a new basis for making
accurate clinical diagnoses and selecting optimal treatments such
as immunotherapy.
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Supplementary Figure 1 | Boxplot of the distribution of 24 immune cells among
three groups in the TCGA cohort (N.S. represents no significance, *p < 0.05,
**p < 0.01, ***p < 0.001, and ****p < 0.0001).

Supplementary Figure 2 | Boxplot of the distribution of 10 immune-related cells
and five tumor progression-related pathways among three groups in the TCGA
cohort (N.S. represents no significance, *p < 0.05, **p < 0.01, ***p < 0.001, and
****p < 0.0001).

Supplementary Figure 3 | Heatmap of the top 10 marker genes of each
subclass in the TCGA cohort (A) and Kaplan–Meier curves of each subclass
(B,C). Candidate immune gene selection using the LASSO regression
model (D,E).

Supplementary Figure 4 | Boxplot of the distribution of 35 checkpoint molecules
among three groups in the TCGA cohort (N.S. represents no significance,
*p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001).

Supplementary Figure 5 | Coloring single samples on a dimensional reduction
plot according to 23 checkpoint molecules in the TCGA cohort. (A) The t-SNE
distribution of TCGA ER+ BC samples by expression profile of global immune
genes. Each point represents a single sample; different colors represent the three
subclasses. (B–X) Coloring single samples on a dimensional reduction plot
according to 23 checkpoint molecules.

Supplementary Figure 6 | Boxplot of the distribution of 24 immune cells among
three groups in the GEO-meta cohort (N.S. represents no significance, *p < 0.05,
**p < 0.01, ***p < 0.001, and ****p < 0.0001).

Supplementary Figure 7 | Boxplot of the distribution of 10 immune-related cells
and five tumor progression-related pathways among three groups in the
GEO-meta cohort (N.S. represents no significance, *p < 0.05, **p < 0.01,
***p < 0.001, and ****p < 0.0001).

Supplementary Figure 8 | Heatmap of the top 10 marker genes of each
subclass in the GEO-meta cohort (A) and Kaplan–Meier curves of each
subclass (B).

Supplementary Figure 9 | Boxplot of the distribution of 30 checkpoint molecules
among three groups in the GEO-meta cohort (N.S. represents no significance,
*p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001).

Supplementary Figure 10 | Coloring single samples on a dimensional reduction
plot according to 23 checkpoint molecules in the GEO-meta cohort. (A) The
t-SNE distribution of GEO-meta ER+ BC samples by expression profile of global
immune genes. Each point represents a single sample; different colors represent
the three subclasses. (B–X) Coloring single samples on a dimensional reduction
plot according to 23 checkpoint molecules.

Supplementary Figure 11 | Boxplot of the distribution of 24 immune cells among
three groups in the METABRIC cohort (N.S. represents no significance, *p < 0.05,
**p < 0.01, ***p < 0.001, and ****p < 0.0001).

Supplementary Figure 12 | Boxplot of the distribution of 10 immune-related cells
and five tumor progression-related pathways among three groups in the
METABRIC cohort (N.S. represents no significance, *p < 0.05, **p < 0.01,
***p < 0.001, and ****p < 0.0001).

Supplementary Figure 13 | Characteristics of identified subclasses in the
METABRIC cohort. (A) Heatmap of the top 10 marker genes of each subclass in
the METABRIC cohort. (B) Bar plot of variant classification distributions among
METABRIC ER+ BC patients. (C) Bar plot of variant type distributions among
METABRIC ER+ BC patients. (D) Oncoprint of mutation status of top 30 highly
mutated genes across three subtypes (left) and ordered by mutation load (right).
(E) Kaplan–Meier curves of three identified subclasses.

Supplementary Figure 14 | Boxplot of the distribution of 34 checkpoint
molecules among three groups in the METABRIC cohort (N.S. represents no
significance, *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001).

Supplementary Figure 15 | Coloring single samples on a dimensional reduction
plot according to 23 checkpoint molecules in the METABRIC cohort. (A) The
t-SNE distribution of METABRIC ER+ BC samples by expression profile of global
immune genes. Each point represents a single sample; different colors represent
the three subclasses. (B–X) Coloring single samples on a dimensional reduction
plot according to 23 checkpoint molecules.

Supplementary Table 1 | Clinical information of enrolled patients.
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Supplementary Table 2 | Identification of driver genes based on the TCGA
ER+ mutation data.

Supplementary Table 3 | Identification of the marker genes of each subclass in
the TCGA cohort.

Supplementary Table 4 | Datasets for SubMap analysis. (A) Melanoma dataset.
(B) GDSC dataset. (C) TCGA dataset. (D) GEO dataset. (E) METABRIC
dataset.

Supplementary Table 5 | Single-cell annotation results by Azizi and Garvan.
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