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Abstract
The Cancer Genetic Markers of Susceptibility genome-wide association study (GWAS)

originally identified a single nucleotide polymorphism (SNP) rs11249433 at 1p11.2 associ-

ated with breast cancer risk. To fine-map this locus, we genotyped 92 SNPs in a 900kb

region (120,505,799–121,481,132) flanking rs11249433 in 45,276 breast cancer cases and

48,998 controls of European, Asian and African ancestry from 50 studies in the Breast Can-

cer Association Consortium. Genotyping was done using iCOGS, a custom-built array. Due

to the complicated nature of the region on chr1p11.2: 120,300,000–120,505,798, that lies

near the centromere and contains seven duplicated genomic segments, we restricted anal-

yses to 429 SNPs excluding the duplicated regions (42 genotyped and 387 imputed). Per-

allelic associations with breast cancer risk were estimated using logistic regression models

adjusting for study and ancestry-specific principal components. The strongest association

observed was with the original identified index SNP rs11249433 (minor allele frequency

(MAF) 0.402; per-allele odds ratio (OR) = 1.10, 95% confidence interval (CI) 1.08–1.13, P =

1.49 x 10-21). The association for rs11249433 was limited to ER-positive breast cancers

(test for heterogeneity P�8.41 x 10-5). Additional analyses by other tumor characteristics

showed stronger associations with moderately/well differentiated tumors and tumors of lob-

ular histology. Although no significant eQTL associations were observed, in silico analyses

showed that rs11249433 was located in a region that is likely a weak enhancer/promoter.

Fine-mapping analysis of the 1p11.2 breast cancer susceptibility locus confirms this region

to be limited to risk to cancers that are ER-positive.

Introduction
Genome-wide association studies (GWAS) have identified over 90 common genetic variants
associated with breast cancer risk [1–19]. A multi-stage GWAS, the Cancer Genetic Markers of
Susceptibility (CGEMS) initiative, identified a single nucleotide polymorphism (SNP),
rs11249433, associated with breast cancer risk. This SNP is located in the peri-centromeric
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region of chromosome 1p11.2, upstream of the NOTCH2 and FCGR1B genes [12]. Further
independent analysis confirmed this region as a breast cancer susceptibility locus associated
with estrogen receptor (ER) positive but not ER-negative breast cancers [20–22], and more
strongly associated with invasive lobular breast cancers than invasive ducal cancers [23]. Two
independent meta-analyses on the basis of 15 case-control studies provided data supporting a
significant association between rs11249433 and breast cancer among Caucasian populations
but did not identify any significant association in Asian and African populations [24, 25].

Fine-scale mapping of the susceptibility regions identified by GWAS has the potential to
further narrow down the relevant area of interest, identifying additional risk SNPs, and predict-
ing potential functional mechanisms. Fine-mapping of the 1p11.2 locus among Chinese
women (878 cases and 900 controls) identified a novel SNP rs2580520 as a variant significantly
associated with breast cancer risk, which was not identified in European women [26]. However,
fine-mapping has not been performed at this locus in a large population of multi-ethnic
women. The Collaborative Oncological Gene-environment Study (COGS) designed and exe-
cuted a collaborative genotyping and fine-mapping effort utilizing a custom built iSelect geno-
typing array (iCOGS) [8]. In this study we fine-mapped the1p11.2 breast cancer susceptibility
locus utilizing the data generated through iCOGS, using both genotyped and imputed SNPs
from over 50 case-control studies within the Breast Cancer Association Consortium (BCAC).
Further, we determined whether the associated SNPs displayed heterogeneity by tumor subtype
defined by ER-expression, as well as tumor grade and histology.

Materials and Methods

Study populations
Fifty breast cancer studies participating in the Breast Cancer Association Consortium (BCAC)
were included in this analysis. The majority of the included studies were population-based or
hospital-based case-control studies that included participants of European ancestry (41 stud-
ies), Asian ancestry (9 studies), and African ancestry (2 studies), totaling 45,276 breast cancer
cases and 48,998 controls. Study participants were recruited under protocols approved by the
Institutional Review Board at each institution, and all subjects provided written informed con-
sent, as previously described [8]. For a list of all approving Institutional Review Boards by
study, refer to Table A in S1 File.

SNP selection, genotyping and imputation
Genotyping and quality control (QC) measures used in COGs have been described elsewhere
[8]. In brief, excluded were SNPs with call rates of< 95%, with Hardy-Weinberg equilibrium
deviation in controls at P< 1 x 10-7 and those with more than 2% of discrepant genotypes in
duplicate samples across all COGS consortia. The 900 Kb genomic region for fine-mapping of
the 1p11.2 locus (chr1p11.2: 120,300,000–121,185,600; based on build hg19) included all
known SNPs correlated (r2> 0.1) with the index variant rs11249433. In total, 92 genotyped
SNPs from the iCOGS array satisfied the initial QC metrics above.

We used imputation in order to estimate the genotypes at variants in the region not typed
on the iCOGS array. Imputation was performed using IMPUTE2 [27], separately for each eth-
nic group. The IMPUTE2-info score and posterior probabilities at each SNP were used to eval-
uate imputation performance; scores ranged from 1 (high confidence) to 0 (no confidence).
Markers with an IMPUTE2-info score< 0.9 or minor allele frequency (MAF)� 3% were
excluded from the association analyses as unreliable. Imputed genotypes where the maximum
probability was<0.9 were considered unknown. For reference panels we used the International
HapMap Project Phase 3 CEU data [28] and the 1000 Genome Project June 2010 release [29].
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Based on these reference panels, genotypes at an additional 4,279 SNPs were reliably imputed
across the 1p11.2 region.

After reviewing the 1p11.2 genomic region using the UCSC genome browser, we observed
that there were several SNPs which mapped to multiple genomic regions due to duplication of
genomic segments on both sides of the centromere on chromosome 1 [30, 31]. Therefore, we
restricted our analysis to the region of 1p11.2 that excluded the following duplicated genomic
segments: chr1:120531871–120697156; chr1:120747157–120936695; chr1:121086699–
121133098; chr1:121160483–121222841; chr1:121280229–121351595; chr1:121361172–
121418375 and chr1:121418377–121472478. The final analysis was therefore based on 42 geno-
typed and 387 imputed SNPs across ~210kb of genomic sequence. We also investigated data
for a previously described SNP noted to be associated with risk in Asian populations,
rs2580520 [26]. Unfortunately, the rs2580520 SNP was not genotyped in the iCOGS effort, is
not curated in the 1000 Genomes database that was used for imputation of the 1p11.2 region
(www.1000genomes.org/data [32]) and falls within the duplicated region noted above.

Statistical analysis
The LD structure based on the 1000 Genomes CEU data was visualized using the R package
snp.plotter [33]. A line graph was constructed displaying likelihood ratio statistics for recombi-
nation hotspot using SequenceLDhot software based on the background recombination rates
inferred by PHASE v2.1. Physical locations of SNPs were based on hg19 and gene annotation
and the LD plot was based on the NCBI RefSeq genes from the UCSC Genome Browser [34].

Standard logistic regression models were used where the common allele was the referent to
assess the association of all genotyped and imputed SNPs with breast cancer risk and all analy-
ses (overall and for breast cancer subtypes) used a 1-degree of freedom test (additive model) to
estimate the per-allele odds ratio (OR) for the variant allele and corresponding 95% confidence
interval (CI) for each SNP. Association analyses were adjusted for study and eight eigenvectors
to capture population structure, obtained from principal component analyses [8]. P-values for
trend from the Wald test are reported, imputed SNPs were handled using estimated allele dose.
To identify SNPs independently associated with breast cancer risk within the 1p11.2 locus we
conducted forward stepwise logistic regression analysis separately for each ethnicity (European,
Asian and African) conditioning on rs11249433, the top SNP originally identified in CGEMS
SNP and the top SNP at this locus in iCOGS. After identifying a novel independent signal, step-
wise logistic regression analyses were repeated conditioning on the newly identified SNP
rs146784183. Bonferonni adjusted significance was set at P< 7x10-5, corrected for 4,371 SNPs.

To determine if there were differences in the associated effects of the independent signals on
different subtypes of breast cancer among women of European ancestry, we conducted strati-
fied analyses according to subtypes defined by: 1) tumor histology (ductal/mixed, lobular,
other), 2) tumor grade (well-differentiated, moderately-differentiated, poorly-differentiated),
and 3) ER status (ER-positive or ER-negative) subtypes. To determine if SNP associations var-
ied significantly between defined subtypes of breast cancer, we performed polytomous logistic
regression models, and P-values for heterogeneity were obtained from case-case analysis for
tumor subtypes (ER, tumor grade and tumor histology). Meta-analyses were performed using
the random effects model to estimate the I2 statistic and p-value for heterogeneity by study.

In silico functional analysis and eQTL data
To evaluate any possible functional implications of our top-associated SNPs, we assessed in sil-
ico functional data and expression quantitative trait loci (eQTL). Utilizing the UCSC Genome
Browser and HaploReg v3 we reviewed ENCODE data to determine potentially altered
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regulatory motifs. RegulomeDB v1.1 was used to query publicly available eQTL data from mul-
tiple cell types associated with the identified SNPs and select SNPs significantly correlated to
the tag SNP rs11249433.

Results and Discussion

Fine-scale mapping of the 1p11.2 locus
Following quality control and genomic restrictions, a total of 429 SNPs (42 genotyped and 387
imputed) were examined for their association with breast cancer risk. Fig 1 shows the geno-
typed and imputed SNPs analyzed in European women, plotted against corresponding chro-
mosomal positions within 1p11.2. Gene annotations within this genomic region, including the
NOTCH2 gene, and the degree of linkage disequilibrium between the SNPs, are also shown in
Fig 1.

Fig 1. Regional plots of breast cancer association in 1p12-11.2.Regional plot of association result,
recombination hotspots and linkage disequilibrium for the 1p12-11.2:120,505,799–121,481,132 breast
cancer susceptibility loci. Association result from a trend test in—log10Pvalues (y axis, left; red diamond, the
top ranked breast cancer associated locus in the region; blue diamond, best conditioned analysis results
conditioned on rs11249433; black diamonds, genotyped SNPs; gray diamonds, imputed SNPs) of the SNPs
are shown according to their chromosomal positions (x axis). Linkage disequilibrium structure based on the
1000 Genomes CEU data (n = 85) was visualized by snp.plotter software. The line graph shows likelihood
ratio statistics (y axis, right) for recombination hotspot by SequenceLDhot software based on the background
recombination rates inferred by PHASE v2.1. Physical locations are based on hg19. Gene annotation was
based on the NCBI RefSeq genes from the UCSCGenome Browser.

doi:10.1371/journal.pone.0160316.g001
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Breast cancer risk associations at the 1p11.2 locus
Of the 429 SNPs, 136 SNPs were associated with breast cancer risk overall in European women
at P< 5x10-8 (Table B in S1 File and S1 Fig). The most significant association with breast can-
cer risk was observed for the previously identified rs11249433 SNP (MAF 0.402; per-G-allele
OR = 1.10, 95% CI 1.08–1.13, P = 1.49 x 10-21, Table 1) [12]. To test for the existence of addi-
tional independent signals within the 1p11.2 locus, we conducted forward stepwise logistic
regression analyses conditioning on the top SNP rs11249433. A second signal was identified
corresponding to an imputed SNP rs146784183 (MAF 0.101; per-A-allele OR = 0.88, 95% CI
0.85–0.91, P = 1.27 x 10-5 after adjustment for rs11249433, Table 1). After adjustment for
rs11249433, SNP rs146784183 was not strongly correlated with the index SNP (r2 = 0.086), and
is located 57 kb telomeric from rs11249433, and closer to the NOTCH2 gene. Stepwise regres-
sion analyses conditioning on both rs146784183 and rs11249433 did not result in the identifi-
cation of any additional independent signals at this locus (Table C in S1 File). Meta-analyses
demonstrated that results were similar across studies for association results seen for both
rs11249433 (I2 = 0%, P-hetstudy = 0.844) and rs146784183 (I2 = 6.7%, P-hetstudy = 0.351).

Association analysis by estrogen receptor status in European women
We next determined whether risk associations at the 1p11.2 locus varied by estrogen receptor
(ER) status; associations observed were limited to ER-positive (rs11249433: per-G-allele
OR = 1.12, 95% CI 1.10–1.15, P-het = 9.88 x 10-9; rs146784183: per-A-allele OR = 0.86, 95% CI
0.82–0.89, P-het = 8.41 x 10-5; Table 2 and Table D in S1 File). Associations for these two SNPs
among ER-negative breast cancers were null (rs11249433: per-G-allele OR = 1.00, 95% CI
0.95–1.05, P = 0.90; rs146784183: per-A-allele OR = 0.99, 95% CI 0.92–1.06, P = 0.68; Table 2
and Table D in S1 File). Meta-analyses stratified by estrogen receptor status demonstrated that
results were similar across studies for association results seen for both rs11249433 (ER-positive:
I2 = 0%, P-hetstudy = 0.846) and rs146784183 (ER-positive: I2 = 0%, P-hetstudy = 0.524).

Table 1. Two independent association signals at the 1p11.2 locus: Association results for breast cancer risk among women in BCAC, by ancestry.

Signal SNP Positiona Cases (N) Controls (N) Sourceb Risk Allele RAFc Cases/Controls r2d OR (95% CI)e P-trend

European Ancestry

1 rs11249433 121280613 39,072 42,101 G G 0.424/0.402 ~ 1.10 (1.08–1.13) 1.49E-21

1.09 (1.06–1.11)f 6.54E-15

2 rs146784183 121223447 39,072 42,101 I A 0.906/0.899 0.086 0.88 (0.85–0.91) 2.35E-12

0.92 (0.88–0.95)f 1.27E-05

Asian Ancestry

1 rs11249433 121280613 5,826 6,643 G G 0.039/0.036 ~ 1.19 (1.04–1.36) 0.01

2 rs146784183 121223447 5,826 6,643 I A 0.860/0.844 0.004 0.89 (0.82–0.96) 0.002

aGenomic coordinates are based on hg19.
bSource indicates whether the SNP was genotyped (G) or imputed (I) within the data used from the 1000 Genomes Project.
cRisk allele frequency (RAF) for cases/controls.
dPair-wise linkage disequilibrium (r2) with the top SNP rs11249433 calculated using iCOGS (n = 84,396) data, for controls only.
ePer-allele odds ratios (OR) and 95% confidence intervals (95% CI) were estimated from logistic regression adjusted for study site and 7 principal

components in Europeans and 2 principal components in women with Asian ancestry. The common allele was the referent for calculating odds ratio; the G-

allele for both rs11249433 and rs146784183.
fOdds ratios (OR) and 95% confidence intervals (95% CI) were estimated from logistic regression mutually adjusted for rs146784183 and top SNP

(rs11249433) along with study site and 7 principal components.

doi:10.1371/journal.pone.0160316.t001
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Association analysis by tumor grade and histology in European women
Assessment of risk associations by tumor grade showed that SNP rs11249433 was signifi-
cantly associated with risk for well-differentiated tumors (per-G-allele OR = 1.18, 95% CI
1.14–1.23) and moderately-differentiated tumors (per-G-allele OR = 1.13, 95% CI 1.10–
1.16), but not poorly-differentiated tumors (per-G-allele OR = 1.02, 95% CI 0.98–1.05; P
-het = 8.90 x 10-11,Table 2 and Table E in S1 File). Similarly, SNP rs146784183 showed signif-
icant associations for well and moderately-differentiated tumors, but not poorly-differenti-
ated tumors in (P -heterogeneity = 8.80 x 10-4,Table 2 and Table E in S1 File). Results were
similar when assessing heterogeneity by tumor grade only among ER-positive breast cancers,
there were no significant associations for poorly-differentiated ER-positive tumors (Table F
in S1 File).

Differential risk associations for rs11249433 was also seen by tumor histology, where associ-
ations were strongest for lobular tumors (per-G-allele OR = 1.28, 95% CI 1.22–1.35; P
-het = 7.60 x 10-11), and less so for ductal/mixed or other tumor histology (Table 2). Significant
risk differences by tumor histology were not observed for SNP rs146784183 (P -heterogene-
ity = 0.11), though the risk reduction associated with this SNP was strongest for lobular tumors
(Table 2). Of the 160 genotyped and imputed SNPs found to be significantly associated with
lobular breast tumors at a Bonferroni adjusted P< 7 x 10-5, 127 (79%) were also associated
with ductal/mixed tumors, and only 30 (19%) of those also associated with tumors of other his-
tology (Table G in S1 File).

Table 2. Two independent association signals at the 1p11.2 locus: Association results for breast cancer risk among European women in BCAC,
by tumor characteristic.

Tumor Characteristic Cases (N) Signal SNP OR (95% CI)a P-trend P- heterogeneityb

ER Status

ER-positive 6,315 1 rs11249433 1.12 (1.10–1.15) 4.09E-23

ER-negative 21,610 1.00 (0.95–1.05) 0.90 9.88E-09

ER-positive 6,315 2 rs146784183 0.86 (0.82–0.89) 1.48E-12

ER-negative 21,610 0.99 (0.92–1.06) 0.68 8.41E-05

Tumor Grade

Well-differentiated 5,917 1 rs11249433 1.18 (1.14–1.23) 5.63E-17

Moderately-differentiated 13,561 1.13 (1.10–1.16) 3.88E-17

Poorly-differentiated 8,784 1.02 (0.98–1.05) 0.27 8.90E-11

Well-differentiated 5,917 2 rs146784183 0.84 (0.77–0.90) 3.23E-06

Moderately-differentiated 13,561 0.85 (0.81–0.90) 6.45E-09

Poorly-differentiated 8,784 0.96 (0.90–1.02) 0.20 8.80E-04

Histology

Ductal/Mixed 22,308 1 rs11249433 1.08 (1.05–1.10) 5.07E-09

Lobular 3,747 1.28 (1.22–1.35) 1.15E-23

Other 2,563 1.12 (1.05–1.19) 0.0002 7.60E-11

Ductal/Mixed 22,308 2 rs146784183 0.90 (0.86–0.94) 1.69E-06

Lobular 3,747 0.81 (0.74–0.89) 8.07E-06

Other 2,563 0.90 (0.81–1.00) 0.05 0.11

aOdds ratios (OR) and 95% confidence intervals (95% CI) were estimated from logistic regression adjusted for study site and 7 principal components. The

common allele was the referent for calculating odds ratio; the G-allele for both rs11249433 and rs146784183.
bP-heterogeneity tests whether SNP associations differ significantly by tumor characteristic.

doi:10.1371/journal.pone.0160316.t002
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Analysis of index SNPs in different ethnic groups
We also examined breast cancer risk associations among participants in the nine case-control
studies that included women of Asian ancestry (Table 2, S1 Fig and Table H in S1 File). The
degree of linkage disequilibrium between the SNPs in this region was examined using HapMap
data (S2 Fig).

The top SNP among European women, rs11249433, was also associated with breast cancer
risk among Asian women (per-G-allele OR = 1.19, 95% CI 1.04–1.36; P = 0.01, Table 1 and S1
Fig). Although this SNP is rare in this population (MAF = 0.037), the OR was consistent with
that in Europeans. SNP rs146784183 was also associated with breast cancer risk among Asian
women (per-A-allele OR = 0.89, 95% CI 0.82–0.96; P = 0.002, Table 1 and S1 Fig).

The most strongly associated SNP within the Asian population, genotyped SNP
rs115775083, was found to be significantly associated with breast cancer risk overall within the
Asian population (per-T-allele OR = 1.78, 95% CI 1.43–2.20, P = 1.52 x 10-7, Table H in S1
File). The rs115775083 genotyped SNP is a rare variant among Asian women with a
MAF = 0.011. This genotype is also rare among European women (MAF = 0.016) but not asso-
ciated with breast cancer risk (per-T-allele OR = 0.95, 95% CI 0.88–1.02, P = 0.15). SNP
rs115775083 is not correlated with the rs11249433 and rs146784183 SNPs identified to be asso-
ciated with breast cancer risk in European women (r2 < 0.01). Conditioning on the top SNP
identified in the women of Asian did not identify any novel signals within the 1p11.2 locus, but
did reaffirm SNP rs115775083 as the most significant signal among Asian women (Table I in
S1 File). Similar analyses were performed among women with African Ancestry using data
from two BCAC studies (N = 378 cases and N = 254 controls). There were no SNPs within the
1p11.2 locus found to be significantly associated with breast cancer risk after adjusting for mul-
tiple comparisons (Table J in S1 File and S1 Fig).

In silico functional and eQTL data
SNP rs11249433, was strongly correlated with one other SNP, rs12134101 (r2 = 0.943), which
showed a similar association with risk (both for overall and ER-positive breast cancer). All
other SNPs were less strongly associated with risk (likelihood ratio< 1:1000 relative to
rs11249433), suggesting that one or both SNPs rs11249433 and rs12134101 are likely to be
causally implicated in breast cancer risk.

In silico analyses showed that SNP rs11249433 was found to be located within a weak
enhancer and weak promoter in myoblasts and leukemia cells, respectively. Also, this SNP was
located within a region of DNase I hypersensitivity and histone H3K27 acetylation in multiple
cell types including T47D and MCF7 breast cancer cell lines. There were no proposed regula-
tory motifs altered by SNP rs146784183, and neither rs11249433 nor rs146784183 were found
to have any significant eQTL associations.

In this large-scale fine-mapping analysis of nearly 50,000 breast cancer cases and 50,000
controls within the Breast Cancer Association Consortium (BCAC), we found index SNP
rs11249433 to be the strongest signal within the 1p11.2 locus associated with breast cancer risk
in European women. An additional association signal was identified, rs146784183, that was
independent of the index SNP for overall breast cancer risk. Neither signal was found to be sig-
nificantly associated with breast cancer risk among women with Asian or African ancestry,
after adjusting for multiple comparisons. Notably, rs11249433 and rs146784183 displayed sig-
nificant heterogeneity in risk associations by important tumor characteristics including ER sta-
tus, tumor grade and histology. Our findings highlight the value of fine-mapping analyses to
identify novel risk associations, and the utility of performing large-scale genotyping projects
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within varied ethnic populations to aid in narrowing down the genomic area relevant to future
functional analyses.

Fine-mapping the 1p11.2 locus was complex due to the proximity to the centromere and the
presence of duplicate genomic segments. As such, we employed strict quality control measures
to increase our likelihood for finding true association signals. In this study we have identified
SNP rs146784183 as a novel independent signal within the 1p11.2 locus among European
women. SNP rs146784183 and the index SNP were not correlated (r2 = 0.086), and this newly
identified SNP is located about 57 kb telomeric from the index SNP, and closer to the
NOTCH2 gene.

Our findings concur with previous research identifying rs11249433 as a SNP displaying het-
erogeneity by important tumor characteristics including ER status and histology. Specifically,
rs11249433 was found to be more strongly associated with tumors of lobular histology and
those that were ER-positive [20–22]. Further, we have recently shown that this SNP was more
strongly associated with tumors having low E-cadherin breast tissue expression compared to
E-cadherin high tumors [22]. Our current and previous findings for SNP rs11249433 are con-
sistent given that expression of the E-cadherin tumor suppresor protein is frequently lost in
tumors of lobular histology.

We did not identify any eQTL signals for either rs11249433 or rs146784183. In silico analy-
ses showed that rs11249433 is situated in a DNase I hypersensitive region which contains open
chromatin with histone marks, suggestive that this region might be a weak enhancer in some
cell types [35]. SNP rs11249433 is located upstream of the NOTCH2 gene on chromosome 1.
The NOTCH signaling pathway has been frequently implicated in breast cancer development
though the exact function of NOTCH2 in this process is not well characterized [36–40]. Inter-
estingly, the NOTCH2 gene was shown to be associated with super-enhancers, or large clusters
of transcriptional enhancers that drive expression of genes that function in the acquisition of
hallmark capabilities in cancer [41]. Dysregulation of the NOTCH signaling pathway has been
implicated in breast cancer initiation and progression; this pathway is also considered as the
target for novel therapeutics [36–40]. Consequently, though rs11249433 is located within a
weak enhancer, it is plausible that it participates in transcriptional regulation through the func-
tion of a larger super-enhancer that contributes to tumor pathology.

In the current study we did not perform functional analyses, however, in a study of 180
breast tumors Fu and colleagues found that carriers of the risk genotypes of rs11249433 (AG/
GG) were associated with increased mRNA expression of the NOTCH2 gene [20–22]. Further,
expression of NOTCH2 was highest in ER-positive/TP53 wild-type tumors. This study sup-
ports the potential regulation of NOTCH2 gene expression by SNP rs11249433 and in turn, is
in line with our observation that this SNP is specific to ER-positive breast tumors. In a separate
study of NOTCH2 protein expression in breast cancer, NOTCH2 levels were found to be high
in well-differentiated tumors and low in poorly-differentiated tumors [42]. If, as suggested by
Fu et al. [21], rs11249433 contributes to the increased expression of NOTCH2, the observation
by Parr and colleagues that NOTCH2 is highest among well-differentiated tumors, supports
our findings for low grade, well-differentiated tumors. However, without direct experimental
evidence, it is difficult to determine the functional implications of these SNPs with certainty.
While it is possible that these two variants (rs11249433 and rs146784183) are influencing dif-
ferent genes, however, the patterns of association with breast cancer sub-types suggest that
they may affect similar biological and/or signaling processes.

Our analyses in a diverse population of women showed that the top association signals
found in European women showed similar associations in women of Asian ancestry, although
associations were weaker. However, no significant signals were observed among women with
African ancestry. These findings support what has been previously shown in multi-ethnic
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studies of the 1p11.2 locus [24, 25, 43]. Among Asian women, a rare variant, SNP rs115775083
was found to be the strongest association signal for breast cancer overall. This region of chro-
mosome 1 and its association with breast cancer has been examined among Chinese women.
Jiang and colleagues assessed the association of seven tagging SNPs, including rs11249433,
within a 277 kb region of 1p11.2 [26]. In the Jiang study, the authors observed borderline sig-
nificant associations of rs11249433 with breast cancer risk in their population of Chinese
women. However, given that this SNP is rare among women with Asian ancestry, the absence
of a significant association is likely due to decreased power caused by insufficient numbers of
cases harboring the risk allele. rs115775083, the top SNP among Asian women in our popula-
tion, was not included among the seven SNPs assessed in the Jiang study [26]. We were unable
to duplicate the findings from Jiang et al. [26] which identified rs2580520 as a significant asso-
ciation signal among Chinese women. The rs2580520 SNP was not genotyped as part of the
iCOGs effort, is not found in the 1000 Genomes Project Phase 1 data [32] which was used for
imputation, and maps to a suspected duplicated region. These data illustrate the challenges of
genotyping this complex region. Though no significant signals were found among women with
African Ancestry, examining the regional plots among European, Asian and African women,
association analysis suggests that the relevant area of interest for future studies lies within the
interval spanning chr1p11.2: 121,105,799–121,405,799.

The strengths of our study are in analysis of a very large data set, which includes subjects of
European, Asian and African ancestry; and availability of detailed genetic and tumor pathology
data, which allowed us to refine these risk associations by pathologic subtypes of breast cancer.
Moreover, the findings observed in this pooled analysis did not differ significantly by study.
Our study was limited by the available genomic information of the 1p11.2 region. However,
the genomic map of the peri-centromeric region that harbors our region of interest was signifi-
cantly improved in the latest build of the reference human genome. Due to this improvement,
some genomic gaps were filled and some new pseudogene transcripts were mapped in the
region; this could potentially increase SNP coverage and improve fine-mapping quality.

Conclusions
In summary, we showed the 1p11.2 locus is specific for ER-positive breast cancers and pro-
vided data to narrow the relevant area of interests for future functional studies, which should
provide further insights into the underlying causal SNPs responsible for its association with
breast cancer.
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