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Abstract: Oxyresveratrol (Oxy) has attracted much attention by employing it as an antibrowning
agent in fruits and vegetables. In this study, the formation of cyclodextrin (CD) inclusion exhibited a
certain protective effect on Oxy oxidative degradation, while hydroxypropyl-β-cyclodextrin (HP–β-
CD) inclusion complex showed stronger stabilizing effects than those of β-cyclodextrin (β-CD). The
combined use of CD and hydroxypropyl methylcellulose (HPMC) greatly improved the stability of
Oxy–CD inclusion complexes, with approximately 70% of the trans-Oxy retained after 30 days of storage
under light conditions at 25 ◦C. The results of the interaction between CD and Oxy determined by
phase solubility studies and fluorescence spectroscopic analysis showed that the binding strength of CD
and Oxy increased in the presence of HPMC. Moreover, Oxy combined with ascorbic acid and HPMC
showed an excellent antibrowning effect on fresh-cut apple slices during the 48 h test period, indicating
that adding HPMC as the third component will not influence the antibrowning activity of Oxy.

Keywords: oxyresveratrol (Oxy); cyclodextrin (CD) inclusion complex; hydroxypropyl methylcellulose
(HPMC); storage stability; interaction; antibrowning activity

1. Introduction

Oxyresveratrol (2,3′,4,5′-tetrahydroxystilbene, Oxy), also known as oxystilbene triph-
enyl, is a kind of plant antitoxin [1] that exhibits multiple biological activities including
neuroprotection [2], antibacterial [3], antiviral [4], anticancer [5], anti-aging [6], and an-
tioxidant activity [7]. It is a 2′-hydroxylated derivative of resveratrol; however, it has less
cytotoxicity, better solubility, higher cell permeability, and greater bioavailability than resver-
atrol [8,9]. Greater free-radical scavenging ability than ascorbic acid (VC) is found in Oxy,
and there is much evidence to support the role of other antioxidants in synergistically en-
hancing the antioxidant effects of Oxy [10,11]. Therefore, Oxy is promising in functional food
and medicine ingredients [12], especially to be used as an antibrowning additive to maintain
the freshness of fruits and vegetables due to its powerful tyrosinase inhibitory effect [13].

Similar to resveratrol, Oxy is thought to be an extremely photosensitive compound
that is easily affected by the external environment, including light, temperature, pH, and
oxidants, and undergoes oxidative degradation or isomerization [14]. Oxy mainly exists in
the trans-form, and other structural forms, such as cis-form and glucoside isomers, have also
been found. The physiological activities of Oxy glycosides are generally believed weaker
than Oxy, while the cis-structure generally exhibits lower biological activities than trans-
forms [15,16]. These two isomeric forms can be transformed into each other. Especially
under ultraviolet radiation, trans-form Oxy is easily isomerized into the cis structure [17].
Thus, Oxy usually needs to be stored in dark conditions.

If this effective antioxidant compound is to be used successfully in both food and phar-
maceutical industries as an ingredient of nutraceuticals, it is desirable not only to improve
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its water solubility but also to stabilize Oxy, considering its poor bioavailability [18]. Many
carriers have been used previously to improve the Oxy bioavailability in solution, includ-
ing cell encapsulation technology [19], lactoglobulin binding [20], microemulsions [21],
cyclodextrins (CDs) [22], liposomes [23], and water-soluble polysaccharides [24], as well as
solid lipid nanoparticles (SLNs) and nano lipid carriers (NLCs) [25,26]. Among them, the
CD is the most common encapsulation material to enhance the solubility of hydrophobic
molecules. These torus-shaped oligosaccharides are made up of α-(1,4) linked glucose
units, with high solubility in an aqueous solution, and can wrap hydrophobic molecules
in its cavity [27]. The strategy of using β-cyclodextrin (β-CD) or hydroxypropyl-β-CD
(HP–β-CD) to improve the solubility of Oxy has been described in our previous work,
together with characterizing the solid states of this binary system [28]. However, it must
be noted that the problem of poor stability of the Oxy–CD complex still exists [29]. It has
been proved that the addition of hydroxypropyl methylcellulose (HPMC) helps to enhance
the storage stability [30] and the activity of some lipophilic molecules, such as resveratrol
and piperine [31,32]. There are also some reports that HPMC can be used as a mediator
to enhance the complexation efficiency of CD to guest molecules [33,34]. Compared with
the binary system, the formed guest-molecule–CD–polymer ternary system may help to
achieve better physical and chemical properties of the guest molecule, such as antioxidant
and antibacterial activities [31,32]. Although the exact nature of the polymer:CD interaction,
as well as the specific effects of complexation on molecular stability and activity, is still
not known.

In our literature survey, there were also no published reports on the ternary inclusion
of Oxy with CD–polymers. Based on the previous reports on the role of HPMC in the
ternary system [33,34], it is speculated that the presence of HPMC will further enhance the
complexing ability of CD and Oxy, thereby improving the stability of Oxy in solution, and
will not adversely affect the antibrowning activity of Oxy. To investigate the effect of HPMC
on the Oxy–CD binary system and to evaluate the possible effect of complexation on the
stability and antibrowning activity of Oxy, we have therefore interrogated the features of
Oxy–CD, Oxy–HPMC, and Oxy–CD–HPMC solutions, and present data which indicate
that using HPMC as the third component to improve the stability of the Oxy and β-CD or
HP–β-CD inclusion complex (Oxy–β-CD and Oxy–HP–β-CD) in solution without influence
its antibrowning activity to fresh-cut apple slices.

2. Materials and Methods
2.1. Chemicals and Materials

The 2-hydroxypropyl-β-cyclodextrin (HP–β-CD, ≥98% pure) and β-cyclodextrin (β-
CD, ≥98% pure) were purchased from Jiangsu Fengyuan Biotechnology Co., Ltd. (Suqian,
China). Oxyresveratrol (Oxy, ≥98% pure) was purchased from Hangzhou Great Forest
Biomedical Ltd. (Hangzhou, China). Ascorbic acid (VC) was purchased from Sigma Chem-
ical Co. (St. Louis, MO, USA). HPLC grade formic acid, chitosan ≥ 75% (deacetylated),
carboxymethyl cellulose (CMC) of medium viscosity, and hydroxypropylmethylcellulose
(HPMC) of 4000 CP were purchased from Shanghai Aladdin Chemical Reagent Co., Ltd.
(Shanghai, China). HPLC grade methanol was purchased from J&K Scientific (Beijing,
China). High-performance liquid chromatography (HPLC)-grade formic acid was pur-
chased from Shanghai Aladdin Chemical Reagent Co., Ltd. (Shanghai, China). Apples
(cultivar: Fuji) with uniform size (300 ± 20 g) and color (commercial maturity) were
purchased from the local supermarket and stored at 4 ◦C overnight.

2.2. Solubilization Effect of Water-Soluble Polysaccharides on Oxy

Due to their nontoxic and biodegradable properties, many water-soluble polysac-
charides have been widely used in both the food and pharmaceutical industries. The
chitosan and cellulose derivatives (CMC and HPMC) selected in this study are typical
polysaccharides that have been extensively studied, and there are many research examples
for improving the solubility, stability, and bioavailability of active ingredients [35]. Com-
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bined with previous findings that the effect of the water-soluble polysaccharide operates
in a dose-dependent manner. The presence of a small amount of polymer in the solution
can significantly increase the complexing capacity of CD and improve the availability of
insoluble components in CD aqueous solutions [36]; therefore, polymer concentrations
not exceeding 5 mg/mL were investigated in the following experiments. First, 5 mg Oxy
was added to 5 mL chitosan, CMC, and HPMC solution with concentrations varying from
0 to 5 mg/mL, respectively. The mixture was stirred by a Genius 3 vortex and RW 20D
magnetic stirrer (IKA laboratory technology, Staufen, Germany) for 48 h at 20 ◦C. After
equilibration, the mixed solution was centrifuged at 8000 rpm for 20 min. The supernatant
was diluted with methanol to the required concentration (5 times volume) and then filtered
by a 0.2 µm membrane filter. HPLC was used to determine the Oxy concentration subse-
quently, the HPLC analysis method referred to our previous study (provided in the detail in
Figures S1 and S2) [28]. Each sample was replicated three times.

2.3. Phase Solubility Study

Here, 20 mg Oxy was added to 5 mL β-CD or HP–β-CD solutions (0–10 mM) in the
presence or absence of HPMC (1 mg/mL) [28]; the mixture was stirred by a Genius 3
vortex and RW 20D magnetic for 48 h at 20 ◦C. After equilibrium, the mixed solution was
centrifuged at 8000 rpm for 20 min to get rid of the precipitate. The supernatant was diluted
with methanol (10 times volume) and then analyzed by HPLC at 325 nm to determine the
concentration of Oxy in an aqueous solution (provided in the detail in Figures S1 and S2).
The phase solubility diagram was then plotted with CD concentration as abscissa and drug
concentration as ordinate.

2.4. Preparation of Oxy–HPMC, Oxy–CD, and Oxy–CD–HPMC Solutions

Oxy–CD inclusion complexes were prepared according to the method we established
before [28]. β-CD or HP–β-CD was dissolved in water (10 mM), and then Oxy was added
in batch at the 1:1 (β-CD: Oxy) or 1:1.3 (HP–β-CD: Oxy) ratio with vigorous stirring for
24 h until equilibrium. After that, the solution was filtered with a 0.2 µm membrane
filter and spray-dried with Mini Spray Dryer B-290 (Büchi, Flawil, Switzerland). The
drying conditions were as follows: flow rate, 3.5 mL/min; inlet temperature, 160 ◦C;
outlet temperature, 80 ◦C; and air-flow rate, 300 NI/h. Oxy–CD powders were stored
in light-proof sealed bottles. The Oxy content of the obtained inclusion compound was
207.19 mg/g βCD inclusion compound and 198.30 mg/g HP–β-CD inclusion compound,
respectively. Oxy and Oxy–CD solutions (0.1 mM) were prepared by dissolving Oxy or
Oxy–CD power in water under continuous stirring. Oxy–HPMC and Oxy–CD–HPMC
solutions (0.1 mM) were prepared by dissolving Oxy or Oxy–CD to 1 mg/mL HPMC
solution under continuous stirring. The mixture solutions were followed by stirring for
24 h until equilibrium and filtered through a 0.2 µm membrane filter before being used.

2.5. Fluorescence Spectroscopy Analysis

To study the interactions among Oxy–CD, Oxy, and HPMC, Oxy–CD powder was
dissolved in 0–5 mg/mL HPMC solution (0.1 mM) and stirred continuously for 24 h until
equilibrium. The fluorescence spectra of the solutions were recorded on a Hitachi F-2700
fluorescence spectrophotometer (Hitachi High-Technology Corporation, Tokyo, Japan).
The excitation wavelength was 288 nm (10 nm slit width), and the emission spectra were
monitored from 300 to 550 nm, with intervals of 0.5 nm. The experiment was repeated
three times. Oxy–CD inclusion complex was prepared as described in Section 2.4.

2.6. Particle Size Analysis

Oxy–HPMC, Oxy–CD, and Oxy–CD–HPMC solutions were prepared as described
in Section 2.4, and the mean particle size and particle size distribution of these solutions
were evaluated using a Zetasizer Nano ZS photon correlation spectroscopy (Marvern
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Instruments; Worcestershire, UK) equipped with a 4 mW helium/neon laser employing a
wavelength of 633 nm and a fixed angle of 173.

2.7. Stability Study of Oxy–CD and Oxy–CD–HPMC Solutions

The long-term stability of Oxy, Oxy–CD, Oxy–HPMC, and Oxy–CD–HPMC solutions
(prepared as described in Section 2.4) was studied by static storage under different experi-
mental conditions (including temperature, light, and pH) for 30 days, and the percentage
of remaining Oxy (both trans- and cis-forms) was recorded by monitor Oxy content with
HPLC at a certain time interval. All samples were stored in well-closed glass bottles.
UV/sunlight radiation is thought to induce isomerization from trans- to cis-form, resulting
in the formation of a mixture consisting of Oxy in trans- and cis-forms [37–39]. On the
supposition that the isomerization of trans-Oxy by radiation is equal to the generation of cis-
Oxy and the molar absorptivity of cis was the same as that of trans-form at the wavelength
of maximum absorbance [40]. A calibration curve for the quantitation of cis-Oxy at 325 nm
was obtained by exposing the trans-Oxy methanol solution to a three-purpose ultraviolet
analyzer WFH-203(ZF-1) at 365 nm for different times (up to 5 h) and reanalyzing by HPLC.
The results in the concentration range of 9.4–175.5 mg/L were fitted to linear regression
analysis (provided in the detail in Figures S1–S3).

2.8. Antibrowning Effects of Oxy–CD–HPMC and Oxy–CD–HPMC + VC on Fresh-Cut Apple Slices

Fresh-cut apple slices were used as a model to investigate the antibrowning effect
of Oxy in food systems. The apples were cleaned, peeled, and cut into 1–1.5 cm thick
slices. Then the surface was dried with filter paper, dipped into 50 mL solutions of different
treatments for 4 min, and drained. The test solutions used for the above samples are shown
in Table 1. These apple slices were then put into separate petri dishes and stored for 48 h
(kept at room temperature with open access to air). The chromatism of each experimental
group slice was examined on a high-performance color measurement spectrophotometer
(UltraScan Pro 1166, HunterLab, Beijing, China), expressed as L [brightness (0–100)], a
[red (−) to green (+)] and b [blue (−) to yellow (+)] values. Total color difference (∆E) was
always used to evaluate the antibrowning effect of different treatments [41], which was
calculated as follows [42]:

∆E = [(L*t − L*initial)
2 + (a*t − a*initial)

2 + (b*t − b*initial)
2]0.5 (1)

Browning index (BI) is another important color parameter that indicates the amount of
enzymatic and non-enzymatic browning reaction during storage [43], which was calculated
as follows:

BI = [100(x − 0.31)]/(0.172) (2)

where x is called the chromaticity coordinate, obtained from the CIE L*a*b* coordinates
according to the following formula:

x = (a*t + 1.75 L*t)/(5.646 L*t + a*t − 3.012 b*t) (3)

Measurements were made immediately following each treatment and at timed inter-
vals of 0, 3, 6, 9, 12, 24, and 48 h thereafter. Oxy–HPMC, Oxy–CD, and Oxy–CD–HPMC
solutions were prepared as described above (Section 2.4), but the concentration of Oxy was
increased to 1.6 mM. All experiments were performed six times.
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Table 1. Each experimental group solution for processing apple slices.

Test Solution Composition

Water Water
β-CD 0.4 mg/mL β-CD

HP–β-CD 0.4 mg/mL HP–β-CD
HPMC 0.1 mg/mL HPMC

VC 0.5 mg/mL VC
Oxy–β-CD 0.5 mg/mL Oxy–β-CD inclusion complex

Oxy–HP–β-CD 0.5 mg/mL Oxy–HP–β-CD inclusion complex
Oxy–β-CD + VC 0.5 mg/mL Oxy–β-CD inclusion complex and 0.5 mg/mL VC

Oxy–HP–β-CD + VC 0.5 mg/mL Oxy–HP–β-CD inclusion complex and 0.5 mg/mL
VC

VC + HPMC 0.5 mg/mL VC and 0.1 mg/mL HPMC

Oxy–β-CD + HPMC 0.5 mg/mL Oxy–β-CD inclusion complex and 0.1 mg/mL
HPMC

Oxy–HP–β-CD + HPMC 0.5 mg/mL Oxy–HP–β-CD inclusion complex and 0.1 mg/mL
HPMC

Oxy–β-CD + VC + HPMC 0.5 mg/mL Oxy–β-CD inclusion complex, 0.5 mg/mL VC and
0.1 mg/mL HPMC

Oxy–HP–β-CD + VC + HPMC 0.5 mg/mL Oxy–HP–β-CD inclusion complex, 0.5 mg/mL VC
and 0.1 mg/mL HPMC

2.9. Statistical Analysis

Statistical analyses were performed using OriginPro 2019 (version 9.6.0.172; OriginLab,
Northampton, MA, USA) and Graphpad Prism (version 9; GraphPad Software, San Diego,
CA, USA). The results were expressed as mean values ± standard deviation (SD). A two-
way ANOVA with Tukey’s multiple comparison test was performed on data from at least
three independent experiments, with p < 0.05 considered significant.

3. Results and Discussion
3.1. Solubility of Oxy in Various Water-Soluble Polymers

As previously reported, water-soluble polymers can help to improve the solubility of
hydrophobic molecules [33,35], and the polymer concentration is critical for this effect [44].
Figure 1 revealed the effects of chitosan, CMC, and HPMC (0–5 mg/mL) on the solubility
of Oxy in water. The presence of these three polymers showed a similar solubilization
pattern, with the solubility of Oxy increasing first and then decreasing within a certain
polymer concentration range. When compared to chitosan and CMC, Oxy has better
solubility in the same concentration of HPMC solution. Especially at the concentration of
1 mg/mL HPMC, it displayed the best efficacy, increasing Oxy solubility from 0.47 mg/mL
to 0.77 mg/mL. The addition of higher concentrations of HPMC to the solution did not
result in further increases in solubility; 1 mg/mL HPMC in solution was therefore used for
further studies. The improved properties exhibited by the above water-soluble polymers
in increasing the solubility and the degree of supersaturation of Oxy may be the effect
of the polymer gel layer formed in the solution. Polymers can form intramolecular and
intermolecular hydrogen and hydrophobic bonds. In the dissolved state, these polymers
rapidly hydrate and swell, forming a gel layer around the dry core of the polymer matrix.
During this process, their intramolecular bonds are disrupted, so the polymers may form
new hydrogen or hydrophobic interactions with hydrophobic molecules, thereby delaying
their precipitation [35].
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Figure 1. The effect of chitosan, carboxymethylcellulose (CMC), and hydroxypropyl methylcellulose
(HPMC) on the solubility of Oxy in water at 20 ◦C (n = 3). Data were presented as mean ± SD, and sig-
nificant differences among 0 mg/mL (no water-soluble polymer added) and different concentrations
of polymer are shown with lower case letters a–d.

3.2. Study on the Interaction among Oxy–CD, and HPMC
3.2.1. Phase Solubility Study

The phase solubility diagram was performed to investigate the interactions between
Oxy and CD with or without the presence of 1 mg/mL HPMC. As shown in Figure 2, with
the increasing amount of β-CD and HP–β-CD, the solubility of Oxy observed in 1 mg/mL
HPMC solution (R2 ≥ 0.99) exhibited a linear increase, demonstrating that CD can still
form inclusion compound with Oxy in a stoichiometry ratio of 1:1 with the presence of
HPMC [28]. In addition, HPMC can further improve the binding affinity between Oxy and
these two CDs, which is manifested as higher encapsulation constants (KF) [28]. The KF
value of β-CD was increased from 1.90 × 104 M−1 to 3.60 × 104 M−1 (Figure 2A), while it
changed from 3.59 × 104 M−1 to 6.97 × 104 M−1 for HP–β-CD (Figure 2B) in the absence
and presence of HPMC in solution. Higher KF values for ternary systems give more stable
complexes than binary systems. This behavior differs from that of the molecular form of the
naproxen when complexed with β-CD in the presence of PVP [45] but is in good agreement
with the findings of Sultan et al. that the presence of HPMC enhances the interaction
between small lipophilic molecules and CDs [32].

Figure 2. Phase solubility diagrams of Oxy and CD with or without the presence of 1 mg/mL HPMC
solutions at 20 ◦C (n = 3, if no error bars are displayed, errors were smaller than symbols). (A) β-CD;
(B) HP–β-CD.

3.2.2. Fluorescence Spectroscopy Analysis

The fluorescence spectra of Oxy in the absence and presence of β-CD or HP–β-CD
at different concentrations were given in our previous report [28,46]. Both β-CD and HP–
β-CD exhibited significant effects on the fluorescence spectrum of Oxy, in terms of peak
intensity and maximum emission wavelength. These data suggest that a stable inclusion
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complex is formed between Oxy and β-CD or HP–β-CD. The CD cavity provides an
apolar environment for the Oxy molecule and thus increases the quantum yield of the
fluorescence of Oxy [47]. To investigate the interactions among Oxy–CD, and HPMC, the
fluorescence spectra of Oxy and Oxy–CD inclusion complex in the presence of various
concentrations of HPMC were therefore recorded here (Figure 3). As shown in Figure 3A,
the fluorescence signal of Oxy in solution was significantly enhanced in the presence of all
tested HPMC concentrations, although the magnitude of the increase was slightly reduced
at high HPMC concentrations. However, there was no shift in the maximum emission
wavelength, indicating that Oxy may not interact with HPMC directly. The observed
enhancement of the fluorescence signal may be related to the increase in solution viscosity.
It has been previously reported that the collision between the fluorescent substance and Oxy
decreases as the viscosity of the solution increases [48]. The reduction of this deactivation
process is manifested as an enhancement in the fluorescence intensity of Oxy.

Figure 3. Exemplary fluorescence spectra of Oxy in the presence of various concentrations of HPMC.
(A) Oxy solution; (B) Oxy–β-CD solution; (C) Oxy–HP–β-CD solution.

Exemplary fluorescence spectra of Oxy–β-CD and HP–β-CD inclusion complex in the
presence of various concentrations of HPMC were shown in Figure 3B,C. A weak blue shift
and enhancement of the fluorescence signal of Oxy can be observed in HPMC solutions.
The enhancement of the fluorescence intensity suggests that the addition of HPMC helps
to increase the binding affinity between Oxy and CD; the Oxy molecule encapsulated
into the CD cavity is further restricted in freedom, increasing the fluorescence quantum
yield of Oxy. On the other hand, the influence of HPMC on solution viscosity may also
contribute to this result. Oxy–β-CD and HP–β-CD inclusion complexes showed different
fluorescence intensity enhancements in the presence of HPMC, which was greater for the
Oxy–β-CD inclusion compound than that of HP–β-CD. One possible reason is that Oxy
in the Oxy–β-CD complex is easier to leave the CD cavity than Oxy–HP–β-CD due to the
low binding activity, so it is more susceptible to HPMC [28,46]. This fact, combined with
the higher complexation constants obtained from phase-solubility analysis, suggests that
polymers influence the complexation of CD by forming ternary complexes or co-complexes,
rather than by interfering with individual insoluble small molecules or self-aggregated CD.
This observation is consistent with previous findings showing that polymer molecules act
as bridges for the complexation between Oxy–CD [45].

3.2.3. Particle Size Analysis

The observed particle sizes of Oxy–HPMC, Oxy–CD, and Oxy–CD-HPMC were con-
sistent with solution fluorescence data, indicating Oxy–CD-HPMC may form ternary
complexes. As shown in Figure 4, the average particle diameters of Oxy–β-CD and HP–β-
CD inclusion complexes were about 128.22 ± 6.76 nm and 116.14 ± 4.23 nm, respectively,
with a narrow particle size distribution. In Oxy–HPMC solution, the average particle size
was about 335.59 ± 6.34 nm. The particle size of the solution increased significantly after
the formation of the ternary complex, 295.30 ± 5.76 nm and 296.60 ± 5.35 nm for Oxy–
β-CD–HPMC and HP–β-CD–HPMC, respectively, and the particle size distribution was
relatively uniform. Oxy–CD complexes in solution have high CD mobility, and non-ionic
polymers may interact with the outer surfaces of both CD and Oxy–CD complexes, possibly
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enhancing the interaction strength of Oxy with CD by forming large Oxy–CD complex
aggregates, thereby improving the stability of Oxy in solution [33]. This supports the idea
that adding a small amount of water-soluble polymer to the aqueous solution of Oxy–CD
complexes can play a stabilizing role.

Figure 4. Intensity particle size distribution of Oxy–CD, Oxy–HPMC, and Oxy–CD–HPMC solution
at the Oxy concentration of 1mM were measured on a Zetasizer Nano ZS.

3.3. Long-Term Storage
3.3.1. Visual Appearance

The appearance of Oxy–HPMC, Oxy–CD, and Oxy–CD–HPMC solutions after long-
term storage was characterized in terms of visual inspection, as shown in Figure 5A (in
water) and Figure 5B (in acidic solution, pH 3.6). The appearance of freshly prepared Oxy
and Oxy–β-CD/HP–β-CD solutions was light yellow, clear, and transparent liquid, whereas
it changed to translucent and milky with the presence of 1 mg/mL HPMC. All solutions
tested had good fluidity without layering (Figure 5A). After long-term storage at 4 ◦C and
25 ◦C, test solutions were still transparent and clear by visual observation; however, some
white solid precipitates were found in Oxy water solution at low temperature (4 ◦C). The
absence of Oxy precipitation in HPMC solution may be because the water-soluble polymer
can help to maintain drug supersaturation by acting as crystallization inhibitors [49]. At
50 ◦C, the color of all tested Oxy solutions darkened clearly, which may be caused by the
oxidation of Oxy [21]. The addition of HPMC does not seem to exhibit an obvious color
protection effect. Oxy and Oxy–HPMC solutions changed from light yellow to deep yellow,
whereas Oxy–CD and Oxy–CD-HPMC solutions changed to yellow. Nevertheless, the
color change of the ternary composite solution was minimal in comparison. Under acidic
conditions (Figure 5B), the visual color change of each sample displayed the same tendency
as that in water, whereas the transparency of the HPMC solutions was reduced and the
color became darker after high-temperature storage.

Figure 5. The visual appearance of Oxy, Oxy–HPMC, Oxy–CDs, and Oxy–CDs-HPMC solutions
under different conditions during 30 days of storage. (A) Water; (B) acidic solution (pH 3.6).
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3.3.2. The Stability of Oxy in Water

Previous studies have proved that trans-form stilbene compounds can be converted
into cis-structure under light [50]. However, both trans- and cis-forms are unstable and
easily degraded [51]. As shown in Figure 6A top and Table 2, the Oxy–Content in the
solution showed a marked reduction, as a consequence of long-term storage. Signifi-
cant levels of cis-Oxy were generated in Oxy solution after storing for 1 day at 25 ◦C
(Figure 6A bottom). The total retention rate of Oxy was 96.19%, 41.92% of which was in
the cis-form. After 30 days, the retention rate reduced to 72.91%, but the trans structure
only occupied 9.04% (Figure 6A medium). Compare with pure Oxy, both Oxy–β-CD and
HP–β-CD inclusion complexes exhibited an obvious protective effect; however, the propor-
tion of isomerization was hardly decreased. After storage, 13.23% and 21.30% of trans-Oxy
were detected in Oxy–β-CD and HP–β-CD inclusion compound solutions, respectively,
while the retention rates of cis-Oxy were 71.48% and 72.64%, respectively. Approximately
60.01% of total Oxy remained after storage in HPMC solution. It is worth noting that
almost no cis-Oxy was formed in the HPMC solution, which is very consistent with the
earlier findings that viscosity is the main solvent property that affects the isomerization
kinetics [52]. The Oxy–CD–HPMC ternary complex has the advantages of CD and HPMC.
Neither Oxy–β-CD–HPMC nor HP–β-CD–HPMC ternary complex will weaken the stabil-
ity of Oxy; in contrast, it can improve the retention rate of Oxy to a certain extent. On the
other hand, compared with the CD inclusion compound with the absence of HPMC, only a
small proportion of isomerization occurred in the ternary complex. At the end of storage,
there was no significant difference in the level of trans- and cis-Oxy in Oxy–β-CD–HPMC
and Oxy–HP–β-CD–HPMC solutions, which were both above 70% and 10%, respectively.
The above data indicated that forming an inclusion complex with CD can effectively protect
Oxy from degradation, and the HPMC in the solution improves the structural stability of
Oxy significantly. Together, these data indicate that the poor stability of Oxy in aqueous
solution is implicated in the highly susceptible oxidative degradation and isomerization.

Figure 6. The percentage of remaining Oxy (both trans- and cis-forms) in Oxy, Oxy–HPMC, Oxy–
CD, and Oxy–CD–HPMC solutions during 30 days of storage at 25 ◦C with light was recorded by
monitoring Oxy content with HPLC at a certain time interval (n = 3, if no error bars are displayed,
errors were smaller than symbols). Data were presented as mean ± SD, and significant differences
compared to the pure Oxy group are shown with lower case letters a–d. All samples were stored in
well-closed glass bottles. (A) Water; (B) acidic solution (pH 3.6).
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Table 2. The percentage of remaining Oxy (total Oxy, trans- and cis-forms) in Oxy, Oxy–HPMC,
Oxy–CD, and Oxy–CD–HPMC solutions during 30 days of storage at 25 ◦C with light.

Water

Time (Day) Oxy Oxy–β-CD Oxy–HP–β-CD Oxy–HPMC Oxy–β-CD-
HPMC

Oxy–HP–β-CD-
HPMC

Total Oxy

0 100 ± 6.50 a 100 ± 0.69 a 100 ± 4.03 a 100 ± 3.48 a 100 ± 0.86 a 100 ± 0.54 a
1 96.19 ± 2.85 a 92.60 ± 12.36 a 99.04 ± 8.49 a 94.39 ± 0.29 a 93.02 ± 0.90 a 94.93 ± 3.29 a
3 100.07 ± 4.05 a 106.24 ± 2.69 a 104.39 ± 0.82 a 87.28 ± 0.74 b 87.37 ± 1.28 b 90.22 ± 2.10 b
7 101.81 ± 4.19 a 98.01 ± 3.02 a 101.21 ± 0.81 a 82.33 ± 9.89 b 92.53 ± 10.14 ab 91.71 ± 10.11 ab

14 95.20 ± 1.31 a 93.97 ± 1.36 a 99.50 ± 1.38 a 79.51 ± 4.90 b 91.25 ± 8.00 a 93.15 ± 6.47 a
30 72.91 ± 1.04 a 84.71 ± 0.28 a 93.93 ± 0.65 b 60.01± 2.00 a b 80.22 ± 0.87 a 84.12 ± 4.72 ab

Trans-Oxy

0 100 ± 6.50 a 100 ± 0.69 a 100 ± 4.03 a 100 ± 3.48 a 100 ± 0.86 a 100 ± 0.54 a
1 54.27 ± 1.57 c 59.87 ± 6.06 c 76.28 ± 4.37 b 94.39 ± 0.29 a 93.02 ± 0.90 a 94.93 ± 3.29 a
3 15.22 ± 2.09 b 19.81 ± 1.86 b 23.44 ± 4.26 b 87.28 ± 0.74 a 87.37 ± 1.28 a 89.14 ± 1.99 a
7 32.02 ± 2.66 b 24.23 ± 0.70 b 30.55 ± 0.40 b 82.33 ± 9.89 a 69.01 ± 8.24 a 69.98 ± 8.89 a

14 17.35 ± 0.32 c 20.71 ± 0.59 c 30.21 ± 0.65 b 79.51 ± 4.90 a 77.05 ± 6.73 a 76.04 ± 5.21 a
30 9.04 ± 0.17d 13.23 ± 0.18 cd 21.30 ± 0.48 c 60.01 ± 2.00 b 70.01 ± 0.24 a 74.01 ± 4.65 a

Cis-Oxy

0 ND ND ND ND ND ND
1 41.92 ± 1.28 a 32.73 ± 6.30 b 22.76 ± 4.13 c ND ND ND
3 84.85 ± 1.96 a 82.44 ± 0.83 a 80.95 ± 8.05 a ND ND 1.08 ± 0.11 b
7 69.79 ± 1.52 a 73.78 ± 2.32 a 70.66 ± 0.41 a ND 23.52 ± 1.9 b 21.73 ± 1.23 b
14 77.85 ± 1.00 a 73.26 ± 0.76 a 69.28 ± 0.72 b ND 14.21 ± 1.28 c 17.11 ± 1.26 c
30 63.87 ± 0.87 b 71.48 ± 0.10 a 72.64 ± 0.17 a ND 10.21 ± 0.63 c 10.11 ± 0.07 c

Acidic solution (pH 3.6)

Time (day) Oxy Oxy–β-CD Oxy–HP–β-CD Oxy–HPMC Oxy–β-CD-
HPMC

Oxy–HP–β-CD-
HPMC

Total Oxy

0 100 ± 0.95 a 100 ± 0.02 a 100 ± 0.06 a 100 ± 2.37 a 100 ± 0.21 a 100 ± 0.88 a
1 70.08 ± 3.69 c 93.83 ± 2.67 ab 90.16 ± 3.03 b 100.30 ± 2.29 a 100.72 ± 0.66 a 101.04 ± 2.13 a
3 61.77 ± 0.80 b 90.34 ± 1.29 a 87.31 ± 1.06 a 89.28 ± 0.84 a 91.05 ± 1.24 a 88.67 ± 1.28 a
7 56.42 ± 9.07 b 89.52 ± 2.26 a 86.61 ± 1.04 a 88.69 ± 6.28 a 85.24 ± 6.79 a 90.94 ± 7.66 a
14 39.25 ± 0.55 b 81.88 ± 4.60 a 80.87 ± 1.19 a 77.61 ± 5.73 a 85.12 ± 4.81 a 84.39 ± 5.68 a
30 31.94 ± 9.95 d 74.59 ± 2.08 b 77.33 ± 1.87 ab 60.01 ± 7.03 c 83.22 ± 4.43 a 85.12 ± 5.98 a

Trans-Oxy

0 100 ± 0.95 a 100 ± 0.02 a 100 ± 0.06 a 100 ± 2.37 a 100 ± 0.21 a 100 ± 0.88 a
1 53.57 ± 2.00 c 84.54 ± 1.29 b 88.37 ± 1.47 b 100.3 ± 2.29 a 100.72 ± 0.66 a 101.04 ± 2.13 a
3 34.56 ± 0.54 c 77.1 ± 0.95 b 83.43 ± 0.81 ab 86.27 ± 0.79 a 91.05 ± 1.24 a 88.67 ± 1.28 a
7 45.33 ± 4.59 b 90.11 ± 1.12 a 91.12 ± 0.61 a 84.64 ± 6.04 a 85.24 ± 6.79 a 90.94 ± 7.66 a
14 26.43 ± 0.44 c 75.37 ± 2.25 b 82.16 ± 0.76 a 74.3 ± 5.40 b 74.43 ± 12.52 b 84.39 ± 5.68 a
30 31.94 ± 0.85 c 74.59 ± 2.08 a 77.33 ± 1.87 a 60.01 ± 7.03 b 80.01 ± 2.73 a 80.01 ± 4.5 a

Cis-Oxy

0 ND ND ND ND ND ND
1 16.51 ± 1.7 a 9.28 ± 1.37 b 1.79 ± 1.56 c ND ND ND
3 27.21 ± 0.26 a 13.25 ± 0.34 b 3.88 ± 0.25 c 3.01 ± 0.04 c ND ND
7 11.09 ± 4.48 a 0 ± 1.14 c 0 ± 0.43 c 4.05 ± 0.24 b ND ND

14 12.83 ± 0.11 a 6.51 ± 2.35 b 0 ± 0.43 d 3.31 ± 0.33 c 10.7 ± 0.35 a ND
30 ND ND 0 ± 0.17 b ND 3.21 ± 1.70 a 5.11 ± 1.48 a

Data were presented as mean ± SD, and significant differences compared to the pure Oxy group are shown with
lower case letters a–d. “ND” represents not detected. All samples were stored in well-closed glass bottles.

Neither low temperature nor high temperature is suitable for the storage of pure
Oxy solution. Refrigeration storage will cause Oxy to precipitate in the solution, while a
large amount of Oxy is degraded under the high temperature (Figures 7A and 8A). Light,
rather than temperature changes, induces the conversion of trans-Oxy molecules to cis-form
(Figures 8–10A). During storage at 25 ◦C under light, it is obvious that the isomerization of a
trans-form towards its cis-forms reduces the concentration of the trans-form Oxy, which may
be related to the reduced activity of Oxy after storage [15,16]. However, compared with the
trans-form, it is clear that the cis-Oxy has better stability in water, thereby the dark condition
cannot significantly increase the retention rate of the total Oxy. Forming an inclusion
complex can effectively prevent Oxy from being degraded, while the HP–β-CD inclusion
complex showed a stronger stabilizing ability than that of the β-CD inclusion compound.
The addition of HPMC had a good protective effect on both oxidative degradation and
isomerization of Oxy, and the formation of the ternary complex exhibited an excellent
stability effect in aqueous solutions, which greatly improved the photothermal stability of
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Oxy. HPMC in the system may contribute more to this result than CD because it displayed
similarly to HPMC, but with better Oxy protection effect. As discovered by Fan et al.,
HPMC in the solution can prevent oxidation by isolating the small molecules in micelles
from oxygen [53]. On the other hand, interaction studies have demonstrated that the
binding affinity of Oxy–HP–β-CD was greater than β-CD, while increased temperature
and the presence of HPMC will influence this affinity [46]. The corresponding changes
in the protective effect of CD on Oxy can be observed in our data. Based on the above
findings, it can be inferred that the protection of Oxy by CD in the solution may be related
to the binding strength between them. The stronger bonding strength led to a better
protective effect.

Figure 7. The percentage of remaining Oxy (both trans- and cis-forms) in Oxy, Oxy–HPMC, Oxy–CD,
and Oxy–CD–HPMC solutions during 30 days of storage at 5 ◦C without light was recorded by
monitoring Oxy content with HPLC at a certain time interval (n = 3, if no error bars are displayed,
errors were smaller than symbols). Data were presented as mean ± SD, and significant differences
compared to the pure Oxy group are shown with lower case letters a–d. All samples were stored in
well-closed glass bottles. (A) Water; (B) acidic solution (pH 3.6). The lack of figures of the trans and
cis forms here indicates that no cis-Oxy is formed in this treatment, and all remaining Oxy is in the
trans structure.

Figure 8. The percentage of remaining Oxy (both trans- and cis-forms) in Oxy, Oxy–HPMC, Oxy–CD,
and Oxy–CD-HPMC solutions during 30 days of storage at 50 ◦C without light was recorded by
monitoring Oxy content with HPLC at a certain time interval (n = 3, if no error bars are displayed,
errors were smaller than symbols). Data were presented as mean ± SD, and significant differences
compared to the pure Oxy group are shown with lower case letters a–d. All samples were stored in
well-closed glass bottles. (A) Water; (B) acidic solution (pH 3.6). The lack of figures of the trans- and
cis-forms here indicates that no cis-Oxy is formed in this treatment, and all remaining Oxy is in the
trans structure.
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Figure 9. The percentage of remaining Oxy (both trans- and cis-forms) in Oxy, Oxy–HPMC, Oxy–CD,
and Oxy–CD–HPMC solutions during 30 days of storage at 25 ◦C without light was recorded by
monitoring Oxy content with HPLC at a certain time interval (n = 3, if no error bars are displayed,
errors were smaller than symbols). Data were presented as mean ± SD, and significant differences
compared to the pure Oxy group are shown with lower case letters a–d. All samples were stored in
well-closed glass bottles. (A) Water; (B) acidic solution (pH 3.6). The lack of figures of the trans- and
cis-forms here indicates that no cis-Oxy is formed in this treatment, and all remaining Oxy is in the
trans structure.

Figure 10. The percentage of remaining Oxy (both trans- and cis-forms) in Oxy, Oxy–HPMC, Oxy–
CD, and Oxy–CD–HPMC solutions during 30 days of storage at 50 ◦C with light was recorded by
monitoring Oxy content with HPLC at a certain time interval (n = 3, if no error bars are displayed,
errors were smaller than symbols). Data were presented as mean ± SD, and significant differences
compared to the pure Oxy group are shown with lower case letters a–e. All samples were stored in
well-closed glass bottles. (A) Water; (B) acidic solution (pH 3.6).

3.3.3. The Stability of Oxy in Acidic Solution

The study showed that the total Oxy amount in acidic solution exhibits a signifi-
cantly higher degradation rate than water, accompanied by improved structural stability
(Table 2 and Figure 6B). Over 3 days of storage, the retention rate of total Oxy was 61.77%,
of which trans-forms accounted for 34.56%. The retention rate reduced to 31.94% after
30 days, and all of them were trans-Oxy. The stabilizing effect of CD inclusion compounds
was also improved compared with water. There was no significant difference between the



Foods 2022, 11, 2471 13 of 17

retention rate of Oxy–β-CD and HP–β-CD inclusion compounds, which were all above
74% at the five detection time points. However, HP–β-CD inclusion complexes exhibited a
better protective effect on Oxy than β-CD. The addition of HPMC had a good stabilizing
effect on Oxy in solution, where the content of 60.01% Oxy was measured after being placed
at 25 ◦C for 30 days, and almost no isomerization was detected. The Oxy–CD–HPMC
solution showed the best storage stability, in which Oxy content remained above 80% of
the original after 30 days.

Combined with the results of Figures 7–9 and 10B, it can be found that temperature
changes and light conditions will significantly affect the storage stability of Oxy with
the same behavior as in water. The difference is that the Oxy isomerization detected in
acidic solutions is much lower under the same storage environment, probably because
the cis structure is stable near pH neutrality [54]. Compared with neutral solutions, acidic
conditions seem to be more suitable for the storage of pure Oxy. This has been previously
demonstrated by Zupančič et al., that stilbene compounds are relatively stable in the acidic
pH range and are not prone to degradation [55]. The increased protective effect of CD may
be related to the stronger bonding strength between the two under an acidic environment.
However, the decrease of pH will not further enhance the stability of Oxy in the ternary
complex. On the contrary, its protective effect is not as good as water at high temperatures.

3.4. Anti-Browning Effects of Oxy–CD–HPMC and Oxy–CD–HPMC–VC on Fresh-Cut Apple Slices

We have previously demonstrated the anti-browning effect of Oxy–CD on fresh grape
juice, indicating that the inclusion of CD does not affect the tyrosinase inhibitory activity
of Oxy itself [28]. It has also been proved that Oxy exhibited a good effect on inhibiting
the browning of fresh-cut lotus slices [21], and the combination with VC improved the
antibrowning effects on some fruits and vegetables greatly [56,57]. Oxy may have a
synergistic effect with another antioxidant through a certain mechanism, that is, one
antioxidant helps to regenerate the other [10]. In this study, fresh-cut apple slices were used
as a model to re-evaluate the characteristics of Oxy–CDs in fresh-cut fruits, as well as the
effects of adding HPMC and VC to the solution. The degree of browning of apple slices was
monitored by visual evaluation together with the change of L, ∆E values, and BI [58]. The L
value represents brightness, and the larger the L value indicates the smaller the browning,
while the ∆E value represents the color difference which reflects the color change between
two timepoints. When ∆E < 1.5, the difference can be considered invisible to the eyes [58].
BI represents the purity of brown color and is reported as another important parameter
during storage [43]. It can be seen from Figure 11 that as the storage time increases, the
apple slices in each experimental group varied degrees of browning, exhibiting reduced L
value and a higher ∆E value and BI.

Water and CD hardly showed the antibrowning effects on apple slices, and HPMC
solution showed a weak anti-browning effect, which may be because HPMC forms a thin
film on the surface of fruit slices, which acts as an effective semi-permeable barrier to
block the contact of fruit slices with oxygen and water vapor in the air to a certain extent,
thereby slowing down the rate of browning [59]. The role of similar polysaccharides as
edible coatings in improving the quality and shelf life of harvested vegetables has been
reported [59,60]. The antibrowning ability of VC alone was also very limited, which
disappeared after 3 h. The Oxy–CD inclusion compound (0.5 mg/mL) exhibited excellent
ability in maintaining the freshness of apple slices, which is consistent with the findings of
Li et al. [56], indicating the potential value of Oxy as an antibrowning agent for fruit slices.
As we reported earlier, the co-addiction with VC showed a stronger antibrowning effect
than a single compound, indicating that these two components may had a synergistic effect
in this process. There was no significant difference between the antibrowning effect of
Oxy–β-CD and HP–β-CD inclusion compound. The addition of HPMC does not affect the
biological activity of neither VC nor Oxy, in contrast, combining HPMC with VC or Oxy–CD
further enhanced their inhibitory effect on browning. Besides its own film-forming effect,
another reason may be attributed to the protective effect of HPMC on bioactive components,
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resulting in the improvement of their antibrowning effect, as the data reported above [21].
The solution containing Oxy–CD, VC, and HPMC showed the best antibrowning effect in
all test solutions.

Figure 11. Reflectance measurement of L, ∆E values, and BI of apple slices soaked in different
solutions and stored at room temperature for 48 h.

4. Conclusions

In this study, Oxy–β-CD, Oxy–HP–β-CD, Oxy–β-CD + HPMC, and Oxy–HP–β-CD + HPMC
solutions were prepared and characterized, and their chemical and physical stabilities and
antibrowning effects on fresh-cut apple slices were also evaluated. The results demonstrated
that adding HPMC to the Oxy–CD inclusion compound solution could effectively improve
the stability of Oxy in an aqueous solution, especially in an acidic solution. Similar to the
binary system, Oxy–Could still form inclusion compounds with β-CD and HP–β-CD in a
ratio of 1:1 in HPMC solution (1 mg/mL), and the presence of HPMC helped to further
improve the binding affinity of CD and Oxy. Interaction studies showed that HPMC
could interact with Oxy–CD inclusion compounds and increase the binding affinity of
Oxy and CD. It is speculated that when three of them exist together in the solution, Oxy
may enter the cavity of CD, and HPMC will be wrapped outside the inclusion compound.
The antibrowning results of the Oxy–β-CD, Oxy–HP–β-CD, Oxy–β-CD + HPMC, and
Oxy–HP–β-CD + HPMC solutions suggested that the formation of inclusion complexes
with β-CD and HP–β-CD would not affect the antibrowning ability of Oxy. However,
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when Oxy–CD inclusion complexes were used combined with VC and HPMC, it showed
excellent antibrowning effects for apple slices. Taken together, it is suggested that Oxy–β-
CD/Oxy–HP–β-CD + HPMC solutions have great potential as antibrowning agents for
the food industry in terms of enhanced efficacy and stability, and they could be employed
as antibrowning agents to extend the shelf-life of fresh-cut fruit slices. This discovery
provides a new way to improve fruit quality and shelf life by incorporating anti-browning
compounds into edible coatings.
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55. Zupančič, Š.; Lavrič, Z.; Kristl, J. Stability and solubility of trans-resveratrol are strongly influenced by pH and temperature. Eur.

J. Pharm. Biopharm. 2015, 96, 196–204. [CrossRef]
56. Li, H.; Cheng, K.; Cho, C.; He, Z.; Wang, M. Oxyresveratrol as an antibrowning agent for cloudy apple juices and fresh-cut apples.

J. Agric. Food Chem. 2007, 55, 2604–2610. [CrossRef]
57. Lee, S.H.; Baek, S.M.; Jeong, I.; Heo, W.; Hwang, K.A.; Han, B.K.; Kim, Y.J. Anti-browning and oxidative enzyme activity of rice

bran extract treatment on freshly cut ‘Fuji’ apple. Agronomy 2022, 12, 86. [CrossRef]
58. Wong, J.X.; Ramli, S.; Desa, S.; Chen, S.N. Use of Centella asiatica extract in reducing microbial contamination and browning

effect in fresh cut fruits and vegetables during storage: A potential alternative of synthetic preservatives. LWT 2021, 151, 112229.
[CrossRef]

59. Gol, N.B.; Patel, P.R.; Rao, T.R. Improvement of quality and shelf-life of strawberries with edible coatings enriched with chitosan.
Postharvest Biol. Technol. 2013, 85, 185–195. [CrossRef]

60. Soares, N.F.F.; Silva, D.F.P.; Camilloto, G.P.; Oliveira, C.P.; Pinheiro, N.M.; Medeiros, E.A.A. Antimicrobial edible coating in
post-harvest conservation of guava. Rev. Bras. Frutic. 2011, 33, 281–289. [CrossRef]

http://doi.org/10.3390/pharmaceutics13071099
http://doi.org/10.1021/acs.jpcb.7b02115
http://doi.org/10.1016/j.saa.2017.06.067
http://doi.org/10.1021/acs.jafc.9b05992
http://doi.org/10.1021/jf9507654
http://doi.org/10.1016/j.foodchem.2019.01.058
http://doi.org/10.1016/j.foodchem.2022.133207
http://doi.org/10.1016/j.postharvbio.2019.110998
http://doi.org/10.1016/j.carbpol.2013.09.084
http://doi.org/10.1016/S0378-5173(02)00664-6
http://doi.org/10.3390/molecules22111801
http://doi.org/10.1016/j.saa.2019.117278
http://doi.org/10.1002/chem.201801389
http://doi.org/10.1016/j.ijpharm.2020.119768
http://doi.org/10.1016/j.foodchem.2018.05.108
http://doi.org/10.1016/j.foodchem.2015.09.071
http://www.ncbi.nlm.nih.gov/pubmed/26593516
http://doi.org/10.3390/sci1010019
http://doi.org/10.1016/j.carbpol.2018.07.036
http://www.ncbi.nlm.nih.gov/pubmed/30143154
http://doi.org/10.1039/C9FO01884K
http://doi.org/10.1016/j.ejpb.2015.04.002
http://doi.org/10.1021/jf0630466
http://doi.org/10.3390/agronomy12010086
http://doi.org/10.1016/j.lwt.2021.112229
http://doi.org/10.1016/j.postharvbio.2013.06.008
http://doi.org/10.1590/S0100-29452011000500035

	Introduction 
	Materials and Methods 
	Chemicals and Materials 
	Solubilization Effect of Water-Soluble Polysaccharides on Oxy 
	Phase Solubility Study 
	Preparation of Oxy–HPMC, Oxy–CD, and Oxy–CD–HPMC Solutions 
	Fluorescence Spectroscopy Analysis 
	Particle Size Analysis 
	Stability Study of Oxy–CD and Oxy–CD–HPMC Solutions 
	Antibrowning Effects of Oxy–CD–HPMC and Oxy–CD–HPMC + VC on Fresh-Cut Apple Slices 
	Statistical Analysis 

	Results and Discussion 
	Solubility of Oxy in Various Water-Soluble Polymers 
	Study on the Interaction among Oxy–CD, and HPMC 
	Phase Solubility Study 
	Fluorescence Spectroscopy Analysis 
	Particle Size Analysis 

	Long-Term Storage 
	Visual Appearance 
	The Stability of Oxy in Water 
	The Stability of Oxy in Acidic Solution 

	Anti-Browning Effects of Oxy–CD–HPMC and Oxy–CD–HPMC–VC on Fresh-Cut Apple Slices 

	Conclusions 
	References

