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Protein family review
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Summary

The PITP family is one of the two families of phosphoinositide transfer proteins that can bind and
exchange one molecule of either phosphatidylinositol or phosphatidylcholine and facilitate the transfer
of these lipids between different membrane compartments; the other is the structurally unrelated
Sec14p family. PITPs have recently been shown to be critical regulators of phosphoinositides in several
cellular compartments, where they participate in signal transduction and in membrane traffic. PITPs
were originally defined as soluble, 35 kDa proteins that contain a single structural domain. More
recently, however, the PITP domain has also been found in the larger rdgB proteins. Soluble PITPs are
found in many organisms, including mammals, Caenorhabditis elegans (worms), Drosophila melanogaster
(flies), and Dictyostelium discoideum (slime molds), but not in yeasts or plants. Dysfunction of PITPs leads
to neurodegeneration; this highlights the need to understand the biochemical and physiological
functions of these proteins in cells.
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Two families of proteins are able specifically to transfer

phosphatidylinositol (PI) and phosphatidylcholine (PC) in

eukaryotic cells (Figure 1), namely the PITP and Sec14p fam-

ilies [1]. They share no obvious sequence or structural simi-

larity, but ectopically expressed PITPs can rescue sec14

mutants in yeast. Likewise, in functional studies in mam-

malian cells, ectopically expressed Sec14p can be used to

compensate for the loss of PITPs [2,3]. Whereas Sec14p iso-

forms are ubiquitous in eukaryotes, members of the PITP

family appear to be absent from plants and fungi. It is likely

that endogenous Sec14p and PITP family members normally

have distinct biological roles, and the two families should

not be confused. Accordingly, PITPs define a discrete family,

which forms the subject of this review.

Gene organization and evolutionary history
The first mammalian PITP was identified as a 35 kDa protein

with 271 amino acids and no sequence similarity to any

known protein [4]. Three subfamilies can now be defined

(Figure 2) and all isoforms have an amino-terminal PITP-

like domain. Non-systematic nomenclature has arisen as a

result of the different methods by which each isoform was

identified. All three types occur in humans: the first com-

prises the small PITPα and PITPβ proteins, which were

identified by virtue of their transfer activity in vitro; the

second comprises the large rdgBα (also called M-RdgB1,

Nir2 and PITPnm) and Nir3 (also called M-RdgB2) proteins;

and the third type comprises the rdgBβ protein, which is

intermediate in size and was identified by homology to

rdgBα [5]. The rdgB acronym is derived from a retinal

degeneration mutant phenotype (type B) in Drosophila, and

the Nir acronym is derived from a reported interaction with

the amino-terminal domain of the Pyk2 tyrosine kinase

(Pyk2 N-terminal domain-interacting receptor). A third

protein, termed Nir1, was also identified, but this lacks a

PITP domain [6]. Mammalian rdgBα is 39% identical in

sequence to Drosophila rdgB, and mammalian Nir3 is 46%

identical to Drosophila rdgB and 56% identical to mam-

malian rdgBα [7].
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Intron-exon boundaries are not conserved between different

isoforms, and diversity may be enhanced by variation in

mRNA splicing [8]. The recent completion of the human

genome has revealed that the human PITP chromosomal loci

are located at approximately 11q13 (rdgBα), 12q24 (Nir3),

17q13 (PITPα), 17q23-24 (rdgBβ) and 22q12 (PITPβ).

To date, the aforementioned five PITP isoforms have been

identified in humans, and one member of each of the three

subfamilies can be found in the Drosophila melanogaster

genome. Three isoforms can be identified in the genome of

C. elegans, including a PITPα or β and a rdgBα or Nir3

homolog; the open reading frame of the third gene is too

poorly defined to classify. Two genes have been identified in

Dictyostelium discoideum, both of which appear to be

PITPα or β homologs [9]. The existence of multiple isoforms

within subfamilies appears to be a late event in evolution as,

for example, the rat PITPα and PITPβ protein sequences are

more similar to each other (77% identity) than to any other

PITP. The same is true for murine rdgBα and Nir3 (56%

identity) and the Dictyostelium PITP1 and PITP2 sequences

(52% identity). Consequently, the different functions of

mammalian PITPα and PITPβ will not necessarily parallel

the functions of Dictyostelium PITP1 and PITP2; indeed, the

subcellular localization of the mammalian and Dic-

tyostelium proteins do not fully correspond [9].

The absence of PITPs from plants, fungi and bacteria is con-

sistent with a role for these proteins in a subset of phospho-

inositide signaling pathways unique to animals. It is

Figure 1
PITPs bind to PI and PC and transfer them between membrane compartments (for example, the endoplasmic reticulum
and plasma membrane, as shown). PITPs were first purified by virtue of their ability to transfer PI between two membrane
compartments in vitro. PITPs are always occupied by a single molecule of either phosphatidylinositol (PI) or
phosphatidylcholine (PC). The affinity for PI is 16-fold higher than for PC, and depending on the relative distribution of PI and
PC, PITPs can re-distribute PI at the expense of PC. 
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unlikely, however, that PITPs are functionally redundant in

vivo. For example, reduction of PITPα expression in the

vibrator mutant mouse leads to neurodegeneration in the

presence of normal, ubiquitous PITPβ expression [10]. Fur-

thermore, although the PITP domain of Drosophila rdgBα
can rescue the rdgB-null phenotype, rat PITPα is ineffective

[11]. Finally, the as-yet undefined functional properties of at

least some PITP isoforms appear to be conserved between

species as expression of murine rdgBα fully rescues rdgB-

null Drosophila [8].

Characteristic structural features
The amino acid sequence of the PITP domain is highly con-

served in all isoforms and no characteristic short sequence

motifs have been identified. (The sequence can be found

under the Pfam IDs PF02121 or IP_trans [12], the PRINTS

IDs PR00391 or PITransfer [13] or the INTERPRO ID

IPR001666 [14]). The only solved crystal structure in this

family is of PITPα bound to PC [15]. On the basis of this

structure, PITP domains were suggested to comprise three

regions (Figure 3a), of which the amino-terminal lipid-

binding region contains the most highly conserved residues.

This region contains an eight-stranded, concave, mostly

antiparallel β-sheet and two helices (Figure 3b), which encir-

cle the bound lipid and are structurally homologous to the

START family of lipid-binding proteins [16]. As there is no

apparent sequence similarity between PITPs and START

proteins, it appears that these families may have evolved

convergently. The carboxy-terminal helical region of the

PITP domain shows greatest sequence variation and may

play an important role in membrane binding. Finally, the

intervening loop region, which contains the Ser166 phospho-

rylation site, has been suggested to mediate several reported

protein-protein interactions [15].

Assignments to the PITPα/β and rdgBβ subfamilies are

made according to the similarity of the whole PITP domain

rather than any motif. Although human rdgBβ has a short

carboxy-terminal extension, the Drosophila isoform does

not. In contrast, the rdgBα/Nir3 subfamily is additionally

characterized by the presence of an acidic Ca2+-binding

domain (Pfam-B_23582 [12]), six short hydrophobic

regions, a putative metal-ion-binding domain (Pfam DDHD

[12]), and a carboxy-terminal Pyk2-binding domain [6]

(Figure 2). The presence of the Pyk2-binding domain in

Drosophila rdgB has been noted to require a frame-shift

alteration of the previously published sequence [6]. The

hydrophobic regions are probably not transmembrane seg-

ments as previously proposed [17], because, although

murine rdgBα associates with a particulate brain and retinal

fraction on centrifugation, as do other membrane proteins, it

can be extracted using buffers containing high salt concen-

tration, high pH or denaturing agents [7]. Sequence features

distinguishing individual isoforms in each subfamily remain

unclear at present, and may ultimately be better defined by

functional information.

Mutation of Thr59, a putative protein kinase C phosphoryla-

tion site, in PITPα has been shown to affect PI binding [18],

and this residue is completely conserved in all subfamilies.

Modeling the position of PI in the PITPα crystal structure sug-

gests that a hydrogen bond may exist between Thr59 and the

inositol residue [15]. The only established post-translational

Figure 2
Structural relationships within the PITP family. A ClustalW alignment of human and Drosophila (Dm) PITP sequences was made
using MacVector (version 7.0, Oxford Molecular). A bootstrapped dendrogram (1,000 replications) was constructed by
rooting with the Drosophila rdgB sequence, using uncorrected, neighbor-joining parameters and ignoring gap sites. The
corresponding domain topologies on the right illustrate the number of amino-acid residues in each protein and the position of
PITP domains (red), Ca2+-binding domains (green), short hydrophobic regions (blue) and Pyk2-binding domains (yellow).
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modification, however, is phosphorylation of Ser166 in

PITPα by protein kinase C activity. Ser166 is conserved in

nearly all PITPs and its phosphorylation has been suggested

to affect subcellular localization [19].

Localization and function
Although PITPs are defined by their ability to bind one mol-

ecule of either PI or PC, the affinity of PITPα for PI is 16-fold

greater than for PC. This reflects the lower levels of PI than

PC in cells, and typically 40% of the PITPα and β proteins

are liganded with PC compared to 60% with PI. In addition

to their lipid-binding properties, PITPs can transfer PI or PC

from one membrane to another down a concentration gradi-

ent without input of energy (Figure 1). Thus, PITPs solubilize

lipids from membranes and can facilitate their movement

through the aqueous phase.

PITPα and PITPβ are expressed ubiquitously in all tissues.

In brain, PITPα is very abundant and can represent 0.1% of

brain cytosolic protein [20]. During embryonic and early

post-natal stages, expression of the genes for both PITPα
and PITPβ is detected widely throughout the entire develop-

ing central nervous system. In the adult brain, PITPα is

expressed in almost all neurons, whereas the expression of

PITPβ is lower than at earlier stages in the entire gray matter

regions except for the cerebellar cortex [21]. The cellular

concentration of PITPα in brain is estimated at 5-10 µM.

Most tissues contain both isoforms, but in neutrophils

PITPβ is the major isoform and the cellular concentration of

PITPβ in these cells is estimated to be between 5 µM and

10 µM. Within cells, PITPs are localized in different com-

partments: PITPα is present in the cytosol and the nucleus,

and PITPβ is localized in the Golgi and cytosol but not the

nucleus [9,22].

Genetic data indicate that a decrease in PITPα levels leads to

neurodegeneration in the mouse [10]. The vibrator mutation

appeared spontaneously in three individuals of a litter of nine

DBA/2J mice at the Jackson laboratory in 1961. The homozy-

gous vibrator mutation causes an early-onset progressive

action tremor, degeneration of neurons in the brain stem and

spinal cord, and juvenile death. The mutation has been iden-

tified as an intracisternal-A-particle retroposon insertion in

intron 4 of the PITPα gene, causing a fivefold reduction in

RNA and protein levels. The vibrator phenotype is sup-

pressed in heterozygous mice and in one intercross. The

major suppressor locus, termed Modifier of vibrator-1, maps

to proximal chromosome 19 but has not yet been identified. 

The biochemical function of PITPα has been extensively

examined. Several laboratories have used permeabilized cell

preparations from which the cytosolic proteins have been

depleted. Measurements of phospholipase-C-mediated sig-

naling [23], regulated exocytosis [24], the formation of

secretory granules [25] and acid secretion from gastric
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Figure 3
Primary, secondary and tertiary structure of PITPα. The tertiary (a) and primary and secondary (b) structures of rat PITPα,
shown bound to sn-1,2-dioleoyl-PC [12], are graded by color between the amino (blue) and the carboxyl (red) termini (see
Protein Data Bank (PDB) ID 1FVZ [39]). In (b), the seven α helices and the eight β sheets are labeled A-G and 1-8, respectively.

   1 MVLLKEYRVI LPVSVDEYQV GQLYSVAEAS KNETGGGEGV EVLVNEPYEK
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glands [26] have been examined, and all these responses

were found to be dependent on cytosolic proteins. In all

cases, PITPα was purified from brain cytosol as the major

reconstituting factor [27]. Several of these functions are

summarized in Figure 4. Phospholipase C hydrolyses PI bis-

phosphate (PIP2) to generate the second messengers

diacylglycerol and inositol trisphosphate. Activation of

G-protein-coupled receptors or receptor tyrosine kinases is

responsible for increasing phospholipase C activity, and

PITPα was identified as an essential component in ensuring

substrate supply to phospholipase C [28,29]. Analysis of reg-

ulated exocytosis was also identified as being dependent on

PITPα [18,30,31]. In this case, PITPα functioned together

with PI phosphate 5-kinase, indicating that the synthesis of

PIP2 was required for the secretory pathway. 

Several reports have demonstrated the ability of PITPα to

associate with class I and class III PI 3-kinases [32,33] and

type II PI 4-kinase [29] and for rdgBα to associate with type

III PI 4-kinase [34]. In addition, rdgBα and Nir3 have been

shown to associate with Pyk2, a Ca2+-dependent protein

tyrosine kinase [6]. The physiological importance of these

different interactions remains unclear, however.

In flies, phototransduction is dependent on a G-protein-

coupled phospholipase C signaling pathway and the rdgB

protein is essential for phototransduction. The Drosophila

rdgB gene was discovered in three independent screens for

mutants that exhibited either abnormal photoreceptor phys-

iology or retinal degeneration. The rdgB mutant has a defec-

tive light response and its photoreceptors subsequently
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Figure 4
Functions and location of PITPα and PITPβ. PITPα is primarily localized in the cytosol and the nucleus. The major functions of
PITPα to be identified are in phospholipase-C-mediated hydrolysis of phosphatidylinositol bisphosphate (PIP2) and in
maintaining a pool of PIP2 for exocytosis. PITPβ is primarily localized in the Golgi and the cytosol, and it is involved in the
budding of vesicles by making available a pool of phosphoinositides. Abbreviations: DG, diacylglycerol; EGF, epidermal growth
factor; FMLP, N-formyl-methionyl-leucyl-phenylalanine; IP3, inositol-1,4,5-trisphosphate; PLC, phospholipase C; R, receptor
for EGF and FMLP; SG, secretory granule.
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degenerate, more so in the light. The rdgB gene encodes a

160 kDa protein that is found in the retina, optic lobes, ocelli

and in the central brain. In the photoreceptor cell, which

consists of an array of densely packed microvilli called the

rhabdomere and a non-rhabdomeric cell body, RdgB local-

izes to the subrhabdomeric cisternae (SRC), which are

extensions of the endoplasmic reticulum that act as an intra-

cellular Ca2+ store and also function to deliver protein com-

ponents and phospholipids such as rhodopsin and PI to the

rhabdomere [17]. The SRC and the photoreceptor membrane

are in close proximity, separated by a gap of only 10 nm,

which may be narrow enough for the transfer of PI between

the apposing membranes by the cytoplasmic domain of the

rdgB protein [35].

The mouse and human rdgB homologs are strongly

expressed in retina, olfactory bulb and brain and moderately

expressed in other tissues, including lung, liver, kidney and

spleen [36,37]. Mammalian rdgBα can phenotypically rescue

Drosophila rdgB mutants. Human rdgBα maps to chromo-

some 11q13.1, a region known to contain several retinopathy

loci, including Best disease and Bardet-Biedl syndrome-1

[8,37]. Furthermore, in the mouse a dramatic increase in

rdgBα expression is seen on the day 17 of gestation, when

brain development is at its maximum.

Mammalian Nir3 is selectively expressed in neurons, with

high levels in the retina and the dentate gyrus of the hip-

pocampus in the mouse. Unlike rdgBα, Nir3 rescues only

photoreceptor degeneration without fully restoring the light

response, indicating a functional difference between the two

RdgB homologs [7].

Frontiers
Proteins with a PITP domain are a relatively small family of

PI-binding proteins and belong to a larger superfamily of

proteins that bind hydrophobic ligands. Despite a wealth of

data indicating that PITP proteins play a central role in

membrane traffic and signaling, how they execute their func-

tion at the molecular level remains to be understood. PITPs

appear to coordinate the levels of phosphoinositides in dif-

ferent membrane compartments during periods when high

levels of these lipids are needed for both trafficking and sig-

naling purposes, the way the proteins are harnessed in living

cells remains to be understood, however.

At the molecular level, understanding of the mechanism by

which a PITP molecule abstracts a lipid from a bilayer and

facilitates exchange awaits a detailed analysis of the physical

properties of the protein and its ability to interact with mem-

branes. A critical point is that PITPs need a sufficiently high

affinity for membranes to allow them to release and

exchange their bound lipid, but this affinity should be suffi-

ciently low that the protein can move rapidly away from

the membrane. Whether lipid composition or curvature of

membranes [38] play roles in modulating this affinity of

PITPs for membranes in vivo needs further analysis. Fur-

thermore, how does this biochemical function relate to the

requirement for PITPs in membrane budding and fusion?

Regulation of these proteins by phosphorylation may

provide another important functional determinant. Whether

this modification serves as a way of regulating directional

transfer of lipids also remains to be studied.

Finally, comprehending the ways in which the regulatory

actions of PITPs intertwine with cell signaling and mem-

brane trafficking may provide insights into the neurodegen-

eration observed in mouse and fly models that lack PITPs.

Here the creation of more refined mouse models with

inducible and tissue-specific expression, as well as studies of

gene expression during development, will be instrumental in

providing insights into the different physiological functions

of this versatile protein family.
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