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The “dark transcriptome” can be considered the multitude of sequences that are
transcribed but not annotated as genes. We evaluated expression of 6,692 annotated
genes and 29,354 unannotated open reading frames (ORFs) in the Saccharomyces
cerevisiae genome across diverse environmental, genetic and developmental conditions
(3,457 RNA-Seq samples). Over 30% of the highly transcribed ORFs have translation
evidence. Phylostratigraphic analysis infers most of these transcribed ORFs would
encode species-specific proteins (“orphan-ORFs”); hundreds have mean expression
comparable to annotated genes. These data reveal unannotated ORFs most likely
to be protein-coding genes. We partitioned a co-expression matrix by Markov
Chain Clustering; the resultant clusters contain 2,468 orphan-ORFs. We provide the
aggregated RNA-Seq yeast data with extensive metadata as a project in MetaOmGraph
(MOG), a tool designed for interactive analysis and visualization. This approach
enables reuse of public RNA-Seq data for exploratory discovery, providing a rich
context for experimentalists to make novel, experimentally testable hypotheses about
candidate genes.

Keywords: orphan gene, de novo, RNA-Seq, Ribo-seq, gene function, cluster analysis

INTRODUCTION

Pervasive transcription of unannotated genome sequence in eukaryotic species is evidenced in
multiple RNA-Seq studies (Struhl, 2007; Hangauer et al., 2013; Lu et al., 2017; Pertea et al.,
2018; Wu and Knudson, 2018). Indeed, transcription and translation has been described for
non-genic regions of genomes in diverse species (Wilson and Masel, 2011; Carvunis et al.,
2012; Chew et al., 2013; Ruiz-Orera et al., 2014, 2015; Smith et al., 2014; Hsu et al., 2016;
Prabh and Rödelsperger, 2016; Olexiouk et al., 2017; Choudhary et al., 2019). Many studies
have dismissed this expression as transcriptional “noise” (ENCODE Project Consortium, 2012;
Lloréns-Rico et al., 2016; Barroso et al., 2018; Pertea et al., 2018). However, functional genes have
been identified from the so-called “noise” (Andrews and Rothnagel, 2014; Ji et al., 2015). This

Abbreviations: CDS, protein coding sequence; ORF, open reading frame; MOG, MetaOmGraph; SGD, Saccharomyces
Genome Database; Q3-transcribed ORF, ORFs with mean expression values in the upper quantile of mean expression;
PCC, Pearson Correlation Coefficient; MCL, Markov Cluster; GO, Gene Ontology; NCBI-SRA, The National Center for
Biotechnology Information-Sequence Read Archive; BP, biological process; CC, cellular component; MF, molecular function.
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mass of unannotated transcripts, often ignored and little
understood, we refer to as the “dark transcriptome” (Figure 1A).

Each organism contains species-specific genes (denoted here
as “orphan genes”). The challenge of distinguishing orphan genes
in genomes and predicting their functions is immense, resulting
in an under-appreciation of their importance. The emergence
of novel protein coding genes specific to a single species
(orphans) is a vital mechanism that allows organisms to survive
a changing environment (Domazet-Lošo et al., 2007; Tautz and
Domazet-Lošo, 2011; Carvunis et al., 2012; Arendsee et al., 2014;
Schlötterer, 2015; McLysaght and Hurst, 2016). Over generations,
those orphan genes that continue to provide a survival advantage
will be maintained. Orphan genes can be identified from within a
list of genes by phylostratigraphy, the classification of each gene
according to its inferred age of emergence (Domazet-Lošo et al.,
2007; Tautz and Domazet-Lošo, 2011). Two general mechanisms
enable orphan gene emergence:(1) de novo evolution and (2)
divergence of proteins of existing genes beyond recognition in a
short time frame.

Orphan genes can evolve de novo from non-coding sequence
in regions of the genome lacking genes entirely or as new
reading frames within existing genes (Tautz and Domazet-Lošo,
2011; Ruiz-Orera et al., 2015; Arendsee et al., 2019a; Van Oss
and Carvunis, 2019). Indeed, transcriptional and translational
“noise” has been suggested as a mechanism that facilitates novel
gene emergence (Chen et al., 2013; Hoen and Bureau, 2015;
Landry et al., 2015; Gubala et al., 2017; Ruiz-Orera et al., 2018;
Xie et al., 2019). This hypothesis is borne out by in vitro and
in vivo synthetic biology research demonstrating that novel
peptides are often able to bind small molecules (e.g., ATP, and
metals) (Bao et al., 2017) and induce beneficial phenotypes when
expressed (Bao et al., 2017; Neme et al., 2017). If information
on the expression of the dark transcriptome was more easily
accessible, the potential roles of expressed transcripts could be
better considered.

Orphan genes can also evolve from existing proteins
by divergence of protein coding sequences (CDSs) beyond
recognition (Khalturin et al., 2009; Tautz and Domazet-Lošo,
2011; Chen et al., 2013; Menschaert et al., 2013; Vanderperre et al.,
2013; Landry et al., 2015; Gubala et al., 2017; Xie et al., 2019;
Vakirlis et al., 2020). We estimate from the phylostratigraphic
data on yeast genes that this process would require ultra-rapid
sequence divergence relative to that of the average protein.
Evolution of orphan genes from existing protein-coding genes
has been estimated to account for about 18% (human), 25%
(Drosophila), and 45% (yeast) of annotated taxonomically
restricted genes (Vakirlis et al., 2020). However, this estimate can
consider only the that can be compared across species, i.e., those
that are located within syntenic intervals of related genomes;
about∼50% of genes for yeast (Arendsee et al., 2019b).

A systematic analysis of current computational methods for
genome annotation indicates many orphan genes may be missed
in annotation projects (Li et al., 2021). This is because genes are
often identified from sequenced genomes by combining evidence
based on homology with other species (Meyer and Durbin,
2004; Proux-Wéra et al., 2012) with ab initio machine-learning
predictions by detecting canonical sequence motifs (e.g., splice

junctions) (Cantarel et al., 2008; Hoff et al., 2016). However,
homology and ab initio approaches can be problematic in
predicting orphan genes. First, orphan genes cannot be identified
by homology to genes of other species, since they have none.
Secondly, to the extent that an orphan has not yet evolved
canonical motifs, ab initio prediction may be ineffective (Li et al.,
2021). For example, compared to the gold-standard annotations
in the curated TAIR community database (Berardini et al., 2015),
the popular ab initio pipeline MAKER (Cantarel et al., 2008)
predicted as few as 11% of the annotated Arabidopsis orphan
genes, depending on the RNA-Seq evidence supplied (Li et al.,
2021). Enhancing ab initio pipelines by other sequence-based
information [e.g., motif/domain information, cellular location
predictions, predicted isoelectric point (pI), and genomics
context] can improve gene predictions (Grandaubert et al., 2015;
González et al., 2016; Werner et al., 2018).

However, because it is not a given that newly evolved genes
have canonical features, direct alignment of transcriptomic
and/or proteomic data to the genome is critical for annotating
orphan genes, as well as non-coding transcripts (lncRNAs, etc.)
(Carvunis et al., 2012; Ruiz-Orera et al., 2014, 2018; González
et al., 2016; Lu et al., 2017; Wu and Knudson, 2018; Li et al., 2021;
Blevins et al., 2021).

Here, we reuse and re-mine aggregated RNA-Seq data
to discover new potential gene candidates. The study
comprehensively evaluates transcription and ribosomal binding
of all open reading frames (ORFs) in the yeast genome over a
wide variety of conditions, in the context of annotated genes.
The research extends the results of previous studies, in that it
globally represents ORFs in the Saccharomyces cerevisiae genome
across thousands of samples. Furthermore, we provide these
data and extensive metadata via a biologist-friendly platform,
MetaOmGraph (MOG; Singh et al., 2020),1 which provides
interactive, exploratory analysis (Tukey, 1977) and visualization
of expression levels, expression conditions, and co-expressed
genes for the ORF-containing transcripts. This approach
enables experimentalists to prioritize ORFs for functional
characterization, and to logically define experimental parameters
for these characterizations (Singh et al., 2020).

MATERIALS AND METHODS

Extracting ORFs and Delineating
Orphan-ORFs in Saccharomyces
cerevisiae
In order to evaluate potential ORFs in the yeast genome
comprehensively, all ORFs over 150 nt were extracted from
the yeast genome (version: R64-1-1) by emboss getorf (v6.6.0)
using “-minsize 150” and “-find 3,” and translated by emboss
transeq (Rice et al., 2000). Then, we removed the ORFs identical
to annotated genes in Saccharomyces Genome Database (SGD)
based on coordinates by bedtools2 (Quinlan and Hall, 2010).
We further removed ORFs within annotated genes in same
translation frame. These filtrations yielded 24,912 ORFs. To these

1https://github.com/urmi-21/MetaOmGraph
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FIGURE 1 | Annotated genes and dark transcriptome. (A) Definition of Dark transcriptome. Pervasive transcription of unannotated sequences has been found in
many species. Some of these might be protein coding genes that have escaped annotation. Most of these unannotated coding genes are orphan (species-specific)
genes, which have no homolog to other species, and are hard to predict using current gene prediction tools. These orphan genes could emerge by rapid divergence
from ancient genes or could evolve de novo. Other transcribed but unannotated sequences might be non-coding genes. Although many studies have explored the
function and classification of the non-coding transcripts, many transcribed sequences are still unclassified. (B) Classification and numbers of transcripts with
transcription or translation evidence for annotated genes and open reading frames (ORFs). Orphan-ORFs, protein is unique to Saccharomyces cerevisiae
[phylostrata (PS) = 15]; genus-specific-ORFs, protein is unique to Saccharomyces spp. (PS = 10–14); conserved-ORFs, protein has homologs in older species
(PS = 1–9). Q3-transcribed, ORFs with mean expression values across the 3,457 samples in the upper (Q3) quantile of the unannotated transcripts. Low-transcribed
ORFs, ORFs with mean expression values across the 3,457 samples in the lower 75% quantile of the unannotated transcripts. Non-transcribed conserved-ORFs, no
transcription evidence detected (Supplementary Figure 8). (For full PS designations and transcription expression, see Supplementary Material,
S. cerevisiae_RNA-seq_3457_27.mog; for translation per transcript, see Supplementary Material, Ribo-Seq_rawcounts.csv.).

ORFs we added two sets of ORFs < 150 nt identified in other
studies: the 1,139 small translated sequences (smORFs) identified
by ribosome profiling (Carvunis et al., 2012) and the 3,303 of
ORFs identified by TIF-Seq (txCDS; Lu et al., 2017) that were
less than 150 nt (thus, not included in the EMBOSS extraction).
These 29,354 ORFs, together with the 6,692 protein-coding genes
annotated in SGD, were subjected to phylostratigraphic analysis.

We inferred the phylostratum for 29,354 ORFs and 6,692
annotated protein-coding genes via the R package, phylostratr
(v0.2.0) (Arendsee et al., 2019b). This analysis compared
the proteins predicted from the cORFs to UniProt-annotated
proteins of 123 target species distributed across phylostrata:
117 species were identified by the phylostratr algorithm; these
were supplemented with six manually selected species in the
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Saccharomyces genus (S. paradoxus, S. mikatae, S. kudriavzevii,
S. arboricola, S. eubayanus, and S. uvarum). To minimize
false positives when identifying orphan ORFs and CDS from
S. cerevisiae, we took advantage of the customization capabilities
of phylostratr to include the predicted translation products
from all ORFs (>150 nt) from each of the six Saccharomyces
genomes, in addition to all annotated proteins of these species
[see Supplementary Figure 1 for workflow, Supplementary
Section 12 for full species list, and phylostratr_heatmap.pdf
for a gene by gene (and ORF by ORF) inference heatmap].
Each gene was assigned to the most evolutionarily-distant
phylostratum that contains an inferred homolog based on the
adjusted p-value (0.001 as cutoff) as calculated from e-value of
BLASTP (blast-plus v2.11.0). A gene or ORF was inferred to be
an orphan if its encoded protein was assigned the phylostratum
level S. cerevisiae.

Raw Read Processing and Network
Optimization
Our RNA-Seq data analysis pipeline is shown in
Supplementary Figure 2. We selected all samples with
S. cerevisiae taxon ID 4932, Illumina platform, and paired
layout from The National Center for Biotechnology Information-
Sequence Read Archive (NCBI-SRA) and then filtered out
samples with miRNA-Seq, ncRNA-Seq, or RIP-Seq library
strategies. In total, we collected raw reads data (FASTQ format)
and metadata from 3,457 RNA-Seq samples (177 studies).
A kallisto index was created from a FASTA file combining the
cDNAs of annotated genes and unannotated ORFs (Weijers
et al., 2012) with default setting (kallisto index -i yeast.allcdna
allcdna.fasta), and expression levels of annotated genes and
ORFs over the 3,457 RNA-Seq samples were quantified by
kallisto (v0.43.1) with the bootstrap option “-b 100” and
other default settings [Kallisto with and without bias option
give similar accuracy (Bray et al., 2016), we used the default
setting without bias correction] (see Supplementary Material
S.cerevisiae_RNA-seq.mog for RNA-Seq metadata and
normalized cpm data; all data including raw counts is accessible
at DataHub)2.

Strand-specific libraries provide accurate determination of
sense vs. antisense transcription (Zhao et al., 2015), however,
most yeast RNA-Seq data was non-stranded. We quantified all
of the yeast RNA-Seq samples available on NCBI-SRA using
the “unstranded” option. Then, we quantified the 5% (177
samples) of the available RNA-Seq samples are strand-specific
using the strandness option. We compared the expression of
each annotated and unannotated transcript as quantified by
specific strandness (“–fr-stranded” or “–rf-stranded”) with the
expression of each annotated and unannotated transcript using
the default option (no strand-specific) for the 177 samples.
Then, we examined the pairwise Pearson correlation according
to the expression with and without strand-specific option for
each sample, the correlations had a median of 0.85 (range
0.71–0.91; Supplementary Figure 3). These high correlations
between gene expression in the unstranded mode and stranded

2https://datahub.io/lijing28101/yeast_supplementary

mode are consistent with the estimation for the unstranded
RNA-Seq samples having little effect on our downstream Pearson
correlation-based clustering analysis.

We normalized raw counts by edgeR (v3.22.3)
(Robinson et al., 2010) based on the evaluation (Dillies et al.,
2013), and evaluated the performance of normalization by
comparing to the raw counts (Supplementary Section 3). After
normalization, We further defined the robustly expressed ORFs,
as defined by mean expression values in the upper quantile
(Q3-transcribed ORFs). This subset of ORFs were used in
some of the analyses, in particular the network analysis in
which consideration of sparsely expressed and low-expressed
transcripts are problematic. In subsequent methods and results,
if “Q3-transcribed” is not designated, all transcribed ORFs were
used in an analysis.

We generated two datasets: (1) all annotated genes (SGD
dataset); and (2) all Q3-transcribed ORFs, smORFs, and
annotated genes (SGD + ORF dataset). For each normalization
approach and dataset, we calculated pairwise Pearson correlation
matrices among all 3,457 RNA-Seq samples.

Three positive Pearson Correlation Coefficient (PCC) cutoffs,
0.6, 0.7 and 0.8, were used to create networks of different
densities (Supplementary Section 4). We then applied Markov
Cluster (MCL) algorithm to partition each network using our
in-house Java Spark implementation (GitHub: 3 designed to
optimize efficiency. All data analysis in this work, except for
MCL clustering and RNA-Seq expression visualization, were
performed in R software (v3.5.0).

Cluster Evaluation by GO Term
Enrichment Analysis
Clusters resulting from each of the eight MCL analyses obtained
from the different normalization methods and PCCs were
evaluated by Gene Ontology (GO) enrichment analysis using
clusterProfiler (v3.12.0) (Yu et al., 2012); only clusters with over
five genes were considered. The GO term enrichment of each
experimental result was compared to that of 100 random sets
of clusters, which were obtained by permuting gene IDs. For
these permutations, the same number and size of clusters as
those from the experimental result were assigned to random
sets using the method of Mentzen and Wurtele (2008). The best
adjusted p-value (pmin, smallest adjusted p-value) was recorded
for the enriched GO terms in each cluster. Each random cluster
set was assigned a score Si, which is the average pmin across all
clusters in the set

Si =

∑n
j=1 pmin j

n
(1)

where n indicates the number of clusters. The distribution
of S values for GO classes, biological process (BP), cellular
component (CC), and molecular function (MF), for random sets
were compared to the respective values for the real experimental
data. In each ontology, the experimental score was less than any
of the random scores, indicating that experimental data have

3https://github.com/lijing28101/SPARK_MCL
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biological significance (permutation test, p-value = 0). Based on
these GO enrichment results, we chose positive PCC = 0.6 as
cutoff (Supplementary Section 4) for future analyses.

Ribo-Seq Analysis
To investigate the translational activity of unannotated ORFs,
we analyzed 302 samples (23 studies) of yeast Ribo-Seq data;
this represented about half of the available Ribo-Seq in the
SRA database. Raw reads (SRA-formatted) were downloaded,
and the SRA toolkit was used to convert the raw reads to a
FASTQ format. BBDuk (v38.75) was used to find and remove
adapter sequences from the 3′ end of reads, and rRNA reads
were identified and removed using BBMap (v38.75) with default
option (Bushnell, 2014). The cleaned Ribo-Seq reads were
aligned to the reference genome by HISAT2 (Kim et al., 2015).
The actively translating ORFs were detected and quantified
by Ribotricer (v1.3.2), which considers the periodicity of ORF
profiles and provides multiple options for customization (we
used the recommended phase-score cutoff 0.318 for yeast)
(Choudhary et al., 2019). The genes/ORFs with mean counts
across 302 Ribo-Seq samples higher than 1.83 (This is the
maximum mean counts for non-transcribed ORFs. According
to Supplementary Figure 13, the Ribo-Seq expression for non-
transcribed ORFs is too low so that we regard those expression
lower than 1.83 as sequencing noise.) was consider to have
translation evidence.

Visualization and Gene Function
Exploration
As proof-of-concept for the utility of these data, we used the
MOG platform (v1.8.1) (Singh et al., 2020) to explore transcript
co-expression and make functional inferences. We first created
a MOG project S.cerevisiae_RNA-seq_3457_27.mog. This MOG
project combines: (1) the levels of expression of each gene
and ORF in the SGD+ORF dataset across 3,457 conditions;
(2) gene and ORF metadata; and (3) sample metadata. For
each gene and ORF, metadata include: functional annotations
(from SGD); MCL cluster memberships with GO enrichment
analysis; mean expression levels for RNA-Seq and ribosomal
profiling; ribosomal binding evidence; genome location relative
to UTRs and CDSs; GC content; length; genomic positional
coordinates, orientation; and phylostratal assignment. Sample
and study metadata (retrieved from NCBI-SRA)in the MOG
project include: study ID, title, summary, reference, design
description, library construction protocol, sequencing apparatus;
sample title, experimental attributes, number of replicates;
replicate name, sequencing depth, base coverage.

To explore the genes regulated by specific conditions, we
did differential analysis in MOG, using the Mann–Whitney U
test for differential expression analysis, with adjusted p-values
by Benjamini and Hochberg. We chose all genes and ORFs
with expression in the control samples or specific stresses [UV
mutagenesis (Huang et al., 2017); under 37◦C at least 30 min
(Andrie et al., 2014; Gupta et al., 2014; Presnyak et al., 2015;
Wery et al., 2016; Uwimana et al., 2017)]. We designate genes
and ORFs with log fold change > 1 and adjusted p-value < 0.01

as upregulated by the stress,” log fold change<−1 and adjust
p-value < 0.01 as downregulated by the stress.

RESULTS AND DISCUSSION

Identifying Potential Cryptic Orphan
Genes in Saccharomyces cerevisiae
Saccharomyces cerevisiae has the most extensively sequenced and
annotated genome within the Saccharomyces genus, or perhaps
across eukaryotes. However, despite the large body of research
on S. cerevisiae, this genome expresses many transcripts not
annotated as genes (Carvunis et al., 2012; Pelechano et al., 2013;
Smith et al., 2014; Lu et al., 2017; Wu and Knudson, 2018; Blevins
et al., 2021), some of de novo origin (Carvunis et al., 2012; Vakirlis
et al., 2018, 2020; Arendsee et al., 2019a; Van Oss and Carvunis,
2019), some supported with translational evidence (Van Oss and
Carvunis, 2019; Blevins et al., 2021). Our overall goal was to
generate a comprehensive overview of expression of ORFs, and
make these data available in a format that can be readily explored.
For this study, we classified all unannotated ORFs (>150 nt)
and annotated genes in the S. cerevisiae genome according to
phylostrata, transcription and translation evidence, and genomic
context. We also included yeast ORFs < 150 nt with transcription
and/or translation evidence that had been characterized in two
previous publications: smORFs (Carvunis et al., 2012) and
txORFs (Lu et al., 2017). Figure 1B defines our process and lists
the numbers of genes and ORFs identified at each step.

We inferred the oldest phylostratum (PS;
Šestak and Domazet-Lošo, 2015) to which each S. cerevisiae
protein (or candidate protein) could be traced, using the
reproducible and customizable phylostratr package (Arendsee
et al., 2019b; Supplementary Figure 1). Similarity to
proteins of cellular organisms (i.e., proteins tracing back to
prokaryotes) was designated as PS = 1; no similarity to any
protein outside of S. cerevisiae was designated as PS = 15 (see
Supplementary Material, S.cerevisiae_RNA-seq_3457_27.mog
for PS assignments for each annotated and unannotated
transcript). This analysis infers that fewer than 4% of annotated
genes are orphans. In contrast, 54% of unannotated ORFs are
orphans (“orphan-ORFs”), 40% are genus-specific (PS = 10–14),
and only 6% are more highly conserved (PS = 1–9; Figure 1B).

In fungi, plants, and animals, the mean lengths of CDSs of
annotated genes increase during evolution, with CDSs of orphan
genes being the shortest (Toll-Riera et al., 2009; Arendsee et al.,
2014, 2019a; Palmieri et al., 2014; Van Oss and Carvunis, 2019;
Supplementary Figure 8A). The ORFs of yeast also follow a
similar trend: average lengths of orphan-ORFs are shorter and
average length of ORFs increases with increasing phylostrata
(Supplementary Figure 7). Consistent with the finding of Basile
(Basile and Elofsson, 2017), the mean GC content for annotated
orphan genes in S. cerevisiae is slightly lower (though not
statistically significant) than that of more conserved genes.
Similar to this GC content difference for annotated orphan genes,
the Q3-transcribed orphan-ORFs, have a slightly lower mean GC
content than the Q3-transcribed ORFs of other phylostratum
levels (Supplementary Figure 8B). Vakirlis et al. (2018) reported
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a higher mean GC content among those orphan genes that have a
confirmed de novo origin.

Transcriptional Landscape of Genes and
ORFs
Expression of annotated orphan genes is often developmentally
localized, up-regulated under environmental stress, or associated
with species-specific traits (Guo et al., 2007; Li et al., 2009;
Colbourne et al., 2011; Arendsee et al., 2014; Bhandary et al.,
2018). For example, more yeast orphans are ribosomally
bound under starvation conditions than control conditions
(Wilson and Masel, 2011; Carvunis et al., 2012).

We anticipated that a characteristic of many of the
orphan-ORFs that are actual genes that have escaped annotation
would be sparse-expression. We aimed to identify RNA-
Seq samples comprising diverse developmental, genetic, and
environmental conditions, to help to capture expressed but
unannotated transcripts. To gather RNA-Seq data from as
diverse conditions as were available, we collected raw sequence

reads and metadata of 3,457 RNA-Seq samples from 177
studies in NCBI-SRA (see S.cerevisiae_RNA-seq_3457_27.mog
for metadata and counts). The experimental variables across
these samples include a variety of mutants, chemical treatments,
stresses, and growth stages. We quantified the expression of all
29,354 ORFs and 6,692 annotated genes of S. cerevisiae across the
3,457 RNA-Seq samples.

Using RNA-Seq samples drawn from a wide range of
conditions has an additional benefit. Functional inference is a
particular challenge for orphan genes, which have no homologs
in other species, and rarely have recognizable functional domains
(Arendsee et al., 2014). Because genes with similar patterns of
expression are likely to encode proteins involved in common
processes, using datasets incorporating the diverse conditions
under which orphans-ORFs or orphan genes might be expressed
provides a powerful approach to determine the conditions that
induce their expression, and to infer function based on the
co-expressed genes of known function.

Figure 2 shows a heatmap for expression of all annotated
genes, smORFs [sequences encoding small orphan proteins

FIGURE 2 | RNA-Seq expression heatmap across 3,457 samples for orphan-ORFs and annotated genes. Top panel, annotated genes (6,692); middle panel, small
translated sequences (smORFs) (Carvunis et al., 2012) (1,139); bottom panel, orphan-ORFs (15,805) (see Supplementary Figure 9 for full results). Each row
represents a transcript. Within a panel, each transcript is ordered by its mean cpm. Within each row, the 3,457 samples are sorted independently by highest
expression of the transcript. The restricted conditions of expression of many orphan-ORFs is visually apparent.
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with ribosomal evidence of translation (Carvunis et al., 2012)],
and all transcribed orphan-ORFs (>150 nt) across the 3,457
RNA-Seq samples (see Supplementary Figure 9 for heatmap
expression plot of all genes and ORFs). The mean expression
across all samples for annotated genes is 38 cpm, whereas
the mean expression for the Q3-transcribed ORFs is 18 cpm
(Supplementary Table 4). Many SGD-annotated genes are
expressed in most of the samples. In contrast, as we anticipated
based on the erratic pattern of expression of annotated orphan
genes, most of the orphan-ORFs show very low expression in
most RNA-Seq samples, but accumulate more highly in a few
samples. This sporadic expression contributes to the observed
lower mean expression of the orphans across all samples. It
also demonstrates how transcribed sequences might be missed if
smaller, less diverse datasets are considered.

Ninety-nine percent of the 3,457 RNA-Seq samples have
transcription evidence for at least one of the orphan-
ORFs (Figure 3A). Some samples are particularly rich in
orphan-ORFs. For example, 1,000 samples have transcription
evidence for >9,000 of the orphan ORFs; these samples
grown under conditions of nutritional or chemical stress and
studies from different mutant. The phylostrata of transcript

(orphan, genus-specific and conserved) and transcript status
(low-transcribed ORFs, Q3-transcribed ORFs, and annotated)
showed significant effect on the number of RNA-Seq sample
with expression for each gene/ORF according to the two-
way ANOVA test (Table 1, Figure 3B). Younger genes often
expressed in less samples, which is consistent with previous
studies. Unannotated ORFs also expressed in less RNA-Seq
samples than annotated genes regardless of the phylostrata, that’s
one reason why they were omitted from annotation. We chose
two stress with sufficient RNA-Seq samples in our dataset as
example to verify whether young genes are regulated by stress.
Over 2,000 orphan and genus-specific genes and ORFs are
upregulated by the UV mutagenesis (Figure 3C and Table 2),
and about 1,000 orphan and genus-specific genes and ORFs are
upregulated by the high temperature (under 37◦C at least 30 min)
(Figure 3D and Table 2).

The conserved SGD-annotated genes have higher mean
expression than either the orphan annotated genes, the Q3-
transcribed orphan-ORFs, or the Q3-transcribed conserved-
ORFs (Kolmogorov–Smirnov Test, p-values < 0.001; Figure 4).
However, despite their generally sparse distribution, over 600
orphan-ORFs have a higher mean expression than 10% of

FIGURE 3 | RNA-Seq expression by conditions. (A) Number of orphan- ORFs with expression evidence in each RNA-Seq sample. The black bars show distribution
of the counts of the 15,809 orphan-ORFs. X-axis, 3,457 RNA-Seq samples, sorted by counts. The gray bar inset details the top 100 RNA-Seq samples with the
largest number of orphan-ORFs. (B) Number of RNA-Seq samples in which gene/ORF is expressed. ∗∗∗, p-value < 0.001 according to t-test. (C,D) Volcano plot for
differential analysis under UV mutagenesis and high temperature. X-axis, log2 fold change of mean expression under control and stress conditions. Y-axis, -log10 of
adjusted p-value in Mann–Whitney U test. Differentially expressed genes/ORFs are colored according to phylostrata, and gray points indicates unregulated by stress.
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TABLE 1 | Two-way ANOVA test for comparison of the number of RNA-Seq
samples with expression in different transcripts phylostrata and status.

Source of
variation

Degrees of
freedom

Sums of
squares

Mean
squares

F value Pr(>F)

Phylostrata 2 1.63E+10 8.15E+09 31721.7 <2e-16 ***

Status 2 7.33E+09 3.66E+09 14278.5 <2e-16 ***

Phylostrata:Status 4 3.68E+08 9.20E+07 358.1 <2e-16 ***

Residuals 36037 9.26E+10 2.57E+05

Phylostrata, orphan, genus-specific, and conserved; Status, low-transcribed ORFs,
Q3-transcribed ORFs and annotated genes; ***p-value < 0.001.

TABLE 2 | Numbers of genes/ORFs regulated by UV mutagenesis and
temperature stresses.

Stress Regulation Orphan Genus-
specific

Conserved

UV mutagenesis Upregulated by stress 1,014 1,002 379

Downregulated by stress 94 147 877

Temperature Upregulated by stress 272 738 791

Downregulated by stress 115 120 305

Mann–Whitney U test for differential expression, adjusted p-value < 0.01. Log fold
change > 1 upregulated by stress, log fold change <−1 downregulated by stress.

TABLE 3 | Significantly enriched GO terms in Cluster 112.

Ontology GO name Adjust p-value

MF Structural constituent of cell wall 1.90E-27

BP Response to stress 3.51E-27

CC Fungal-type cell wall 1.62E-20

BP Fungal-type cell wall organization 1.34E-19

CC Fungal-type vacuole 3.60E-05

CC Cell wall 1.99E-03

CC Extracellular region 6.18E-03

CC Anchored component of membrane 1.87E-02

Based on the GO terms assigned to the gene members of known function,
Cluster 112 is enriched in the GO terms shown in Table 3. The results indicate
a possible role in stress response related to the cell wall for the ORF members
of Cluster 112 (see S. cerevisiae_RNA- seq_3457_27.mog for complete clustering
and ontology results).

conserved annotated genes, 289 orphan-ORFs have a mean
expression higher than 25% of the conserved annotated
genes, and 36 orphan-ORFs have a mean expression higher
than 90% of conserved annotated genes (Figure 4 and
Supplementary Table 4A).

Translation Evidence of Genes and ORFs
Many RNAs in fungi and animals that have been annotated
as “lncRNAs” are associated with ribosomes, and/or have
proteomics evidence, indicating some of them may function
as protein-coding genes (Wilson and Masel, 2011; Wu et al.,
2011; Hangauer et al., 2013; Ruiz-Orera et al., 2015, 2018).
To examine translation evidence in our study, we globally
evaluated translation evidence, mapping raw reads from 302
ribosomal profiling RNA-Seq (Ribo-Seq) samples in SRA to
the unannotated ORFs and annotated genes of S. cerevisiae

(see Supplementary Material Ribo-Seq_counts.csv and Ribo-
Seq_metadata.xlsx for raw counts and metadata). These 302
Ribo-Seq studies include a variety of conditions, but are lacking
in representation of many stress conditions. About 52% of
Q3-transcribed conserved-ORFs, 27% of genus-specific-ORFs,
and 30% of orphan-ORFs have translational evidence among
these somewhat limited Ribo-Seq samples (Figure 1B). This
compares to 96% of the conserved annotated genes, 27% of
genus-specific annotated genes, and 20% of orphan annotated
genes. The mean Ribo-Seq raw counts were significantly different
(t-test p-value < 0.001) among classes of transcripts, depending
on whether they were orphan, genus-specific, or conserved
(Figure 5A). The mean Ribo-Seq raw counts for the low-
transcribed ORFs are significantly lower than for the Q3-
transcribed ORFs, and the mean Ribo-Seq raw counts for
the ORFs with no transcription evidence are 0 or near 0
(Supplementary Figure 13).

The proportions of Q3-transcribed ORFs with translation
evidence located within, overlapping, or between annotated CDSs
are significantly different among orphan-ORFs, genus-specific-
ORFs, and conserved-ORFs (Chi-square test, p-value < 0.001)
(Figure 5B). Notably, 60% of Q3-transcribed orphan-ORFs
with translation evidence are located in the intervals between
annotated CDSs, compared to only 14% of the genus-specific
ORFs and 10% of the conserved ORFs (Figure 5B).

Since yeast was the first model eukaryotic genome, and has
been reannotated over time, it would be expected that most
conserved genes are already annotated. However, some genus-
specific-genes might have been missed because homology is a
major criterion used for genome annotation. Orphan genes,
which have no homologs in other species, sparser expression,
and likely fewer canonical features (Li et al., 2021), are yet less
likely to have been annotated. In total, 1,007 Q3-transcribed
genus-specific-ORFs and 1,070 Q3-transcribed orphan-ORFs
have ribosomal binding evidence. These transcribed, translated
ORFs are candidates for protein-coding genes.

Four hundred and forty-nine of the 858 Q3-transcribed
conserved-ORFs also have translation evidence. There are several
possible explanations for why a transcript with translation
evidence and homologs in other species are not annotated as
genes. Some of these conserved-ORFs may be pseudogenes
that retain some homology and expression, but have lost
functional capacity. Other conserved-ORFs might encode active
proteins, by because they are expressed only under limited
conditions they might not have been sampled when SGD
annotations were made. Still other conserved-ORFs may have
been ignored because their ORF codes for a shorter protein
than the canonical gene family member. [On average, a
Q3-transcribed conserved-ORF is significantly shorter than
the homologous annotated gene (t-test, p-value < 0.001)].
However, it not a given that because an ORF encodes a
shorter protein it is non-functional. Translation of a short
conserved-ORF might play a regulatory in that it limits
translation of a nearby active protein (Wu et al., 2019). Also,
shorter homologs of proteins with known function may play
a biological role in regulating signal transduction, modulating
enzyme activity, and/or affecting protein complexes, potentially
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FIGURE 4 | Density plot of mean expression level of transcripts across 3,457 samples for annotated genes and Q3-transcribed ORFs. X-axis, edgeR-normalized
mean expression of genes and ORFs. Y-axis, number of transcripts. The area under the curve of the density function represents the probability of a range of mean
cpm. The bimodal curve of all orphan-ORFs is attributable to the low mean expression of the smORFs (see Supplementary Figures 10, 11). About half of the
Q3-transcribed orphan-ORFs have higher mean expression than annotated orpahn genes. Over 600 orphan-ORFs have a higher mean expression than 10% of
annotated conserved genes; 289 orphan-ORFs (gray hatched area) have a higher mean expression than 25% of annotated conserved genes; and, 36 orphan-ORFs
have a mean expression higher than 90% of annotated conserved genes (see also Supplementary Table 4).

competing with their “full-length” homolog (Frith et al., 2006;
Storz et al., 2014).

Network Inference and Co-expression
Analysis
To analyze the expression patterns of the ORFs in the
context of annotated genes, we optimized correlation
and network parameters for the RNA-Seq expression
data (Supplementary Section 4), focusing our subsequent
interactive co-expression analysis and visualization on a dataset
(“SGD + ORF” dataset) composed of 14,885 transcripts (all
annotated genes; the 7,054 Q3-transcribed ORFs; and all 1,139
smORFs) across 3,457 RNA-Seq samples.

We then computed the PCC matrix for the SGD+ORF
dataset, and partitioned the resultant network with PCC > 0.6
(only consider positive correlation) by Markov chain graph
clustering (MCL; van Dongen, 2000) into 544 clusters
(Supplementary Table 1 for overview; genes and ORFs
with cluster designations at Supplementary Material
S.cerevisiae_RNA-seq_3457_27.mog). Forty-six percent of

the 273 annotated orphan genes and 59% of the 3,899 Q3-
transcribed orphan-ORFs are members of clusters containing
more than five genes and include genes of known function, thus
providing potential for functional inference.

It was possible that ORF expression might be correlated
with that of adjacent or overlapping annotated genes, i.e., that
ORFs are expressed due to a physical proximity to transcribed
annotated genes. We used two approaches to evaluate the extent
to which such “piggybacking” might occur. In the first approach,
we focused on the 390 ORFs that are located completely within
UTRs of annotated genes (88% are orphan-ORFs). About 80%
of these ORFs have a PCC less than 0.6 (0.6 is the correlation
cut-off we used for MCL) with the encompassing annotated
genes, however, about 2% (eight) ORFs have a correlation higher
than 0.9. In the second approach, we calculated how many
ORFs are in the same cluster as nearby annotated genes. To
do this, we randomly selected 366 ORFs that were members
of clusters, and made test clusters of the same sizes, each
cluster containing randomly selected annotated genes and the
identical ORFs as in the experimental data. Then, we calculated
the distance of each ORF to each annotated gene in the
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FIGURE 5 | Mean expression and numbers of genes and ORFs with translational evidence, partitioned by phylostrata and genomic context. Ribo-Seq data were
analyzed for genes and ORFs across 302 samples using ribotricer (Choudhary et al., 2019). (A) Mean raw Ribo-Seq counts per transcript for all genes and ORFs.
X-axis, genes and ORFs as classified by phylostrata. Y-axis, mean value of raw read counts. The letters above each bar indicate significance in each group
according to a t-test (p-value cutoff is 0.01). Similar to mean RNA-Seq counts, the conserved genes and conserved-ORFs have more total mean Ribo-Seq counts.
(B). The 3,857 Q3-transcribed ORFs that had Ribo-Seq translation evidence were divided into groups according to their relationship to annotated, and the numbers
of genes and ORFs with translational evidence was determined. The gene/ORF with mean counts across 302 Ribo-Seq samples higher than 1.83 was consider to
have translation evidence. X-axis, groups of genes and ORFs, classified by phylostrata. Y-axis, number of ORFs in each group. The proportions of ORFs are
significantly different among three phylostratal groups according to a chi-square test (p-value < 0.001). Over 60% the orphan-ORFs with translation evidence are
located in the interval between protein coding sequences (CDSs).

randomly created and the experimental clusters. The distances
were not statistically different in the experimental versus the
random clusters (p-value = 0.16 in a t-test for difference).
These analysis indicate that the expression of ORFs is not

generally associated with their proximity to, or overlap with an
annotated gene. However, there is strong support for such a
relationship for specific ORFs [e.g., Figure 6, and as reported
in Vakirlis et al. (2018)].

Frontiers in Genetics | www.frontiersin.org 10 August 2021 | Volume 12 | Article 722981

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-722981 August 10, 2021 Time: 12:24 # 11

Li et al. Landscape of the Dark Transcriptome

FIGURE 6 | Expression patterns of smORF247301 and YPL223C. smORF247301 and YPL223C are located on adjacent regions of chromosome 16 and are
transcribed in convergent orientation. (A) Expression patterns are similar (Pearson correlation, 0.95) across 3,457 samples. (B–D) Expression patterns for
smORF247301 and YPL223C in three studies. X-axis, 3 samples per treatment. Purple bar on right side of panels, mean expression level of all annotated genes;
Green bar on right side of panels, mean expression level of all annotated genes and all ORFs. (B) Expression in response to osmotic stress; (C) expression in
response to desiccation stress (surface cell under stress); (D) expression in response to osmotic and high temperature stress (wild strain vs H2A-S121A mutant).
Visualizations and co-expression calculations used MetaOmGraph (MOG) (Singh et al., 2020).
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About 65% of the Q3-transcribed ORFs could be assigned to
clusters in the co-expression matrix. Regardless of whether these
ORFs are protein-coding, they could play a biological role. Those
with translational activity provide an evidence-based cadre of
candidate protein-coding genes with an inferred function based
on the genes in the cluster with known functions that could be
experimentally tested.

Alternate Analyses
Here, we used positive pairwise Pearson correlations to infer
a network, and MCL to partition this network into clusters;
we then determined that these clusters are enriched in genes
participating in similar biological processes. However, each
combination of network inference and partitioning approaches
can supply complementary and different information about
potential roles of orphan (and indeed all) genes. Networks could
be inferred by, for example, correlation, mutual information
(Zhang et al., 2012), or relatedness approaches (Netotea et al.,
2014). Pearson correlation is highly sensitive at extracting
genes whose expression is linearly correlated across multiple
conditions, but misses non-linear co-expression. Weighted
correlation approaches may minimize the biological bias due to
sample redundancy (Obayashi et al., 2019), but improper cutoff
of sample correlation for sample redundancy may lead to lost
information in the clustering analysis. Likewise, networks can
be partitioned by multiple methods, such as MCL, Modularity
(Newman, 2006), and a very promising new approach, Reduced
Network Extreme Ensemble Learning (RenEEL; Guo et al., 2019).
Each combination of network inference and network partitioning
method may provide different strengths and weaknesses in terms

of extracting different types of useful biological information.
For example, some approaches might be better at identifying
signal transduction pathways, others at metabolic pathways,
stress-responses, or hub genes and their targets. The large
SGD+ORF dataset we provide herein could be analyzed by
different approaches. Such analyses would that extract the same
relationships would provide support for these relationships;
also, comparative analysis would help reveal the strengths
and weaknesses of various network inference and partitioning
methods for extracting different types of biological information.

We have focused here on unannotated protein-coding
transcripts of over 50 aa (except the smORFs, which are smaller);
similar investigations could incorporate non-coding RNAs or
transcripts encoding very small proteins. The information
resulting from such studies could be incorporated into a new
MOG project to enable interactive analysis and visualization.

Gene Ontology Enrichment Analysis for
Co-expressed Clusters
In order to evaluate the significance of the clustering results,
we compared the extent of enrichment of GO terms in the set
of clusters obtained from MCL-partitioning experimental data
to that of 100 randomly generated sets of clusters. For each
randomly generated set, the number of clusters and the number
of genes per cluster were held the same as the set of clusters from
the experimental data; however, the genes assigned to each cluster
were changed by random permutation. The best adjusted p-value
for enriched GO terms was recorded for each cluster and averaged
across all clusters to obtain a mean best p-value (Mentzen and
Wurtele, 2008; Figure 7). Distribution of the p-values for GO

FIGURE 7 | Gene Ontology (GO) enrichment analysis of experimental data and random permutation test distribution. A Pearson correlation matrix of the
Saccharomyces Genome Database (SGD)+ORF dataset was partitioned into clusters by Markov Cluster (MCL). Best p-values (mean of the lowest adjusted p-values
for GO terms) were determined across all clusters of the experimental data and all clusters of random permutations, similar to Mentzen and Wurtele (2008);
Supplementary Section 4. Red arrow, experimental data. Black bars, best p-value of 100 randomly obtained permutations with size and number of clusters
identical to experimental data. BP, biological process; CC, cellular component; MF, molecular function. The clustering result is significantly better for experimental
data than any random permutation.
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terms in the 100 sets of randomized clusters was compared to
that of the experimental data (red arrows in Figure 7). In our
study, for each GO ontology category BP, CC, and MF, the
best mean p-values for the experimental data are 0.019, 0.023,
and 0.027, respectively. These values are significantly better than
those of any of the randomly obtained cluster sets, indicating
that the MCL gene clusters derived from the experimental data
is not random. Most co-expression clusters are composed of
genes and ORFs distributed across spatially diverse regions of the
genome. Co-expressed genes are implicated as being involved in
a similar biological process (Eisen et al., 1998; Spellman et al.,
1998). This study is based on over 3,000 RNA-Seq samples further
strengthens the likelihood that genes in each cluster might share
a related biological process. All genes and ORFs, as partitioned
into clusters by MCL, are provided in Supplementary Material
S.cerevisiae_RNA-seq_3457_27.mog.

Exploring Gene Function: Case Study,
Cluster 112
Markov Cluster Cluster 112 (Figure 8) contains 20 annotated
genes and 21 unannotated ORFs dispersed over 14 chromosomes.

Twelve of the genes are in the seripauperin (PAU) family.
PAU-rich co-expressed gene clusters have also been identified
in independent microarray studies (Magwene and Kim, 2004;
Orellana et al., 2014). The precise molecular function of
the PAU genes is not known. However, many PAUs are
induced by low temperature and anaerobic conditions, and
repressed by heme (Rachidi et al., 2000) and individual
PAU proteins confer resistances to biotic and abiotic stresses
(Rivero et al., 2015). YER011W and YJR150C, both cell wall
mannoproteins are also in Cluster 112, are localized to the
same cellular compartments as PAUs and are also induced
under anaerobic conditions (Kowalski et al., 1995; Kitagaki
et al., 1997; Sertil et al., 1997; Cohen et al., 2001). The
other annotated genes in this cluster have no functional
description. GO enrichment analysis identified eight GO terms
as significantly over-represented in Cluster 112 (Table 3).
Figure 9 represents a case study of an approach to develop a
meaningful hypothesis. The example shows the co-expression
of the genes and ORFs in Cluster 112 across all 3457 samples
of the RNA-Seq SGD+ORF dataset (lower panel). Two studies
that evaluate oxygen content as an experimental variable are
highlighted. Study SRP067275 compares four growth stages of

FIGURE 8 | Network view of genes and ORFs in Cluster 112, a cluster enriched in seripauperins and other stress-responsive genes. A Pearson correlation matrix of
the SGD+ORF dataset was partitioned into clusters by MCL. Edge colors, Pearson correlations(0.6–1.0). Visualization by igraph in R (Csárdi and Nepusz, 2006).

Frontiers in Genetics | www.frontiersin.org 13 August 2021 | Volume 12 | Article 722981

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-722981 August 10, 2021 Time: 12:24 # 14

Li et al. Landscape of the Dark Transcriptome

FIGURE 9 | The 41 genes and ORFs in Cluster 112 respond to anoxia. A Pearson correlation matrix of the SGD+ORF dataset was partitioned into clusters by MCL.
The 41 genes and ORFs in Cluster 112 are co-expressed across multiple conditions. X-axis, 3,457-samples, sorted by study. Y-axis, expression values. Each line
represents the expression pattern of a single gene or ORF. Top left inset, zoomed-in to visualize Study SRP067275. RNA-Seq samples sorted by: aerobic or
anaerobic condition, media composition, and growth phase. ACSH, Ammonia Fiber Expansion-(AFEX-) pretreated corn stover hydrolysate. YPDX, YP media
containing 60 and 30 g/L xylose. The genes and ORFs are up-regulated in response to anoxia, regardless of changes in growth media. Top right inset, zoom-in to
visualize Study SRP098655. The genes and ORFs are up-regulated in response to anoxia, regardless of changes in growth media. No ORF in Cluster 112 is located
near an annotated gene in Cluster 112. Visualizations and co-expression calculations by MOG (Singh et al., 2020).

the stress-tolerant yeast strain GLBRCY22-3 grown in YPDX
and ACSH media, with and without oxygen (McIlwain et al.,
2016; Figure 9, upper left); the expression of the genes and
ORFs in Cluster 112 is higher under anaerobic conditions,
irrespective of media or growth stage. Study SRP098655
compares OLE1-repressible strains growing under anaerobic
and aerobic conditions (Degreif et al., 2017; Figure 9, upper
right); expression of genes and ORFs in Cluster 112 is induced
in cells grown under anaerobic conditions. These expression
patterns indicate the genes and the ORFs in this cluster might
be sensitive to anoxia, and might play a role in cellular
response to this stress.

Exploring Gene Function: Case Study,
smORF247301
Though rare, some transcribed ORFs that are located near or
in an existing gene share a similar transcription pattern. An
example is smORF247301, one of the most highly expressed
smORFs, which is 77 nt upstream of YPL223C (Figure 6). MOG
analysis indicates smORF247301 and the nearby annotated gene
YPL223C have a PCC of 0.95 across the 3,457 RNA-Seq samples.
smORF247301 is located on the “+” strand of chromosome 16,
while YPL223C is on the “−“ strand of the same chromosome.
The CDS of YPL223C is 507 nt, while smORF247301 is
33 nt. YPL223C is more highly expressed than smORF247301.
YPL223C, a hydrophilin gene that is essential in surviving
desiccation-rehydration, is regulated by the high-osmolarity
glycerol (HOG) pathway (Garay-Arroyo et al., 2000), and
induced by osmotic, ionic, oxidative, heat shock and heavy metals
stresses. Analysis using MOG shows smORF247301 and YPL223C
have increased expression in response to osmotic, heat, and
desiccation stresses in three independent studies (Figures 6B–D).

smORF247301 has translation evidence [(Carvunis et al., 2012)
and this study].

It is possible that the transcription and translation of
smORF247301 is “noise” (Eling et al., 2019) associated with
the expression of the nearby YPL223C. A second possibility
is that smORF247301 is a young, not-yet-annotated gene.
It might be “piggybacking” on the expression apparatus
of YPL223C. However, smORF247301 and YPL223C are
transcribed in a convergent orientation (Figure 5B); thus,
the process, described by Vakirlis et al. (2018), whereby
two transcripts in divergent orientation (Figure 5B) are
co-expressed via a common bidirectional promoter would
not apply in the case of smORF247301 and YPL223C.
A different “piggybacking” mechanism might apply: perhaps,
due to its location in open chromatin, smORF247301 is
provided with a ready-made exposure to transcription factors
when gene YPL223C is transcribed. If a transcript (e.g.,
smORF247301) conferred a survival advantage under the
same conditions as did its established neighboring gene (e.g.,
YPL223C), it could emerge as a new, co-expressed, gene by
this mechanism.

Five hundred and thirty-seven orphan-ORFs with
transcription and translation evidence are in physical proximity
to an annotated gene and are transcribed in a divergent
orientation (see Supplementary Material, divergent_pairs.csv).
Of these pairs, 12 are co-expressed (PCC > 0.6); these 12
ORFs are potentially co-expressed by a bidirectional promoter
[e.g., as described by Vakirlis et al. (2018)] The 525 orphan-
ORFs that are not co-expressed, might still be controlled by a
bidirectional promoter, because yeast ORFs can be transcribed
by a bidirectional promoter, but not be correlated in expression
because they are influenced by different transcription factors
(Xu et al., 2009).
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CONCLUSION

In this study we have globally assessed the accumulation of
transcripts representing 36,046 annotated genes and unannotated
ORFs of S. cerevisiae across 3,457 public RNA-Seq samples
derived from diverse biological conditions. Ninety-five percent
of the transcribed ORFs are orphans or genus-specific. Despite
a strong tendency to be transcribed only under restricted
conditions, 269 orphan-ORFs had mean levels of transcription
across all conditions greater than 25% of annotated genes. Over
1,600 transcribed ORFs with translation evidence are members of
co-expression clusters, providing additional clues as to a potential
function.

The proportion of transcribed and translated ORFs
that are functional genes is unknown. The SGD+ORF
dataset assembled herein represents expression of annotated
genes and unannotated ORFs under multiple conditions;
it is delivered in a readily explorable, user-friendly
format via the MOG platform. Combining this network-
informed view of aggregate RNA-Seq data with text-
mining of sample and gene metadata provides a powerful
approach to develop novel, experimentally testable
hypotheses on the potential functions of as-yet-unannotated
transcripts.
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