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A B S T R A C T

Brain networks use neural oscillations as information transfer mechanisms. Although the face perception
network in occipitotemporal cortex is well-studied, contributions of oscillations to face representation remain
an open question. We tested for links between oscillatory responses that encode facial dimensions and the
theoretical proposal that faces are encoded in similarity-based “face spaces”. We quantified similarity-based
encoding of dynamic faces in magnetoencephalographic sensor-level oscillatory power for identity, expression,
physical and perceptual similarity of facial form and motion. Our data show that evoked responses manifest
physical and perceptual form similarity that distinguishes facial identities. Low-frequency induced oscillations (
< 20 Hz) manifested more general similarity structure, which was not limited to identity, and spanned physical
and perceived form and motion. A supplementary fMRI-constrained source reconstruction implicated fusiform
gyrus and V5 in this similarity-based representation. These findings introduce a potential link between “face
space” encoding and oscillatory network communication, which generates new hypotheses about the potential
oscillation-mediated mechanisms that might encode facial dimensions.

Introduction

Neural oscillations (rhythmic neural firing) are ubiquitous features of
the brain and furnish mechanisms contributing to network communication
(Engel and Singer, 2001; Salinas and Sejnowski). Synchronization of
membrane potentials enhances coupling between brain regions, allowing
them to control information flow and organize specific functional networks
(Fries, 2005, 2009). Hierarchical processing among visual areas may be
mediated by oscillatory mechanisms, with forward (bottom-up) and back-
ward (top-down) communication between higher- and lower-level visual
areas carried respectively by high- (gamma) and low- (beta) frequency
oscillations (Michalareas et al., 2016). These connectivity mechanisms
could enable “binding” of visual dimension representations into unitary
object percepts (Engel and Singer, 2001). Although these mechanisms have
perhaps been best-studied for visual processes in non-human animals,
neural oscillations are also a hallmark of visual processing in humans. Low-
frequency power modulation is a ubiquitous feature of visual responses
measured by electroencephalography (EEG) and magnetoencephalography
(MEG). A negatively-deflected alpha/beta (10–30 Hz) response, in parti-
cular, putatively indexes visual object encoding (Hanslmayr et al., 2012).
Nevertheless, more could be learned about how this low-frequency power

deflection gives rise to visual encoding, what information is encoded, and in
what format.

An example of a brain network in the human whose communica-
tion may be mediated by oscillatory mechanisms is the well-studied
network of discrete functional areas in ventral occipital cortex,
fusiform gyrus, V5 and superior temporal sulcus (Haxby et al.,
2001; Furl et al., 2015) associated with perception of dynamic faces
and localized using functional magnetic resonance imaging (fMRI).
These face-selective and motion-sensitive areas encode the form and
motion information used to recognize faces and their emotional
expressions and presumably give rise to oscillatory signals that
reflect this encoding and that would be detectable using MEG. For
example, spatial locations in static photographs of facial forms
useful for expression categorization is reflected in both power and
phase of oscillations below 25 Hz (Schyns et al., 2011). Several
studies have now also examined dynamic facial movements and
illustrated a role for low-frequency oscillations. This frequency
range is modulated by motion and form information present in
facial video (Muthukumaraswamy et al., 2006; Virji-Babul et al.,
2007; Popov et al., 2013; Furl et al., 2014; Güntekin and Başar,
2014; Jabbi et al., 2015; Fox et al., 2016; Symons et al., 2016).
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These findings suggest that oscillations, especially in low frequen-
cies, may be transmitting the information about form and motion
processed in the aforementioned face perception network.

We propose to go beyond these existing studies by investigating the
role of neural oscillations in face perception from the standpoint of
similarity-based representations. A longstanding theory (Valentine, 1991)
of face recognition posits a similarity-based “face space”, where faces are
encoded relative to a set of constituent attributes in a multidimensional
feature space and evaluated based on their similarity with learned
representations. This formulation motivated us to test whether oscillatory
power might also reflect representational distances between faces based
on their physical and perceptual similarity. Such similarity-based object
representations have been discovered using time-domain data from EEG
(Kaneshiro et al., 2015), MEG (Cichy et al., 2014), intra-cranial recording
(Op de Beeck et al., 2001; Kiani et al., 2007) and fMRI (Haushofer et al.,
2008; Drucker and Aguirre, 2009; Proklova et al., 2016) and for static
facial attributes such as identities (Vida et al., 2017), configurations
(Goesaert and Op de Beeck, 2013) and gaze directions (Carlin et al.,
2011). However, these results are limited to time-domain data, and they
cannot link stimulus information content with potential neural mechan-
isms manifested by oscillatory power. Much, therefore, remains to be
learned about how oscillations might (or might not) reflect similarities
among faces, relative to constituent features in a multidimensional
similarity space.

Here, we tested for similarity-based oscillatory responses using
representational similarity analysis (RSA) to compare similarity dis-
tances between MEG response patterns with similarity values derived
from physical and perceptual measures of high-level facial dimensions
and categories (Su et al., 2012). To this end, we developed “physical
similarity spaces” by extracting configurations of facial form and
patterns of facial motion from videos of dynamic facial expressions.
We also developed “perceptual similarity spaces”, based on partici-
pants’ similarity judgments of facial form and motion. Lastly, “catego-
rical similarity spaces” were based on the between- versus within-
category structure for identity and emotional expression. Using these
spaces, we were able to behaviorally test for inter-relationships
between physical and perceptual measures of facial similarity and
whether they contain information about facial identities and emotional
expressions. Our main aim, however, was to establish whether any of
these similarity spaces was manifested by induced oscillatory MEG
responses, as measured at the sensor-level. As a basis for further
comparison, we also tested whether time-domain evoked response
similarity corresponded to physical perceptual or categorical face
spaces. We therefore could determine whether any facial encoding we
found for induced responses was also present in evoked signals. Lastly,
as a supplemental analysis, we optimized a source reconstruction to
localize our sensor space RSA effects within the aforementioned, well-
studied face perception network. We acquired fMRI functional localizer
data in the same participants as those who underwent behavioral and
MEG testing and exploited the superior spatial resolution of fMRI to
constrain our source solution. This multimodal dataset of physical data
extracted from video, behavioral data, evoked and induced sensor-level
MEG responses and fMRI-guided source localizations provided us with
a rich set of measures to fully explore several novel tests about
representations of facial similarity spaces.

Methods and materials

Participants

Twenty participants ( > 18 years) were scanned using fMRI. Of
these, two did not return for the behavioral experiment, one additional
participant did not return for MEG, and behavioral data for one more
participant were lost due to technical issues. Analyses proceeded with
the sixteen participants who possessed the full complement of data. All
participants were right-handed, had normal or corrected-to-normal

vision and reported no history of psychiatric or neurological disorder.
The local Cambridge, UK ethics committee granted approval.

fMRI procedures and analysis

Structural scans were obtained to facilitate data registration during
MEG source reconstruction. The results of fMRI localizer scans were
also used to constrain source solutions to fMRI-defined functional
regions of interest (ROIs). fMRI scans were collected using a 3 T
Siemens Tim Trio MRI scanner with 32 channel head coil. Functional
scans included whole-brain T2*-weighted echo-planar volumes with 64
× 64 matrix and 3 mm2 resolution in-plane and 3.75 mm thick axial
slices, TR 2 s, TE 30 ms, flip angle 78°. Structural scans were T1-
weighted MPRAGE with 1 mm3 voxels. The two localizer runs (175
volumes) were separated by runs related to a different experiment on
faces, not reported here. The localizer procedures were adapted from
Furl et al. (2013, 2015). The experiment was controlled using E-Prime
(Psychology Software Tools, Pittsburgh, PA). In each run, participants
viewed four types of block, each containing grayscale presentations of a
stimulus category: dynamic faces, dynamic objects or static versions of
the same faces or objects (taken from the last frame of each video).
There were six blocks of each block type per run and block order was
pseudo-random. Each block comprised eight presentations of 1375 ms
stimuli and a 1 s inter-block interval. Each participant fixated on a
white dot overlaid on the center of each presentation and pressed a
button-box key with the right index finger when the dot turned red on a
pseudo-random one-third of stimulus presentations. Four male and
four female facial identities, exhibiting transitions from neutral to
disgust, fearful, happy and sad expressions were taken from the
Amsterdam Dynamic Face Expression Set (ADFES) (Van der Schalk
et al., 2011). Face blocks comprised eight identities and four randomly-
selected expressions, with each expression appearing twice. Object
blocks included eight objects, previous used in functional localizers
(Fox et al., 2009; Furl et al., 2013, 2015). Dynamic object videos
included various plants blowing in the wind, a spinning globe, a
spinning ceiling fan, a burning flame, operating machinery and a
running tap.

fMRI data were preprocessed and analyzed using SPM12
(Wellcome Trust Center for Neuroimaging, London http://www.fil.
ion.ucl.ac.uk/spm/) and MATLAB (The Mathworks, Natick, MA, USA).
Data were motion-corrected, spatially-normalized to an EPI template
in MNI space, and smoothed to 8 mm FWHM. At a first level of
analysis, we estimated within-participant effects using an AR(1)
corrected general linear model with a 128 ms high pass filter. Four
regressors were added by convolving onset times and durations for
dynamic faces, static faces, dynamic objects and static objects with a
canonical hemodynamic response function. Regressors were also added
for head motion parameters. We tested contrasts of the block types at a
second level, where a group analysis was conducted to identify
locations in MNI space of occipitotemporal areas associated with
form and motion representations of dynamic faces (Haxby et al.,
2001; Furl et al., 2015). We localized face-selective areas: bilateral
occipital face area (OFA), bilateral fusiform face area (FFA) and right
superior temporal sulcus (STS) (defined by contrasting face blocks >
object blocks) and motion-sensitive areas: right and left V5 (defined by
contrasting dynamic blocks > static blocks). For ROI definition, we
identified the coordinates of the peaks of clusters observed at P < 0.
001 uncorrected that achieved family-wise error correction at the voxel
level using random-field theory (Brett et al., 2003).

Behavioral procedures

The behavioral experiment was conducted using PsychoPy (Peirce,
2009) in a separate testing session either immediately following fMRI
or within two weeks. Participants viewed the 630 possible unique
pairings of 36 dynamic faces. The 36 faces were taken from the BU-
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4DFE face set (Yin et al., 2008) and depicted six identities (three
female). All videos began with a neutral expression on the first frame
(Fig. 1A, left) and then transitioned to the apex of six possible
emotional expressions: anger, disgust, fear, happy, sadness and
surprise (Fig. 1A) within a 2 s video clip. The timing by which this
neutral to emotion movement occurred depended on the individual
dynamics associated with each identity and expression (See Fig. 1B for
average dynamics for each expression). The two videos on each trial
were presented on random sides of the computer screen and looped
until the participant responded, so participants could inspect the forms
and movements for as long as they needed before making judgments.
Participants judged the similarity of each pair by using the mouse to
click on a horizontal line on the screen, which represented a continuous
similarity scale. Participants judged all pairs twice, once for form and
once for motion similarity, in an order counterbalanced over partici-
pants. Participants were instructed to differentiate their form and
motion judgements based on features, shapes and other information in
the video that either were visible across every frame (form) or changed
from frame to frame (motion). For form judgments, we instructed
participants to evaluate only the forms and shapes visible on every
static frame of each video and to ignore anything that changed from
frame to frame, including motion. For motion judgments, we instructed
participants to evaluate only how faces changed across frames and to
ignore information visible across the frames. Although we gave them
this guidance for what “form” and “motion” meant, we did not direct
their attention to any specific information or features nor did we
provide them with specific examples of forms or movements to use.
Instead, participants were told that they should decide these for
themselves, as we were interested studying their choices. Similarity
judgments averaged over participants were used to construct form and
motion-based similarity matrices. The form and motion judgment
similarity matrices could then be used for RSA to test our hypothesis
that MEG oscillatory signals exhibit representations of perceived form
and motion.

Configural form and motion pattern similarity measures

In addition to constructing similarity matrices to characterize
subjective, perceived form and motion, we also constructed similarity
matrices to characterize more physical, objective measures of form and
motion. We then could use RSA to test further hypotheses about the
relationship of brain signals with these physical measures of facial form
and motion. We extracted physical approximations to form and motion
information from the 36 videos used in the behavioral and MEG

experiments. One hundred seventy nine image landmarks were de-
tected and tracked over frames using established methods implemen-
ted by the Psychomorph software (Chen and Tiddeman, 2010; Yu and
Tiddeman, 2010).

We extracted a physical “configural form”measure using landmarks
from the first frame of each video, where only a neutral expression was
present (Fig. 1A). We computed a “configuration” as the 15,931
element vector of two-dimensional Euclidean pairwise distances be-
tween the 179 landmark coordinates. This form measure is “configural”
in the sense that it is defined by distances between corresponding
points that are defined by high-level facial feature locations, rendering
this form representation specific for faces and not computable for non-
face objects, which do not have corresponding reference points and
therefore no comparable configuration of distances. We populated a
configural form similarity matrix (Fig. 2) by taking each pair of videos

Fig. 1. Physical stimulus measures. (A) Examples of neutral (left) and happy (right)
video frames. The neutral frame has superimposed on it the landmark locations used to
compute configural form and motion pattern measures, color-coded according to facial
feature membership. (B) Optic-flow estimates of pixel displacement, averaged for each
expression.

Fig. 2. Test similarity matrices. Similarity matrices for physical and perceptual measures
of form and motion. The labels on the left side of matrices indicate the positions within
the matrices of category members. The matrix rows can be sorted by identities first, then
by expressions or by expressions first, then by identities.
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and computing the Pearson correlation between their landmark con-
figuration vectors.

We also used these landmark positions to approximate a physical
measure of the facial motion pattern. To focus our analysis on non-
rigid changes in facial muscle position, we selected 141 landmarks
within the interior of the face. These landmarks are more likely to be
subject to non-rigid expression motion of moveable facial features
(Fig. 1A) than exterior landmarks representing head shape. We
corrected these landmark positions for rigid, whole head movement
by identifying a triangle of three fiducial landmarks on the nose (a
structure that can only move with the whole head) and applying an
inverse affine transformation to correct the rest of the landmark
positions for these fiducial positions. Then, for each video frame, we
computed the optic flow (in units of numbers of pixels displaced) for
each landmark position, relative to the previous video frame. For
computational efficiency, we averaged these optic flow values over
selected groups of landmarks associated with facial anatomy. The
landmarks included in each feature are color-coded in Fig. 1A and their
optic flow values are summarized in Fig. 1B by averaging each
expression. Motion typically reaches a visible maximum before
1000 ms, although motion profiles are variable. In a similar fashion
to the configural form computation, we found a spatiotemporal motion
configuration by computing the 217,470 element vector of Euclidean
distances between every pair of optic flow values across the 12 features
and 56 video frames. This “motion pattern” captures the three-
dimensional optic flow distribution over two spatial position dimen-
sions and the time dimension. As with our configural form measure, we
have defined motion as a “pattern” between correspondence points so
this high-level representation is face-specific, is not computable for
non-face objects, and does not represent the average motion energy or
an “overall”motion measure. Similarity matrices were then constructed
by taking each pair of videos and computing the Pearson correlation
between their motion patterns.

MEG procedures and analysis

MEG data (306-channel Elekta Neuromag Vectorview system,
Stockholm) were sampled continuously at 1 kHz. Participants’ heads
were localized within the MEG dewar using five indicator coils. Head

shape was characterized by digitizing nasion, left and right preauricular
fiducial locations and approximately 80 additional locations evenly-
distributed over the scalp. The experiment was controlled using E-
Prime. Participants viewed the same 36 videos from the behavioral
experiment. Participants viewed all videos eight times in each of four
scanning runs resulting in 1152 trials and 32 presentations of each
video per participant. Each participant fixated on a centrally-overlaid
white dot and pressed a button-box key with the right index finger
when it changed red on a random one-third of trials. Videos were
sequentially-presented pairs with stimulus onset asynchronies of 3.4 s
within each pair of images and 5 s between pairs. Expressions and
identities were matched or mismatched over face pairs, for the original
intention of measuring repetition suppression. However, repetition
suppression effects did not prove robust or significant and are not
reported further. We speculate that the lack of repetition suppression
may relate to the fleeting, dynamic nature of stimulus information (as
repetition effects may be enhanced through prolonged exposure) or to
the long stimulus durations and interstimulus intervals we used, which
might attenuate repetition effects.

We used Neuromag Maxfilter (Taulu and Kajola, 2005) to register
scalp data, remove artifactual background noise (using a signal
separation method) and downsample to 250 Hz. Using SPM12, con-
tinuous data were filtered 4–50 Hz, epoched from 500 ms pre-stimulus
onset to 2500 post-stimulus onset and downsampled to 100 Hz. Trials
were considered artifactual and excluded from analysis if an axial
magnetometer signal exceeded 2000 fT or a planar gradiometer signal
exceeded 50 ft/mm. For time-domain evoked analysis, epochs (stimu-
lus onset at 0 ms to 500 ms past stimulus offset) were baseline-
corrected using the average response −500 to 0 ms (i.e., stimulus
onset) and then averaged over trials (Fig. 3). For time-frequency
oscillatory responses, we estimated power for 4–50 Hz and −500 to
2500 ms by subjecting epochs to a Morlet wavelet decomposition with
factor 7. Epochs in the time-frequency domain were averaged and
rescaled by taking, for each frequency, a log-ratio baseline correction
with −350 to −100 baseline.

Our principal predictions that our test similarity matrices would
correlate with similarities among MEG responses were tested in sensor
space. The MEG sensor-level matrices were based on evoked and
induced response similarity. For evoked responses, similarity matrices

Fig. 3. Amplitude components of sensor space evoked responses. Interpolated sensor topographies and contour plots of the evoked response amplitudes of the root mean square of
paired planar gradiometers (A) and axial magnetometers (B), averaged between 150–200 ms, a time period selected to capture the M170 component. Also shown are time courses at
single sensors located by the white circle in A and B (selected to illustrate the M170) for the root mean square of a pair of planar gradiometers (C) and an axial magnetometer (D).
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were constructed at every peri-stimulus time point by taking each pair
of videos and computing the Pearson correlation between their
patterns of MEG response over all 306 sensors. Because all oscillatory
response components manifested overlapping occipitotemporal sensor
distributions (e.g., Fig. 4), we could eliminate noisy/irrelevant sensors
by selecting sensors where t-tests indicated an occipitotemporal
response greater than zero at P < 1×e−4 uncorrected for any frequency
or post-stimulus time (56% of sensors). For every peri-stimulus time
point and frequency, we constructed a similarity matrix by taking each
pair of videos and computing the Pearson correlation between their
sensor response patterns.

We hypothesized that low-frequency oscillations would encode
facial similarity space dimensions, with a special interest in the
negative alpha/beta deflection (as discussed in the Introduction), and
so we selected our data, downsampling rate and filters to optimize our
analysis for a relatively low frequency range. Nevertheless, we adopted
wide enough frequency coverage to include theta, alpha, beta and
gamma bands and all the major response components, as shown in
Fig. 4. This included even the gamma component, which appears
maximal from 40 to 60 Hz and is weaker above 60 Hz. Given a report
that similarities among different pictures of faces were related to >
80 Hz electrophysiological responses in intra-cranial recordings
(Davidesco et al., 2014), we also pursued an exploratory analysis of
high gamma (50–100 Hz), using a corresponding 50–100 Hz filter on
continuous data downsampled to 200 Hz. We found no significant RSA
effects for such high frequencies at P < 0.05 using threshold-free
cluster enhancement and the same statistical methods described for

our 4–50 Hz analysis. We therefore focus our results reporting on
analyses optimized for the 4–50 Hz range that includes the traditional
time-frequency response features (Fig. 4).

Although we performed our main RSA analysis on sensor data,
which is relatively close to the original MEG signals, we also trans-
formed our signals into source space. We examined source reconstruc-
tions of both evoked time-domain and time-frequency responses. For
the time-frequency analysis, source reconstruction was only aimed at
testing where, within the face perception network, our sensor space
effects might have arisen, rather than using source reconstruction to
perform a parallel test of our predictions with respect to oscillation
frequency. Indeed, our sensor space analysis was already framed as a
search through frequency space for RSA effects and the result of this
search was that 4–20 Hz was identified as the frequencies best
expressing RSA effects (Fig. 6). Our source space RSA, in contrast to
the sensor-space RSA, was framed as a search through an anatomic
region of interest space for RSA effects. Thus, we searched for
individual regions of interest expressing RSA effects, averaged over
the 4–20 Hz already-known from the sensor-space analysis to best
express RSA effects (Fig. 4).

Individual participant cortical meshes with 20,484 vertices (i.e., the
“fine” mesh) were prepared in SPM12 by computing a non-linear
spatial transformation between each participant's segmented MPRAGE
and a template structural MRI in MNI space (Mattout et al., 2007) and
applying the inverse transformation to a mesh derived from the
template structural MRI. MEG sensor data were coregistered to the
transformed mesh using the three (nasion, left, right preauricular)

Fig. 4. Amplitude components of sensor space oscillatory responses. Interpolated sensor topographies and contour plots of the oscillatory power amplitudes of the root mean square of
paired planar gradiometers (top row) and axial magnetometers (middle row), illustrating main oscillatory response components, including: positive occipitotemporal power in theta/
alpha range (4–12 Hz), averaged between 150 and 300 ms (A, B); negative occipitotemporal power in the beta range (13–30 Hz), averaged between 300 and 2000 ms (C, D); and positive
occipitotemporal gamma band power (40–50 Hz), averaged between 150 and 2000 ms (E, F). Also shown are time frequency representations for the pair of planar gradiometers (G) and
the axial magnetometer (H) located by the white circle in A-F. This sensor location was selected to illustrate the time course of all three response components illustrated in A-F.
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fiducial points for rigid body registration and the manually-defined
head shape points for surface matching (Besl and McKay, 1992). Lead
fields were computed using a local spheres head model (Huang et al.,
1999) and a Bayesian model inversion was carried out using empirical
beamforming (EBB; Wipf and Nagarajan, 2009; Belardinelli et al.,
2012). To facilitate statistical comparison, we used a group inversion
(Litvak and Friston, 2008) restricted to a common set of ROIs, defined
from our fMRI localizer runs using the same participants. Our
reconstructions were constrained to 10 mm spheres around the
fMRI-defined group peak coordinates of right OFA (MNI: 36 −84
−12), left OFA (MNI: −32 −88 −10), right FFA (MNI: 40 −64 −22), left
FFA (MNI: −42 −56 −22), right V5 (MNI: 46 −68 −2), left V5 (MNI:
−50 −72 4) and right STS (MNI: 62 −46 20). From these reconstruc-
tions, we extracted time courses from every vertex (source location)
within our ROIs and subjected them to the same evoked and time-
frequency analysis procedures as we performed on the sensor-level
data. For evoked source responses, the peri-stimulus time courses for
each ROI were averaged over epochs. Similarity matrices were then
constructed for each time point for each ROI. For time-frequency
source responses, we subjected time courses to Morlet wavelet analysis
factor = 7 between 4 and 50 Hz and then averaged the resultant time-
frequency data over trials. Rather than repeat our search through the
frequencies for RSA effects, we used sensor-level RSA to search
frequency space for frequencies showing the strongest RSA effects
(4–20 Hz, as can be seen in Fig. 6), and then averaged over these
frequencies at the source level. We used these averages over low
frequencies to populate similarity matrices for each time point for each
ROI for use with RSA.

Representational similarity analyses

We characterized the information content of our perceived and
physical form and motion similarity matrices and tested whether they
corresponded to MEG response pattern similarity using RSA. RSA
indicates shared information content in similarity matrices by detect-
ing correlations between pairs of such matrices and can be performed
between any two similarity matrices, whether they represent physical,
perceptual, or brain response pattern similarity (Kriegeskorte, Mur and
Bandettini, 2008). RSA proceeded by finding Spearman's rank correla-
tions between pairs of matrices (Nili et al., 2014), separately for every
participant, taking Fisher's r to z transformation of these correlations
and then testing the significance of the participants’ correlation
coefficients at the group level with a one-sample right-sided t-test.
We predicted a priori that correlations would be positive, as negative
relationships between distances were not predicted and, indeed, would
not be readily interpretable. For example, it would be surprising and
difficult to explain if participants perceived facial forms to be more
dissimilar, the more their physical forms or movements were similar.

Before analyzing MEG response similarity, we performed RSAs to
test for inter-relations between six “test matrices”: identity and
expression categorical structure, configural form and motion pattern
physical information (extracted from the videos) and perceived form
and motion judgments (Fig. 2). To test for identity and expression
category structure, we developed test similarity matrices (Fig. 2) that
assigned ones (maximal similarity) to within identity/expression face
pairs and zeros (minimal similarity) to between identity/expression
face pairs. Note that our identity similarity matrix tests for similarity
structures that distinguish between identities, despite changes in six
different expressions, and so is designed to test for expression-
invariant identity representations. Likewise our expression similarity
matrix tests for similarity structures that distinguish between expres-
sions, despite changes in six different identities, and so is designed to
test for identity-invariant expression representations.

Our planned comparisons tested whether: (1) form and motion
judgment matrices are positively correlated, (2) form and motion
judgment matrices positively correlate with identity and expression

matrices, (3) the two physical matrices (configural form and motion
pattern) positively correlate with identity and expression matrices, (4)
The two physical matrices positively correlate with their corresponding
perceptual (form and motion judgment) matrices.

We implemented RSA to statistically test for relationships between
(a) the six test matrices (Fig. 2) and (b) MEG evoked response and
time-frequency power similarity at sensor-level and source-level. We
were also interested in determining whether form and motion repre-
sentations were structured according to the forms or motions of
identity or expression categories, or whether form and motion were
represented more generally. Thus, we ascertained whether form and
motion judgments uniquely contributed to the MEG signal, after
variability due to identity and expression matrices had been removed
using Spearman partial correlations.

To increase the signal to noise ratio, based on the matched-filter
theorem, we provided mild smoothing to the raw RSA correlations,
prior to statistical testing. For evoked timecourses, we applied a low-
pass Butterworth filter ( < 10 Hz) and for the time/frequency maps, we
used Gaussian filtering (4 Hz, 20 ms FWHM). This smoothing step is
commonly used as part of univariate analysis, where smoothing/filter
kernel choice should reflect, in part, potential inter-participant varia-
bility, in order to optimize overlap of the same effect exhibited in
different participants. We chose our kernel sizes to be small and
conservative, compared to the common uses of such applications to
evoked or time-frequency data (Kilner et al., 2005; Kilner and Friston,
2010; Litvak et al., 2011; Perry and Singh, 2014). The resultant data
were then submitted to mass-univariate one-sample t-tests (right-
sided, as all relationships are between similarity distances, and so are
expected to be positive). Threshold-free cluster enhancement (TFCE),
combined with permutation testing (10,000 iterations), as implemen-
ted in the CosMoMVPA toolbox (Smith and Nichols, 2009; Oosterhof
et al., 2016) was used for multiple comparison correction for the
number of time points (for sensor-level evoked responses and for
source-space ROIs) and the maps of time points and frequencies (for
sensor-level oscillatory power).

Results

Analysis of test similarity matrices

Fig. 2 shows the six test similarity matrices representing identity
and expression categories, configural form, motion pattern and per-
ceptual judgments about form and motion. The rows of the similarity
matrices can be sorted by identities and then by expressions (first, third
and fifth rows, Fig. 2), such that greater within-identity similarity
(compared to between-identity similarity) appears as half-triangles
near the diagonal, where same-identity pairs group together (first row,
Fig. 2). This identity-based categorical structure is visible for configural
and perceived form. When the test matrices are sorted, instead, by
expression and then by identity (second, fourth and sixth rows, Fig. 2),
expression categorical structure appears as half-triangles near the
diagonal. This pattern is visible for motion judgments, although some
categories (disgust, fear and anger) appear more confusable than
others (happy), consistent with previous findings (Furl et al., 2013).

We used Spearman rank correlations (RSA) to formally quantify
shared information in the test similarity matrices. First, we found that
form and motion judgment matrices shared information r = 0.22, P <
0.001. Second, we tested for any inter-relationships form and motion
judgments might have with identity and expression categorical struc-
tures. Identity was associated with form r = 0.61, P < 0.0001, but not
motion judgments r = −0.03, P = 0.472. Expression was associated
with both form r = 0.22, P < 0.001 and motion judgments r = 0.54, P
< 0.0001. Third, we tested for associations of configural form and
motion pattern with identity and/or expression. Identity was asso-
ciated with configural form r = 0.60, P < 0.0001 and motion pattern r
= 0.09, P = 0.02. However, expression was associated with neither
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configural form r = −0.09, P = 0.99 nor motion pattern r = 0.04, P =
0.303. Fourth, we tested for associations of configural form and motion
pattern with form and motion judgment. We found that configural
form related to form r = 0.49, P < 0.0001 but not motion judgments r
= −0.009, P = 0.825. Motion pattern was related to both form r = 0.19,
P < 0.001 and motion judgments r = 0.11, P = 0.005. Although we
used planned comparisons, the same correlations just reported re-
mained significant after a more conservative Bonferroni correction for
the 13 comparisons (critical P = 0.008), with the exception of the
relationship between motion pattern and identity.

To summarize, Identity, along with the physical and perceptual
measures of form composed an inter-correlated group of measures.
While expression was also related to form perception, expression
further composed a part of a group of inter-correlated measures that
included perceived motion perception and (physical) motion pattern.

Analysis of MEG sensor data

Fig. 3 shows main MEG response amplitude components in peri-
stimulus time. We observed an M170 response with its typical latency
and response distribution over sensors. A transient increase in theta/
alpha power (4–12 Hz) appeared coincident with the M170. This was
followed by a negative deflection in the alpha/beta range (8–25 Hz)
which was sustained for the remainder of the 2 s epoch, consistent with
previous reports (Hanslmayr et al., 2012; Furl et al., 2014). A gamma
power component appeared coincident to the M170 and initially
broadband. However, this component was sustained throughout the
remainder of the epoch, where it was centered on 40–60 Hz. To
demonstrate that our selected range for RSA (4–50 Hz) overlaps with
this gamma power component, the sensor maps showing positive
occipital gamma field power from 40 to 50 Hz are shown in Fig. 3E
and F. All three time-frequency response components showed power
distributed over posterior occipital and temporal sensors. For RSA, we
were interested in testing whether categorical, physical and perceptual
similarity was exhibited in MEG responses concomitant with these
univariate response amplitude components.

We tested whether similarity among MEG sensor patterns corre-
lated with the six test similarity matrices using Spearman rank
correlations. This analysis allowed us to test our principal hypothesis
that oscillations, especially in low frequencies, show similarity patterns
that match those of physical and perceived facial form and motion and
similarities that distinguish identities (across changes in expression)
and expression (across changes in identity). The correlations were
numerically small (maximum 0.12) but statistically significant and
comparable to previous reports including (as examples) split-half
Spearman correlations of object recognition similarity fMRI data
(Walther et al., 2016) and correlations between facial identity-based
similarities in MEG responses (Vida et al., 2017).

For time-domain evoked responses, we tested our test similarity
matrices (Fig. 2) against MEG sensor pattern similarity separately for
each time point (Fig. 5) and found that information about identity,
configural form and form judgment was exhibited by evoked responses
coincident with the M170, peaking circa 150–200 ms, and decaying
until before 500 ms. Controlling for identity categorical structure using
partial correlation eliminated the relationship between evoked re-
sponses and form judgment and rendered any residual relationship
with configural form at this early time non-significant. Controlling for
expression did not alter any results. At a later time (~900 ms),
configural form and form judgment showed a weaker relationship with
evoked responses. However, at this time, there was no concomitant
relationship with identity and partialing out identity or expression
matrices did not alter the relationships between physical and perceived
form. Thus, at this later time, a small amount of form information was
represented in evoked responses, but not enough to distinguish
different identities or expressions. At an even later time period,
250 ms after stimulus offset, evoked responses exhibited representa-

tions of identity and form judgment, but did not show a relationship
with configural form. Although evoked responses related to motion
pattern similarity between 500 and 1000 ms, they showed no relation-
ship with motion judgment at any time. Thus, evoked responses can
signal some motion information, but none that factors into perceived
motion similarity or expression.

Time-frequency domain oscillatory power at the sensor-level re-
vealed positive statistical relationships between low-frequency re-
sponse pattern similarity and every test similarity matrix (Fig. 6),
except for expression. We report P-values for the maximal (peak) effect
found within the stimulus duration. The identity matrix showed an
early effect ~200 ms (peak, P = 0.001, corrected), a later effect that
extended from before 1000 ms nearly to stimulus offset (2000 ms) and
a final effect ~250 ms post-stimulus offset. Configural form, like
identity, exhibited an early (but much smaller) relationship with
~5 Hz responses, followed by a larger 4–30 Hz effect extending
between 1000 ms (peak, P = 0.001, corrected) and stimulus offset,
and a final effect 250–500 ms post-stimulus offset. Motion pattern
related to 4–30 Hz responses at around 900–1000 ms (peak, P =
0.002, corrected). Perceived form related to 4–40 Hz responses at
550–1200 ms (peak, P = 0.006, corrected) and also showed later effects
in the post-stimulus offset period for 10–30 Hz responses at 250 ms
post-stimulus offset and 4–20 Hz responses at 400–500 ms post-
stimulus offset. Perceived motion related to 6–30 Hz responses at
400–800 ms (peak P = 0.02, corrected).

To summarize the results for oscillatory responses, several test
similarity matrices matched the similarity structure of low-frequency
oscillations either around 200 ms, or later, between 500 and 1500 ms.
At this later time, several measures were roughly aligned in time, often
directly overlapping. These measures included identity (900–1900 ms),
configural form (900–2000 ms), form judgment (600–1500 ms), mo-
tion pattern (600–1200 ms) and motion judgment (500–800 ms).
Although our measurements of these timings are unlikely to be exact
(due to measurement noise, variable effect sizes, inter-participant
variability and variability in stimulus motion timing), it seems,
collectively, that they might show convergent results within the period
between 500 and 1200 ms. It is thus possible that some of these
oscillatory effects reflect a broad, general encoding of form and motion
information, that forms the basis for behavioral perceptual reports and
contains form information that, at least, can distinguish between
different identity categories.

Although there appears to be enough information about form
available during this time period to distinguish identities (across
changes in expression), these responses may contain more information
about form and motion than is needed to differentiate categories like
identity or expression. To assess this possibility, we re-tested the
relationships between MEG oscillatory responses and test similarity
matrices, but partialing out identity or expression in cases when they
were collinear. The relationship between MEG time-frequency re-
sponses and configural form remained significant after controlling for
identity (peak P = 0.02, corrected). Relationships with motion pattern
were also significant after controlling for identity (peak P = 0.004,
corrected) or expression (peak P = 0.004, corrected). The relationship
between MEG time-frequency responses and form judgment remained
significant when using partial correlations that controlled for variation
in identity- (peak P = 0.02, corrected) or expression-based similarity
(peak P < 0.0001, corrected). The relationship between MEG time-
frequency responses and motion judgment remained significant after
controlling for expression (peak P = 0.02, corrected).

Analysis of MEG source reconstructions

Our source reconstructions were a supplementary analysis that
aimed to identify brain regions from within the face perception
network that give rise to the effects that we observed in sensor space.
We localized evoked signal and also localized induced signal, averaged
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within frequencies that we observed in sensor space (Fig. 6) to exhibit
RSA results (4–20 Hz). We projected these sensor data onto vertices
that correspond to anatomical locations on a cortical mesh. We then
analyzed similarity among the patterns of activation distributed over
the vertices found within each fMRI-defined brain area.

For time-domain evoked responses, we extracted these patterns and

compared their similarity to our test similarity matrices at every post-
stimulus time point. We localized in source space (Fig. 7) the evoked
results that we observed in sensor space (Fig. 5) to bilateral FFA and
right V5. This activity was related to both early (~200 ms) effects of
identity, configural form and form judgment and later effects of
configural form, form judgment and motion pattern. Left V5 also

Fig. 5. Representation similarity analysis of sensor-space evoked responses. T-values for Spearman correlations between sensor-level evoked response pattern similarity and test
similarity matrices representing: (A) categorical structure of identity (green) and expression (gray); (B) configural form (pink) and motion pattern (gray); (C) form (blue) and motion
(gray) judgments; (D) configural form (pink) and form (blue) judgments, each controlling for identity categorical structure using partial correlation. Shaded areas represent standard
errors of the mean. Asterisks at bottoms of graphs indicate time points with Spearman correlations significantly greater than zero at P < 0.05 after threshold-free cluster enhancement
correction for the number of time points. Asterisks are color-coded by test similarity matrix.

Fig. 6. Representation similarity analysis of sensor-space oscillatory responses. T-values for Spearman correlations between sensor-level oscillatory power pattern similarity and test
similarity matrices representing: (A) identity and (B) expression categorical structure; (C) configural form; (D) motion pattern; (E) form judgments; (F) motion judgments. Black
contour lines outline clusters of time-frequency points that are significant at P < 0.05 using threshold-free cluster enhancement multiple comparison correction.
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Fig. 7. Representation similarity analysis of source-space evoked responses. T-values for Spearman correlations between source-level evoked response similarity in fMRI-defined
functional regions of interest and test similarity matrices. Lines are color coded by region of interest. Asterisks at bottoms of graphs indicate time points with Spearman correlations
significantly greater than zero at P < 0.05, threshold-free cluster enhancement corrected. Asterisks are color-coded by region of interest. Panels A-F are left hemisphere data extracted
from OFA (blue), V5 (red) and FFA (green). Panels G-L are right hemisphere data extracted from STS (gray), OFA (blue), V5 (red) and FFA (green). Test similarity matrices include (A,
G) identity and (B, H) expression categorical structure; (C, I) configural form; (D, J) motion pattern; (E, K) form judgments; (F, L) motion judgments.
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Fig. 8. Representation similarity analysis of source-space oscillatory responses. T-values for Spearman correlations between source-level oscillatory response (averaged 4–20 Hz)
similarity in fMRI-defined functional regions of interest and test similarity matrices. T-values for Spearman correlations between source-level evoked response similarity in fMRI-
defined functional regions of interest and test similarity matrices. Lines are color coded by region of interest. Asterisks at bottoms of graphs indicate time points with Spearman
correlations significantly greater than zero at P < 0.05, threshold-free cluster enhancement corrected. Asterisks are color-coded by region of interest. Panels A-F are left hemisphere data
extracted from OFA (blue), V5 (red) and FFA (green). Panels G-L are right hemisphere data extracted from STS (gray), OFA (blue), V5 (red) and FFA (green). Test similarity matrices
include (A, G) identity and (B, H) expression categorical structure; (C, I) configural form; (D, J) motion pattern; (E, K) form judgments; (F, L) motion judgments.
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contributed to effects in the early time period and to motion pattern.
Bilateral OFA also contributed to identity in the early time period.
Other findings were small and/or transient.

For time-frequency oscillatory source-level responses (Fig. 8),
bilateral FFA was related to the sensor-level RSA effects on identity,
form judgments and motion judgments. Right V5 contributed to effects
of identity, configural form and form judgments. Left OFA contributed
to the RSA motion pattern effects. Other findings were small and/or
transient. The configural form RSA effects that we observed at sensor
level were not as well-detected in source responses.

Discussion

Similarity spaces manifested in behavior and MEG signals

We identified a number of new findings with respect to the
structure of similarity space-based encoding in MEG signals, including
similarity spaces associated with several physical and perceptual
dimensions of dynamic facial video and facial identity. Our results
revealed relationships between similarity representations of (1) physi-
cal information extracted from facial video, (2) behavioral-reports of
perceived form and motion and (3) facial identity and emotional
expression.

Physical and perceived form information was associated with
identity and, to a lesser degree, expression. In contrast, we found
inter-relations among expression and physical and perceived motion.
These behavioral RSA findings underscore the differences in physical
and perceptual information that support identity and expression
recognition. Indeed, our findings are consistent with existing models
of identity and expression recognition, which predict that identity and
expression perception is based on differing degrees of form and motion
information (Haxby et al., 2001; Calder and Young, 2005).

We also applied this same similarity-space technique to identify
similarity space dimensions (form, motion) and their associated
categorical perceptions (identity, expression) that are represented in
MEG activity measures (evoked versus induced oscillatory). We tested
this primary hypothesis in sensor space targeting a frequency range
that captures three well-known univariate components of MEG re-
sponses (alpha, beta, gamma). Identity and physical (configural) form
encoding was associated with early (150–250 ms) evoked and induced
response components, with stronger physical and perceptual form
effects for evoked responses. Later (500–1200 ms), oscillatory re-
sponses ( < 20 Hz), but not evoked responses, showed encoding of
several physical and perceptual measures, alongside identity encoding.
Because these responses were likely to arise from the oft-reported
network of face-selective and motion-sensitive brain areas (that we also
measured using fMRI in our participant sample), we computed source
reconstructions optimized to test for the locations of our sensor-space
findings within these areas. We found evidence primarily for FFA and
V5 in encoding physical and perceptual dimensions.

In summary, we offer novel findings with respect to similarity-
based, spatiotemporal representations of dynamic faces, which suggest
that there are distinct roles for evoked and induced responses in
encoding form and motion dimensions, including those that might
support identity recognition. Given that neural oscillations manifest
fundamental neural communication mechanisms (Fries et al., 2005),
our findings provide a new step toward a mechanistic understanding of
how the face perception network communicates and gives rise to
behavior.

Measuring dimensions of dynamic faces with physical measures

We used subjective judgments as behavioral measures of perception
of the dimensions of facial similarity spaces. However, participants
were instructed to choose the most relevant facial information for
similarity. The facial information chosen is not obvious to researchers

and so we extracted physical measures of form and motion to assist
interpretation. Jabbi et al. (2015) successfully used a similar strategy to
show that beta power amplitude tracks a physical quantification of
facial expression motion. Here, we similarly quantified motion from
facial video, but using a motion pattern measure together with RSA to
relate this physical measure with both perception and MEG responses.
We found correlated similarity between physical and perceived motion,
even though our motion pattern measure nevertheless lacked the
expression categorical structure that was evident for perceived motion.
There is room for further development of this novel approach that
might in future better capture movements discriminative of expression
categories.

Physical and perceived measures were correlated for form also and
both measures exhibited greater between-identity similarity than with-
in-identity similarity. In contrast, neither physical nor perceived
motion showed a relationship with identity. Nevertheless, some varia-
tion in motion pattern influenced form perception. Facial morphology
might influence both a face's invariant static appearance while con-
straining the movements of the face and so could influence static form,
motion and “structure from motion” perception.

Representations revealed by evoked versus induced responses

In addition to using behavioral RSA to understand the perceptual
dimensions of similarity space representations, we also tested for
representation of these dimensions in sensor-space evoked time
domain and induced oscillatory responses (Figs. 5 and 6). In a
relatively early time period, these two measures showed convergent
findings, related to identity and configural form encoding. These RSA
effects may be related to the M170, or an MEG equivalent of N250. The
characteristics of this effect conform to proposals that facial identity
information becomes available and is reflected in evoked potentials
near to this time period (Schweinberger and Burton, 2003). At least for
evoked responses, information during this time period seemed limited
to form information organized by identity. Effects relating evoked
responses to physical and perceived form measures became non-
significant after partialing out the identity matrix.

The identity-specific similarity information encoded during this
early time period by evoked responses and low-frequency oscillations
must include high-level visual information. Our identity matrix con-
siders similarities among identities across changes in expressions and
so the identity code is likely to be expression-invariant. Although a
previous study examined identity-based similarities among electrocor-
ticographic gamma responses (Davidesco et al., 2014), invariance
across different static photographs pictures of the same identity was
not reported. Our evoked response results more closely resemble those
of Vida et al. (2017), who show invariant identity decoding for evoked
responses to static photographs in the same early time period, although
they did not analyze time-frequency representations or dynamic faces.
We also show evoked responses and < 20 Hz similarity spaces that
manifest structures correlated with our physical configural form
measure. This measure captures high-level form information, as it is
based on demarcations of shapes, and is computed based on distances
that span the face between landmarks. This measure is not derived
from local image information and could not be represented by neural
populations with small receptive fields, such as in retinotopic cortex.

At later time periods (500–1200 ms), evoked time domain (Fig. 5)
and induced oscillatory responses (Fig. 6) were more divergent. While
evoked responses no longer encoded identity, time-frequency power (
< 20 Hz) gave rise to similarity spaces that corresponded to identity as
well as physical and perceived form and motion. Although the
responses did not all share identical timing, they were approximately
coincident and might therefore represent a common representational
similarity space. Unlike the early evoked response, these later oscilla-
tory responses reflected both identity-dependent and identity-indepen-
dent representations of form, as the relationships with both physical
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and perceived form matrices were robust to partialing out the identity
matrix. Low-frequency representations therefore might manifest a
general similarity space related to several facial dimensions, with a
subset of the information capable of distinguishing identities. In any
case, measurement of induced responses were necessary to reveal both
motion- and form-based representations that were are not readily
measureable in evoked time-domain signals. Thus, our results intro-
duce an important methodological caution, as many EEG and MEG
studies limit their analysis to evoked responses.

This finding of general dimensional coding, beyond identity cate-
gorical structure complements previous fMRI research. While facial
identities are decodable from fMRI response patterns (Anzellotti and
Caramazza, 2014), neural response patterns can represent facial
information that goes beyond discrete identity membership, including
quantitative similarity along perceived dimensions of faces (Carlin
et al., 2011; Goesaert and Op de Beeck, 2013; Stolier and Freeman,
2016). For example, Sormaz et al. (2016) shows that physical facial
landmark configurations (similar to our configural form measure) and
perceptual similarity judgments between static facial expression images
correlate with fMRI response similarity even after expression catego-
rical structure is eliminated from the data. This type of this broader,
more generalized similarity-based coding (as opposed to coding limited
to discrete categories) may be prevalent. Occipitotemporal fMRI
responses encode the constituent dimensions of diverse visual stimuli
from objects to animals (Edelman et al., 1998; Haushofer et al., 2008;
Proklova et al., 2016) and object similarity can be detected in MEG
time-domain patterns (Cichy et al., 2014). However, time-domain MEG
and fMRI cannot speak directly to whether oscillatory neural mechan-
isms mediate representations capable of producing similarity relation-
ships. Our findings introduce the possibility that neural oscillations
may contribute to general coding of stimulus dimensions for dynamic
faces and other visual stimulus domains.

One surprising finding from our sensor-space RSA was that no
relationships were found between MEG signals and facial expressions.
When the participants’ task was to judge perceived form and motion, their
judgments distinguished expression categories. In contrast, MEG signals
while viewing faces (but not making judgments) did not distinguish
emotional expressions. This is not likely due to insufficient power, as our
data provided sufficient power to detect relationships between MEG
similarities and a number of other types of information, including identity.
Few results of successful decoding of dynamic facial expressions from
MEG or EEG sensor data are reported to date (but see Tsuchiya et al.,
2008, for decoding of morphed emotion transitions from electrocortico-
graphy) and so we can only speculate about this post hoc. However, there
are a number of mostly non-mutually exclusive possibilities that will need
to be considered in future attempts. (1) Facial form information, used for
recognizing identity, is available immediately upon stimulus onset. Thus,
the timecourse of form processing and identity recognition may be similar
across stimuli. However, expressions elapse at variable rates and so
transient expression recognitions may not have overlapped sufficiently
across participants to yield effects. (2) There is typically substantial
variability in the recognizability of different expressions (e.g., happy faces
are well-recognized while fearful expressions are not). Fig. 2 shows, for
example, that perceivedmotion does not predict every expression category
equally. This may reduce our power for detecting expressions matrices
defined for all expressions equally (Fig. 2). (3) Facial expressions may not
be all processed simultaneously by a single cortical system (Calder and
Young, 2005). Several MEG signals, occurring at different times and from
different sources may contribute to expression recognition. Some sources,
like the amygdala, may not be as accessible to MEG as others. (4) Our
expression matrix required that expressions be distinguished across
identities. However, representations accessible to the MEG may be
identity-specific. (5) Participants were not instructed to respond or attend
to expression or the face, but responded to fixation point color changes.
Expression effects might manifest when they are task-relevant.

Do oscillations mediate face space representations?

What causes brain signals to exhibit these similarity-based relation-
ships? Intracranial recording studies in humans (Op de Beeck et al.,
2001) and macaque monkeys (Kiani et al., 2007) show that population
coding gives rise to distributed response patterns that reflect similarity
relationships among stimulus attributes. Population codes, defined
over neurons sensitive to facial form or motion dimensions, also
accords with face space theory. This popular theory of face representa-
tion (Valentine, 1991) suggests that faces are represented as vectors in
a multidimensional similarity-based feature space. Our multivariate
RSA results show that low-frequency neural oscillatory response
patterns can index a type of similarity-based coding and should serve
as candidates for future study on the dimensions of face space
representations.

This potential link between face space dimensions and oscillations
introduces a new mechanistic perspective on face perception that can
be described in terms of network function (Fries, 2005). Empirical
evidence and theoretical modeling raise the possibility that low-
frequency oscillations in the visual system arise from backward
hierarchical connectivity (Bastos et al., 2012; Michalareas et al.,
2016). If so, then our data suggest a new hypothesis that top-down
processing (i.e., backward connectivity) is key for instantiating simi-
larity space representations. Although hypotheses of such a mechan-
istic nature remain speculative now, the finding that multidimensional
similarity space representations might rely on low-frequency channels
that are not necessarily in phase with stimulus presentation (induced
responses) introduces novel mechanistic neuroscientific hypotheses
that are testable.

Relationship to oscillatory response amplitude components

To date, links between visual perception and oscillations have relied
predominantly on univariate analysis of response amplitudes, rather
than the multivariate similarity space approach we employed here. An
oft-reported (Hanslmayr et al., 2012) negative deflection in the alpha/
beta range (8–12 Hz), arising 250–300 ms after visual stimulation
(Fig. 4) appears concomitant with many of our findings. This deflection
may be related to the ongoing coding that we were able to detect using
RSA. Consistent with our findings, the overall magnitude of alpha/beta
power response in previous studies has been modulated by dynamic
expression movements (Popov et al., 2013; Jabbi et al., 2015) and
speech movements (Muthukumaraswamy et al., 2006), although our
study is the first to examine response pattern relationships among
individual faces for this frequency range. The Mu rhythm is another
negative deflection in a similar frequency range that has been well-
studied in the context of body actions (Fox et al., 2016). The mu
rhythm might represent forms and motions of bodies, just as low
frequency codes represent this information for dynamic faces.
However, further studies using RSA (as we used here) and multivariate
decoding are needed to go beyond univariate response modulations
and to measure the similarity structure of individual stimuli such as
bodies.

In addition to these low-frequency modulations, univariate analysis
of gamma power ( > 30 Hz) typically shows a sustained response
component around 40 Hz in response to visual stimuli (Uhlhaas et al.,
2011). In MEG responses to static facial photographs (Gao et al., 2013;
Uono et al., 2017), this component can also be centered around 40 Hz,
although it can be faster (Dobel et al., 2011; Perry and Singh, 2014).
This gamma power component was also present for dynamic facial
videos in our data, observed between 40 and 60 Hz (Fig. 4). Although
this component should have been detectable within our 4–50 Hz
sensor-space RSA window, we found limited evidence for similarity-
based encoding above about 20 Hz. Several studies examining oscilla-
tions with direct cerebral electrical recordings have reported gamma
responses both below (Klopp et al., 1999; Lachaux et al., 2005; Fisch
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et al., 2009; Engell and McCarthy, 2010) and above 50 Hz in response
to static facial photographs (Vidal et al., 2010; Davidesco et al., 2014)
and face-like stimuli (Lachaux et al., 2005). Most studies of this high-
frequency gamma response may have employed intra-cranial measure-
ments, instead of scalp EEG or MEG, because direct cortical contact
facilitates resolution of the low-amplitudes associated with very high
frequencies (Uhlhaas et al., 2011). Our data, which differs from this
work by using MEG and dynamic facial video, do not show a
compelling response amplitude component between 60 and 100 Hz
(Fig. 4) and our exploratory RSA of the 50–100 Hz range did yield
significant effects.

Source reconstruction

We tested our primary hypotheses about similarity-space repre-
sentations in the brain using MEG data in sensor space, as this is
relatively close to the original signal. This sensor space analysis was
framed as a search through frequency space for RSA effects. We
supplemented this sensor-level analysis by isolating the evoked re-
sponse and the frequency ranges at which sensor space RSA effects
were best observed ( < 20 Hz, see Fig. 6) and testing for sources that
express RSA effects associated with this frequency band. Consequently,
this source space analysis was not aimed at establishing the frequencies
at which evoked and induced signals showed similarity-based effects.
Instead, we designed the source reconstructions analysis to suggest
some sources from within the well-known occipitotemporal network of
brain areas involved in perception of dynamic faces that might be
responsible for the effects that we observed in sensor space. The
network of brain areas responsible for high-level representation of
form and motion in dynamic faces is not controversial, can be observed
in individual participants, as well as across participant samples and has
been demonstrated many times using fMRI (Fox et al., 2009; Schultz
and Pilz, 2009; Trautmann et al., 2009; Pitcher et al., 2011; Foley et al.,
2012; Grosbras et al., 2012; Schultz et al., 2013; Furl et al., 2014,
2015), including within the present study, and using MEG (Furl et al.,
2010; Sato et al., 2015). This network includes face-selective areas in
bilateral FFA and OFA, motion-sensitive areas in bilateral V5 and an
area responding preferentially to dynamic faces in right STS. A
homologous pattern of areas that are face-selective, motion-sensitive
and specific to dynamic faces has been observed in the macaque (Furl
et al., 2012). Given our a priori expectation of involvement of these
areas, and the need for informative priors to facilitate accurate source
reconstruction, we constrained our source reconstructions to this
network. We measured responses from source locations obtained from
fMRI localization using the same participants as our MEG sample. We
then tested whether different areas within this network, individually,
exhibited our hypothesized similarity spaces. This finding is not
guaranteed. The response patterns with the requisite similarity may
be distributed over the network and response patterns over the neural
population within any one region may not individually provide
sufficient information. At the same time, it must be remembered that
these areas are closely-spaced within occipitotemporal cortex, relative
to the potential spatial resolution of EBB source reconstruction. Thus,
the source reconstruction results should be interpreted with caution.
Nevertheless, our results did implicate specific foci within the network
as potential sources for our evoked and oscillatory RSA effects: bilateral
FFA and V5. The involvement of V5 in representing some types of
information, such as configural form, seems surprising, given that V5
was defined as motion-sensitive. Although, there is evidence that V5
can contribute to perception of static images, when only form is
available (Furl et al., 2012), this effect could also arise from imprecise
source resolution. The relationship of FFA with identity and form is
consistent with prevailing views of the function of FFA (Haxby et al.,
2001; Calder et al., 2005; Bernstein and Yovel, 2015), although our
data suggest a wider role, including motion as well.

Conclusion

We show that oscillations convey information about dynamic faces
that evoked responses do not. Specifically, they support a broad,
general encoding that includes both physical information about static
facial form configurations and how these movements are patterned in
time. This oscillatory coding, moreover, correlates with behavioral
measures of facial form and motion perception. And, this oscillatory
encoding captures the similarity structure associated with identity,
even though there is further form and motion information that is not
related to identity also. These results are consistent with a hypothesis
that these oscillations may reflect the multidimensional basis for a
“face space” – a popular and longstanding theoretical viewpoint in face
perception – in which faces are represented by their similarity on
multiple attribute dimensions (e.g., form, motion).
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