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ABSTRACT Methane-oxidizing microorganisms perform an important role in reduc-
ing emissions of the greenhouse gas methane to the atmosphere. To date, known
bacterial methanotrophs belong to the Proteobacteria, Verrucomicrobia, and NC10
phyla. Within the Proteobacteria phylum, they can be divided into type Ia, type Ib,
and type II methanotrophs. Type Ia and type II are well represented by isolates. Con-
trastingly, the vast majority of type Ib methanotrophs have not been able to be cul-
tivated so far. Here, we compared the distributions of type Ib lineages in different
environments. Whereas the cultivated type Ib methanotrophs (Methylococcus and
Methylocaldum) are found in landfill and upland soils, lineages that are not repre-
sented by isolates are mostly dominant in freshwater environments, such as paddy
fields and lake sediments. Thus, we observed a clear niche differentiation within
type Ib methanotrophs. Our subsequent isolation attempts resulted in obtaining a
pure culture of a novel type Ib methanotroph, tentatively named “Methylotetracoccus
oryzae” C50C1. Strain C50C1 was further characterized to be an obligate metha-
notroph, containing C16:1�9c as the major membrane phospholipid fatty acid, which
has not been found in other methanotrophs. Genome analysis of strain C50C1
showed the presence of two pmoCAB operon copies and XoxF5-type methanol de-
hydrogenase in addition to MxaFI. The genome also contained genes involved in ni-
trogen and sulfur cycling, but it remains to be demonstrated if and how these help
this type Ib methanotroph to adapt to fluctuating environmental conditions in fresh-
water ecosystems.

IMPORTANCE Most of the methane produced on our planet gets naturally oxidized
by a group of methanotrophic microorganisms before it reaches the atmosphere.
These microorganisms are able to oxidize methane, both aerobically and anaerobi-
cally, and use it as their sole energy source. Although methanotrophs have been
studied for more than a century, there are still many unknown and uncultivated
groups prevalent in various ecosystems. This study focused on the diversity and ad-
aptation of aerobic methane-oxidizing bacteria in different environments by compar-
ing their phenotypic and genotypic properties. We used lab-scale microcosms to cre-
ate a countergradient of oxygen and methane for preenrichment, followed by
classical isolation techniques to obtain methane-oxidizing bacteria from a freshwater
environment. This resulted in the discovery and isolation of a novel methanotroph
with interesting physiological and genomic properties that could possibly make this
bacterium able to cope with fluctuating environmental conditions.
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Methanotrophs are a functional group of diverse Gram-negative bacteria that are
defined by their ability to oxidize methane, which they utilize as a source of

carbon and energy (1–3). Since their discovery in 1906 by Soehngen, they are known
to play a key role in the global methane cycle through the reduction of methane
emissions to the atmosphere (4–6). Aerobic methanotrophs utilize methane via a
methane monooxygenase (MMO) that exists in a soluble (sMMO) cytoplasmic- and
particulate (pMMO)-membrane-bound form, both of which catalyze the first step of
methane oxidation to methanol (2). Methane-oxidizing bacteria (MOB) are ubiquitous
in nature and have been found in various environments where oxygen and methane
are readily available (1, 7). While most grow best with moderate pHs and temperature
ranges, psychrophilic, thermophilic, alkaliphilic, and acidophilic methanotrophs have
been isolated as well (reviewed in reference 2).

To date, the best-studied methanotrophs belong to the proteobacterial classes
Alpha- and Gammaproteobacteria (2, 8), but MOB within the phyla Verrucomicrobia and
NC10 (9–11) were recently discovered, expanding the phylogenetic diversity of MOB.
Despite this diversity, MOB have remarkably similar methane oxidation pathways, while
incorporating different pathways for carbon fixation. Proteobacterial MOB utilize C1

compounds via the ribulose monophosphate (RuMP) or serine pathways (3, 12), while
verrucomicrobial MOB and NC10 bacteria use the Calvin cycle (13, 14). After the
extensive isolation and characterization of methanotrophs that took place in the 1970s,
three types of methanotrophs were defined (15, 16). The strains that incorporated
carbon into biomass using the RuMP pathway contained intracytoplasmic membranes
as vesicular disks, and monounsaturated hexadecenoic (16:1) signature fatty acids were
grouped under type I. Type II strains differed from type I strains by utilizing the serine
pathway for carbon fixation, having intracytoplasmic membranes aligned along the
periphery of the cell and monounsaturated octadecenoic acid (18:1) as a major mem-
brane lipid (12, 15).

In various studies, an additional group of methanotrophs has been described as
type X (17, 18), defined originally based on genomic G�C content and intracytoplasmic
membrane organization. This group had characteristics that did not define them under
one type, possessing the full RuMP pathway as well as ribulose-1,5-bisphosphate
carboxylase, indicative of the Calvin cycle, and at the time were considered to be
adapted to higher temperatures. A combination of biochemical and molecular analyses,
however, has revealed that type X strains should be reclassified under type I metha-
notrophs, and this clade is now referred to as type Ib (8). Nonetheless, these classifi-
cations do not encompass all isolates, with some having unexpected characteristics. For
instance, a type II strain possessing signature membrane lipids that resemble type I
methanotrophs (19) and Methylothermus thermalis, a gammaproteobacterium that
possesses both 16:0 and 18:1 fatty acids typical for type I and II methanotrophs,
respectively (20), have been reported.

Within the last 20 years, the genera containing MOB within the Proteobacteria have
expanded to 23 (reference 21 and the references therein). With the exception of low-pH
peat-adapted Methylocella (22) and Methyloferula (23), which possess only sMMO, all
known methanotrophs encode a pMMO (24). The genes for pMMO (pmoCAB) but
mainly pmoA, encoding pMMO subunit A, have been used to survey the MOB diversity
in various ecosystems (25–27). These studies have shown remarkable environmental
diversity, even within the comparably well-studied proteobacterial clades. Although
within the Gammaproteobacteria there have been 12 genera of both type Ia and Ib that
contain cultivars, isolates are lacking for the many uncultivated environmental se-
quence clusters (2).

Type Ib methanotrophs are known to possess a high metabolic diversity (28, 29).
However, this diversity is still to be fully explored due to the many clades of environ-
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mental sequences lacking any isolate. These sequences cover a vast variety of natural
habitats, such as peat, upland and wetland soil, hot springs, lakes, rivers, ground water,
and the deep sea, potentially representing highly diverse metabolic capabilities (4,
30–32). The presence of multiple pathways for carbon and nitrogen fixation and
assimilation and of both soluble and particulate MMOs makes it difficult to generalize
when discussing physiological abilities of type Ib methanotrophs or any other type of
MOB (33).

Methylococcus capsulatus is the only well-described type Ib organism, and it has
since become the model organism for the entire group (34). However, sequences from
this group are found mostly in upland soil (35). Presently, most known type Ib
organisms seem to occur in freshwater environments, but only a few isolates have been
described. These have a tendency to live very close to a methane source and under
oxygen-limited conditions (36, 37). In this study, we isolated a novel type Ib metha-
notroph, tentatively named “Methylotetracoccus oryzae” strain C50C1, from a freshwater
ecosystem and performed physiological and genomic characterization. Based on ob-
servations from electron microscopy and sequence analyses, it belongs to a novel
genus that is widely distributed in paddy fields and lake ecosystems, making it a
potential model representative for this group. We, furthermore, compared different
physiological aspects of this isolate (habitat distribution, optimum growth temperature
and pH, and key enzymatic activities) to those of other known isolates within the type
Ib methanotrophs.

RESULTS AND DISCUSSION
Isolation of a gammaproteobacterial methanotroph from paddy soil. Incuba-

tion of paddy field soil in a methane/oxygen countergradient microcosm and further
purification of enriched bacteria on nitrate mineral salts (NMS) medium resulted in
three gammaproteobacterial methanotrophs that were classified as type Ib. One strain
(referred to as strain C50C1) was further purified via several transfers in liquid NMS
medium until a pure culture was obtained.

Strain C50C1 was represented by Gram-negative and nonmotile cocci or coccoids
(1.1 to 1.4 by 1.3 to 1.8 �m in size), which reproduced by binary fission and occurred
singly, in pairs, or in tetrads or formed large cell clusters in old (�2-week) cultures
(Fig. 1A to C). Examination of thin-sectioned cells of strain C50C1 revealed a typical
Gram-negative structure of the cell wall and the presence of intracytoplasmic mem-
branes, arranged as stacks of vesicular disks (Fig. 1D), which is characteristic of type I
methanotrophs. Globular structures apparently representing an S layer were observed
on the cell surface (Fig. 1E). Although the presence of S layers is highly characteristic for
many type I methanotrophs, including Methylococcus species (38), this type of S-layer
symmetry has not been reported for any of the previously described methanotrophs.

Strain C50C1 was able to grow only on methane and methanol. Methanol supported
growth in the concentration range of 0.1 to 4% (vol/vol); the highest growth rates
(doubling time, 21 h) occurred at 3% (vol/vol). No growth was observed on multicarbon
compounds. Strain C50C1 grew in the pH range of 4.8 to 8.3, with the optimum at pH
6.8 to 7.5. The temperature range for growth was 4 to 30°C, with the optimum at 18 to
25°C. The doubling time on methane and methanol under optimal growth conditions
was 16 and 21 h, respectively. Strain C50C1 was highly sensitive to salt stress and
growth was inhibited at NaCl concentrations above 0.3% (wt/vol).

Based on 16S rRNA and pmoA gene-based phylogeny, strain C50C1 could be
classified as type Ib methanotroph affiliated with rice paddy cluster 1 (RPC1) (Fig. 2).
RPC1 forms a monophyletic lineage, containing pmoA sequences that were mostly
retrieved from freshwater environments such as lakes, groundwater and paddy fields
(25, 39, 40). So far, few members of type Ib methanotrophs have been characterized,
resulting in the description of five genera. However, most clusters contain environ-
mental sequences only and lack cultured representatives (Fig. 2). Closest cultivated
relatives of strain C50C1 include Methylococcus capsulatus, Methylocaldum gracile and
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Methyloparacoccus murrellii (94% 16S rRNA gene identity to each species and 92%
amino acid identity to the PmoA of M. capsulatus).

Phenotype and growth characteristics of strain C50C1. We made a phenotypic
comparison between strain C50C1 and other type Ib isolates (Table 1). C50C1 grows on
methane and methanol as sole energy sources (Table S2), is able to fix N2 (see Fig. S1
in the supplemental material), and grows at temperatures between 4 and 30°C, which
is a much larger range than those of other characterized type Ib methanotrophs
(Table 1). Similar to other MOB, it prefers pH values between 6 and 8 and is sensitive
to 0.3% NaCl. Major phospholipid-derived fatty acids (PLFAs) in strain C50C1 are
C16:1�9c, C16:1�7c, and C16:0. C16:1�9c is highly unusual for type Ib methanotrophs, but
small amounts have also been detected in Methylogaea and Methyloparacoccus (Ta-
ble 1; Table S3). Large amounts of this PLFAs have so far been detected only in MOB
belonging to Alphaproteobacteria (39), and its presence in strain C50C1 gives it a
specific signature. The recently described Methyloterricola oryzae belonging to RPC1
possesses mainly C16:0, C16:1�6c, and C16:1�7c, typical of type Ib methanotrophs (41).
Based on the complete PLFA profile, however, C50C1 is most closely related to
Methyloterricola oryzae, strengthening its placement in RCP1 (Fig. S2). Furthermore,
both PmoA (Fig. 2) and 16S rRNA gene-based phylogeny (Fig. 3) show a clear affiliation
of strain C50C1 with the type Ib MOB.

Diversity and ecological niches of type Ib methanotrophs. To gain an overview
of the diversity and habitat preferences of cultivated and uncultivated type Ib metha-
notrophs, we performed a phylogenetic analysis of approximately 2,800 publicly avail-
able pmoA sequences from various environments. We classified the habitat information
into eight environmental categories and compared the pmoA diversity to the environ-
mental origins of the sequences (Fig. 2). Sequences could be grouped into 32 major
sequence clusters. For a long time, only the genera Methylococcus and Methylocaldum
were represented by isolates; however, recently several additional type Ib metha-
notrophs were obtained in pure culture (Fig. 2; Table 1 and the references within).

FIG 1 (A, B, C) Phase-contrast micrographs demonstrating the cell morphology of strain C50C1 in 4-, 7-,
and 14-day-old cultures. Bar, 5 �m. (D, E) Electron micrograph of an ultrathin section of a cell. ICM,
intracytoplasmic membranes; CM, cytoplasmic membrane; OM, outer membrane; PG, peptidoglycan
layer; S, S layer. Bars, 0.5 �m (D) and 0.1 �m (E).
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Methylomagnum, Methylogaea, and strains SK-K6 and GFS-K6 all belong to clusters
containing environmental sequences derived mainly from paddy fields. These isolates
grow in similar pH ranges, but Methylogaea and Methylomagnum possess a slightly
higher optimum growth temperature of 30 to 35°C.

Methyloparacoccus and the tentatively named Methylotetracoccus clades have most
sequences derived from freshwater ecosystems. Since these strains have been isolated
from similar environments, their growth parameters and genome-inferred physiological
capabilities are highly similar. Contrastingly, both Methylococcus and Methylocaldum
have been isolated from sources that differ from the major habitat of their respective
sequence clade, based on environmental sequences. The former was isolated from a
Roman thermal bath, the latter from marine sediment (7, 42, 43). Lastly, “Candidatus
Methylospira mobilis” appears to be an accurate representative for its clade of mainly
peat-derived environmental clones, as it is adapted to acidic conditions (36). Although
type Ib MOB have shown to be diverse with regard to their environmental adaptability,

Type Ia

Methylothermus

Methylospira

Methylococcus

Methylotetracoccus

Methylogaea−like
Strain AK−K6

Methyloparacoccus
Methylomagnum

Strain GFS−K6

Methylocaldum

0.10

12%

88% 43%

31%

26%

59%

41%

75%

25%

65%
32%

3%

70%

30%

84%

16%

40%

19%

41%

61%

39%

41%

37%

34%

Soil
Peat

Landfill

Rest

Paddy field
Lake/Rivers/Ground water

Upland Soil

Hot springs

Marine deep sea

RPC1

FIG 2 Phylogenetic inference of methane monooxygenase (PmoA) protein sequences of type Ib methanotrophs. The tree is constructed using ARB’s
neighbor-joining method. Type Ia sequences were used as the outgroup. Clades in orange are represented by isolates and clades in gray by environmental
sequences only. All clusters that contain isolates are accompanied by a pie chart, with colors representing the environments to which the majority of sequences
belong. RPC1, rice paddy cluster 1. The bar indicates 0.1 substitution per amino acid position.
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they seem to play a very minor role in marine ecosystems, where most sequences
belong to type Ia.

Genome sequencing of strain C50C1. To gain further insights into the metabolic
potential of strain C50C1, we sequenced and analyzed its genome. Assembly and
binning resulted in a 4.83-Mbp draft genome consisting of 42 contigs longer than 1 kb.

TABLE 1 Comparison of strain C50C1 growth characteristics to those of other type Ib methanotrophs

Character-
istic(s)

Result fora:

Methylo-
tetracoccus
oryzae
C50C1

Methylo-
paracoccus
(2 strains)

Methylo-
coccus
capsulatus
(2 strains)

Methylo-
caldum
(4 strains)

Strain
GFS-K6

Methyl-
ogaea
oryzae

Methylo-
magnum

Strain
AK-K6

Methylo-
spira
cluster

Isolation
source,
country(ies)

Rice field,
Italy

Pond
water,
South
Africa and
Japan

Thermal bath
water, UK

Marine
sediment

Terrestrial
methane
seep pond
sediments,
Bangladesh

Rice field,
Uruguay

Rice fields,
Bangladesh
and Japan

Warm
spring
sediments,
Armenia

Acidic
sphagnum
peat bog,
Russia

PmoA
cluster

Freshwater
sediment 2
(RPC1)

Freshwater
sediment 2
(RPCs)

Methylo-
coccus-like

Methylo-
caldum-like

Methylo-
coccaceae
family

JRP-4 Methylo-
coccus-
Methylo-
caldum-
Methylo-
paracoccus-
Methylo-
gaea clade

Methylo-
coccaceae
family

OSC

Major
habitat

Freshwater
lake

Freshwater
lake

Meadow/
shrubs

Soil Rhizosphere/
root

Paddy
field

Lake
sediment/
soil

Paddy field Peat

Growth
temp
(°C) range,
optimum

4–30 20–37,
25–33

28–55,
37–50

20–62 8–35,
25–28

20–37,
30–35

20–37,
31–33

8–35,
25–28

8–25,
14–25

pH range,
optimum

6–8 5.8–9,
6.3–6.8

5.5–9.0,
ND

5–9,
6–8

5.0–7.5,
6.4–7.0

5–8,
6.5–6.8

5.5–9.0,
6.8–7.4

5.0–7.5,
6.4–7.0

4.2–6.0,
6.0–6.5

Tolerence to
1% NaCl

No No Yes ND No No No No No

Key enzyme
activities of
sMMO,
nitrogenase,
RubisCO

–, �,
–

–, –,
–

�, �,
�

–, –,
�

–, �,
�

–, –,
–

�, –,
–

–, �,
�

–, �,
�

Cell morph-
ology

Cocci Cocci Cocci,
rods

Rods,
pleomorphic

Rods Curved
rods

Rods Rods Curved
rods
(spiral)

Motility None None Variable Yes None None Yes None Yes
Major fatty

acid(s)
C16:1�9c,

C16:1�7c,
C16:0

C16:1�7c* C16:0,
C16:1�7c*

ND C16:1�7c C16:0 C14:0,
C16:0,
C16:1�7c*

C16:1�7c ND

Cell size
(�m)

1.1–1.4
by 1.3–1.8

0.8–1.5 0.8–1.5
by 1.0–1.5

0.6–1.2
by 1.0–1.8

1.5–2.2
0.5–1.5

0.5–0.7
by 2.0–2.2

1.5–2.0
by 2.0–4.0

1.5–2.2
by 0.5–1.5

1.0–1.5
by 2.0–2.5

Pigmenta-
tion

White to
brown

White White to
brown

Brown White White White White ND

Forma-
tion of:
Cysts – – � � – – � – –
Chains � – � � – – – – –

DNA G�C
content
(mol%)

62.77 65.6 59–66 56.5–57.2 ND 63.1 64.1 ND ND

Reference(s) Current
study

Hoefman
et al. (80)

Bowman
et al. (8)

Takeuchi
et al., (43),
Bodrossy
et al. (42)

Islam
et al. (37)

Geymonat
et al. (81)

Islam
et al. (37),
Khalifa
et al. (47)

Islam
et al. (37)

Danilova
et al. (36)

aOSC, organic soil cluster; ND, not determined.
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Based on single-copy marker gene analysis, the genome was predicted to be 99.1%
complete, with 3.3% contamination. The overall G�C content is 63%. In total, the
genome was predicted to contain 4,302 protein coding sequences (CDSs) and one copy
of the rRNA operon. Genome size and G�C content are comparable to those of the four
other sequenced type Ib methanotrophs, which range from 3.3 to 5 Mbp and 57% to
63%, respectively (Table 1). The rRNA operon copy numbers in bacterial genomes can
vary from 1 to as many as 15 copies, and a correlation of copy number with resource
availability has been hypothesized (44). Most other type Ib genomes also harbor only
one copy, with the exception of Methylococcus capsulatus Bath, which contains two
(34). Thus, MOB appear not to be in need of multiple rRNA copies for rapid adaptation
to substrate availability, but this requires further analyses once more genomes of type
Ib and other types of methanotrophs are sequenced.

Methane oxidation. Based on the genomic information, the metabolic pathways
for methane oxidation and energy conservation in strain C50C1 were reconstructed
(Fig. 4). The genome includes two copies of the pmoCAB operon, encoding the
membrane-bound pMMO, and four additional copies of pmoC, which are scattered
throughout the genome. However, none of the two pmoCAB operons encodes the
high-affinity pMMO-2 isoenzyme described in Alphaproteobacteria, which has been
shown to be responsible for oxidation of methane at low mixing ratios (45). Since the
concentrations of CH4 and O2 to which strain C50C1 would be exposed in its natural
environment are not comparable to the ones experienced by atmospheric methane
oxidizers, possessing a high-affinity pMMO would not necessarily be an advantage in a
wetland. Neither the distinct pmoABC operon encoding the so-called pXMO (46) nor
genes for the sMMO were identified in the genome, although the latter have been
found in Methylococcus capsulatus (8) and in several Methylomagnum strains (37, 47)
(Table 1 and references therein). According to recent studies, sMMO seems not to play
a role in methanotrophy in paddy fields, as it was found to be absent in all rice field
isolates, and PCR-based studies detected only mmoX genes related to Methylocystis/
Methylosinus species (48).

Methanol and formaldehyde oxidation. For the subsequent oxidation of metha-
nol to formaldehyde, the C50C1 genome encoded both the lanthanide-dependent
XoxF5-type (49, 50) and the calcium-dependent MxaFI-type methanol dehydrogenase
(MDH). The XoxF5-type MDH has been shown to have a higher affinity than MxaFI and,

Methylocaldum gracile, U89298
Methylocaldum tepidum, U89297

Methylocaldum marinum, AB894129
Methylocaldum szegediense, U8930

Methylocaldum sp. E10a, AJ868426
Methylocaldum sp. BFH1, GQ13027

Decompos�ng bagasse clone BG129, HM36253
Decompos�ng bagasse clone BG153, HM362553

Water in dam reservoir clone 2, AB930629
Reelfoot sediment clone S3007, KX504866

Methylotetracoccus oryzae C50C1
Methyloparacoccus clone from metagenome, FPLK0100240

River sediment clone RS−B79, KC54113
Methyloparacoccus murrellii, HF558990

Sludge samples collected from biofilm clone AS−109, HQ6
Methanotrophic bacterium AK−K6, KP27213

Coal tar waste−contaminated groundwater clone JMYB36−91, FJ81
Methylomagnum ishizawai, AB669155

Methanotrophic bacterium GFS−K6, KP27213
Methylogaea oryzae JCM 16910, EU672873

Methylococcus sp. LS7−MC, KP77170
Reelfoot lake sediment clone F4017, KX50460

Methylococcus capsulatus, X72770
Methylococcus thermophilus, X7381

Methylococcus capsulatus str. Texas = ATCC 19069, AUKJ0100000
Gold mine borehole clone HS4850B_12F, JX434259

Gold mine borehole clone HS4850B_06D, JX434212
Decompos�ng bagasse clone BG168, HM362565

Methylococcaceae bacterium 73a, JYNS01000046
River bank clone BSB0101−02, JN39771

Candidatus Methylospira mobilis, KU21620
Methylohalobius crimeensis, AJ581837

Methylomarinovum caldicuralii, AB301718
Methylothermus subterraneus, AB536747

Methylothermus thermalis, AY82900

0.10

Bootstrap value ≥ 90%
Bootstrap value ≥ 70%

FIG 3 16S rRNA gene-based phylogenetic analysis of a subgroup of closely related type Ib methanotrophs to strain C50C1 (in red), including isolates and
environmental clones. Selected members of the Methylothermaceae were used to root the tree. The bar indicates 0.1 substitution per nucleotide position.
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unlike the MxaFI-type enzyme, to directly convert methanol to formate in Methylacid-
iphilum fumariolicum SolV, which lacks a dedicated formaldehyde dehydrogenase (51,
52). However, XoxF-type enzymes were also shown to efficiently oxidize formaldehyde
(53). In accordance with the dependency of XoxF-type MDHs on pyrroloquinoline
quinone (PQQ), strain C50C1 also bears genes for PQQ biosynthesis. Electrons from the
oxidation of methanol are transferred to cytochrome cL, which serves as the primary
electron acceptor for MDH. In the periplasm, cytochrome cL is oxidized, and the
electrons end up at typical membrane-bound terminal oxidases by way of class I c-type
cytochromes (1).

Most of the reducing equivalents required for the metabolism of methane are
produced by the oxidation of formaldehyde (3, 54). Formaldehyde is an important
intermediate, as it forms the branching point for anabolic carbon fixation via the serine
or RuMP cycle and catabolic substrate oxidation to CO2. However, this compound also
is highly toxic, and its production and consumption consequently need to be tightly
regulated (55).

A variety of enzymes have been shown to catalyze formaldehyde oxidation. Based
on their electron acceptor, they can be grouped into nicotinamide adenine dinucle-
otide phosphate [NAD(P)�]-dependent and dye (cytochrome)-linked formaldehyde
dehydrogenases (FalDH). Based on the genomic data, strain C50C1 possesses a ho-
molog (74% amino acid identity) to a membrane-associated dye-linked PQQ-
dependent FalDH putatively catalyzing formaldehyde oxidation. This enzyme in Methy-
lococcus capsulatus Bath has been characterized (56) and was shown to be a member
of the sulfide:quinone oxidoreductase enzyme family. Under high-copper growth
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conditions, this enzyme was found to be the major formaldehyde dehydrogenase.
Additional homologs are present in Methylocaldum and Methylohalobius with, however,
much lower identity (�40%) and potentially different functions within the sulfide:
quinone oxidoreductase family. C50C1 is lacking homologs of S-(hydroxymethyl) glu-
tathione dehydrogenase (EC 1.1.1.284), which provides an alternative route from
formaldehyde to formate in all other type Ib MOB.

Like other type Ib species, C50C1 has tetrahydrofolate (H4F) and 5,6,7,8-
tetrahydromethanopterin (H4MPT)-linked C1 carrier pathways. H4MPT is the archaeal
analogue of H4F and can transfer formyl, methenyl, methylene, and methyl groups (57).
These two pathways were regarded as redundant. However, more recent observations
have shown that formate might be a branching point for anabolic and catabolic
reactions making these two pathways function in parallel (58). The generation of
methylene H4F and its subsequent entry to the serine pathway is done through direct
condensation of formaldehyde with H4F. Alternatively, methylene H4F can be formed
from formate in the tetrahydromethanopterin pathway from H4MPT. The latter seems
to occur in a facultative methylotrophic, non-methane-oxidizing Methylobacterium (59),
thus making it likely to occur in strain C50C1 as well. In contrast to Methylobacterium,
C50C1, furthermore, possesses FolD, a bifunctional methylene-H4F dehydrogenase and
methenyl-H4F cyclohydrolase instead of the usual mtdA and fch gene pair, encoding
enzymes catalyzing the separate reactions, respectively. In Methylobacterium chloro-
methanicum CM4, FolD has been shown to be specifically involved in dissimilation of
the methyl-H4F (60). Although this process varies within MOB, all type Ib genomes
analyzed to date with the exception of strain C50C1 encode the MtdA/Fch couple and
lack FolD.

Formate oxidation. In Methylococcus capsulatus Bath and Methylobacterium ex-

torquens, two isoenzymes have been characterized to be involved in formate oxidation
(61, 62). The first of these formate dehydrogenases (FDH-1) has been characterized as
a tungsten-containing enzyme in M. extorquens and is arranged in a fdhABC gene
cluster (61). While this enzyme has been identified in Methylococcus capsulatus Bath and
M. capsulatus Texas, it is not present in other type Ib species, including strain C50C1.
Contrastingly, the second FDH-2 is a molybdenum (Mo)-depending enzyme encoded
by the fdhCBAD gene cluster. This enzyme is found in all other type Ib organisms,
including strain C50C1, making it much more widespread than its tungsten-containing
counterpart. In general, tungsten enzymes seem to be present mostly in anaerobic
microbes, which may be a direct result of its availability and its higher redox properties
than those of Mo in anoxic ecosystems (63). Functionally speaking, the two FDHs are
virtually identical when their respective cofactor is present (61).

Energy conservation and respiration. The draft genome of strain C50C1 encodes
a complete electron transport chain, including a proton or sodium ion-translocating
NAD-ferredoxin reductase (Rnf) complex, NADH:ubiquinone reductases (H�- and Na�-
transporting types; complex I), succinate dehydrogenase (complex II), cytochrome bc1

complex enzymes (complex III), quinone-reducing cytochrome bd-type enzymes, and
putatively cytochrome c-reducing heme-copper terminal oxidases (HCO; complex IV)
and a FoF1-type ATPase (complex V) (Fig. 4).

The Rnf (Rhodobacter nitrogen fixation) complex is a novel ion-motive electron
transport chain found in phylogenetically diverse prokaryotes. In Acetobacterium woo-
dii, the Rnf complex catalyzes oxidation of Fdred, with concomitant reduction of NAD�

(64). The soluble B subunit (RnfB) of the complex is proposed to be the entry point for
electrons from reduced ferredoxin. The C subunit (RnfC) mediates NADH reduction,
thus serving as exit point of electrons. The free energy of this reaction is conserved in
the electrogenic transport of protons or sodium ions across the membrane, thus
establishing an electrochemical potential (64). The genomes of Methylobacter and
Methylotenera encode this complex as well (65). Complex I transfers electrons from
NADH into the quinone pool, which is coupled with the translocation of four protons
across the inner membrane, further contributing to the formation of a proton motive
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force (pmf) that can be used to synthesize ATP by complex V. Complex II links the
tricarboxylic acid (TCA) cycle to the respiratory chain by transferring the electrons
derived from succinate oxidation into the quinone pool.

Previous studies have indicated that pMMO also is coupled to the electron transport
chain at the level of quinone, with inhibitor studies providing additional evidence of
this link (reference 56 and references therein). The oxidation of methane by the pMMO
requires the additional activation by oxygen. As one oxygen atom of O2 is reduced to
H2O and the second is incorporated into methane to form methanol, this results in a
net consumption of two electrons per methane oxidized. Electrons from the subse-
quent oxidation of methanol or formaldehyde either end up in a membrane-bound
class I c-type oxidase or directly enter into the quinone pool, respectively. The reduced
quinol then transfers the electrons to the cytochrome bc1 complex, where the reduc-
tion of cytochrome c is linked to formation of pmf via the so-called Q-cycle. Complex
IV finally uses the electrons obtained from cytochrome c to reduce O2 to H2O. This
reaction is also linked to active translocation of protons, thus contributing to pmf.

The genome of strain C50C1 contains all of the subunits of two members of the HCO
superfamily, encoding one A-family and one B-family terminal oxidase. B-family en-
zymes have been shown to be adapted to lower concentrations of oxygen than those
of the A-family, resulting in a higher affinity for O2 but fewer protons pumped per
electron (66). Possession of both A- and B-family HCO types may allow strain C50C1 to
respire using a wide range of oxygen concentrations. This is further supported by the
presence of a cytochrome bd oxidase, a respiratory quinol:O2 oxidoreductase with a
very high O2 affinity (67). However, enzymes of the bd oxidase family conserve less
energy than HCOs, as they derive electrons for O2 reduction directly from quinol and
lack conserved channels for proton pumping, thus bypassing energy conservation at
complexes III and IV (66, 67).

C1 fixation and nitrogen and sulfur metabolism. Fixation of carbon and subse-

quent assimilation of formaldehyde occurs through the RuMP pathway in strain C50C1,
which is typical for type Ib methanotrophs. Additionally, strain C50C1 encodes the
serine cycle enzymes serine hydroxymethyl transferase (GlyA), phosphoenolpyruvate
(PEP) carboxylase (Ppc), and malate dehydrogenase (Mdh). PEP carboxylase, which is a
key enzyme of the serine cycle, is missing in both the Methylococcus and Methylocaldum
genera. The PEP carboxylase encoded by C50C1 belongs to the nonregulated group of
PEP carboxylases (68) whose activity is not controlled by intermediates of the TCA cycle
or glycolysis/gluconeogenesis (69). Whether these additional enzymes give strain
C50C1 an advantage over other type Ib enzymes remains to be investigated. Further-
more, all the enzymes for gluconeogenesis, the TCA cycle, and the nonoxidative
pentose phosphate pathway are encoded in strain C50C1’s genome. Unlike with
Methylocaldum marinum (43), Methylococcus capsulatus Bath (70), and strain GFS-K6
(37), ribulose-1,5-bisphosphate carboxylase/oxygenase is not encoded in the genome
of strain C50C1 (Table 1).

A possible side reaction of the pMMO in MOB is the oxidation of ammonia to
hydroxylamine (NH2OH). Subsequently, hydroxylamine is detoxified to produce nitrite
and nitrous oxide (N2O), apparently without linking this reaction to energy conserva-
tion (71). Strain C50C1 possesses genes encoding cytochrome cd1 nitrite reductase
(NIR), an NnrS protein involved in response to nitric oxide (NO), NO reductase (NOR),
and lastly a NnrU family protein required for NIR and NOR expression. However,
hydroxylamine oxidoreductase (HAO) or hydroxylamine reductase is missing from the
genome of strain C50C1. As in other MOB, no chemolithotrophic growth was observed
on ammonium in strain C50C1, and the apparent lack of hydroxylamine-detoxifying
enzymes might contribute to an inability to cope with nitrogen stress caused by
nitrification intermediates. However, it has been reported that M. denitrificans strain
FJG1 under extreme hypoxia couples CH4 oxidation to nitrate reduction (72), which
may be an explanation for the presence of denitrification genes in strain C50C1.
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For nitrogen uptake and assimilation, strain C50C1 encodes three AmtB-type am-
monium transporters, a NarK-type nitrate transporter, and assimilatory nitrate and
nitrite reductases (encoded by napA and nirBD). Furthermore, the genome contained all
genes for an active nitrogenase for growth under nitrogen-fixing conditions. These
include two copies of the dinitrogenase subunits NifD and NifK, the dinitrogenase
reductase NifH, as well as the Nif-specific regulatory protein NifA, two copies of the
FeMo cofactor biosynthesis protein NifB, the cysteine desulfurase NifS, and the nitro-
genase-stabilizing/protective protein NifW.

Like other methanotrophs, such as Methylosarcina lacus and Methylocaldum szege-
diense, strain C50C1 possesses the full soxYZ operon for sulfur oxidation along with the
sulfite dehydrogenase SoxD and the sulfur oxidation molybdopterin protein SoxC.
However, whether this genomic potential corresponds to an environmental relevance
of strain C50C1 in the sulfur cycle remains to be investigated.

Description of Methylotetracoccus gen. nov. Methylotetracoccus [Me.thy.lo.tet.ra-
.coc=cus]. N.L. n. methylum (from French me=thyle), the methyl group; N.L. pref.
methylo, pertaining to the methyl radical; N.L. masc. subst. from Gr. adj. tetra, four; N.L.
masc. n. coccus (from Gr. n. kokkos), a grain or berry; N.L. masc. n. Methylotetracoccus,
referring to a methyl-using organism with tetrad-forming coccoid cells.

Gram-stain negative, nonmotile cocci or coccoids, which reproduce by binary fission
and occur singly, in pairs, or in tetrads or form large cell clusters in old cultures. Cells
contain intracytoplasmic membranes, arranged as stacks of vesicular disks. Strictly
aerobic, neutrophilic, mesophilic, and nonthermotolerant. Members of the genus are
obligate utilizers of C1 compounds, such as methane and methanol. Methane is
oxidized by pMMO, with sMMO and pXMO being absent. Cells are capable of dinitrogen
fixation. The major PLFAs are C16:1�9c, C16:1�7c, and C16:0. The most closely related
genera are Methyloparacoccus, Methylocaldum, and Methylomagnum within the family
Methylococcaceae in the class Gammaproteobacteria. Known habitats are freshwater
ecosystems, such as paddy fields and lake sediments.

Description of Methylotetracoccus oryzae sp. nov. Methylotetracoccus oryzae
(O=ryzae N.L. masc. adj. oryzae, pertaining to a paddy field).

Description is as for the genus, with the following amendments. Cells are 1.1 to
1.4 �m wide and 1.3 to 1.8 �m long. Growth occurs only on methane and methanol.
Methanol supports growth in the range of concentrations of 0.1 to 4% (vol/vol); the
highest growth rates with specific generation times of 0.033 h�1 (doubling time, 21 h)
are observed at 3% (vol/vol). Optimal growth occurs at 18 to 25°C and pH 6.8 to 7.5.
Highly sensitive to salt stress; growth is inhibited at NaCl concentrations above 0.3%
(wt/vol). The type strain C50C1 was isolated from a paddy field in Cixi, Zhejiang
Province, China. The G�C content of the type strain is 63 mol% (genome sequence).

Conclusions. In this study, we isolated a novel type Ib methanotroph that can serve
as a representative organism for the type Ib freshwater lineage. We report the high-
quality draft genome of strain C50C1, which can help design further research to study
the role of these MOB in the environment. Based on growth experiments along with
genomic data, C50C1 seems to be an obligate methanotroph able to fix nitrogen. The
draft genome indicates a potential for metabolic flexibility, with genetic modularity,
including multiple methanol dehydrogenases, several pathways for formaldehyde ox-
idation, all enzymes of one and several enzymes of another pathway for C1 fixation, and
several terminal oxidases. These genomic potentials may allow strain C50C1 to adapt to
various environmental conditions, as already seen in its growth temperature range. The
potential for sulfur oxidation within strain C50C1 and its environmental relevance need
to be further investigated.

MATERIALS AND METHODS
Enrichment conditions and isolation approach. Enrichments of methane-oxidizing bacteria were

started from a paddy field soil sample in Cixi, Zhejiang Province, China (N30°11.066=; E121°21.351=). Soil
characteristics and the sampling procedure are described in detail elsewhere (73). Preenrichment was
carried out for 14 days in gradient microcosms supplied with 15% methane from the bottom compart-
ment and ambient air from the top (74). After preincubation, the soil was harvested, diluted in nitrate
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mineral salts (NMS) medium (17) (see Table S1 in the supplemental material), and plated onto solid NMS
medium containing 2% agarose. Plates were incubated in air-tight jars supplemented with ambient air
and 20% methane. Selected colonies were streaked onto fresh plates to obtain single colonies. The latter,
however, were composed not only of methanotrophic bacteria but also of satellite heterotrophic
microorganisms. Selected colonies that contained the lowest number of satellite cells were picked and
used to inoculate 30-ml serum vials containing 10 ml of 2-fold-diluted NMS medium together with 20 �l
of trace element solution I and solution II (Table S1). After inoculation, the vials were sealed with rubber
septa, and methane was added aseptically to attain a final mixing ratio of approximately 20% (vol/vol).
The inoculated vials were then incubated at 24°C and 100 rpm. The cultures were examined by
phase-contrast microscopy, and if morphologically uniform, the cells were transferred to fresh medium
and grown again under the same growth conditions. This process of serial dilutions was repeated over
6 months until the target isolate, designated strain C50C1, was obtained in a pure culture. Once isolated,
this methanotroph was maintained in 2-fold-diluted NMS medium and was subcultured at 4-week
intervals.

Phase-contrast and electron microscopy. Morphological observations and cell size measurements
were made with a Zeiss Axioplan 2 microscope and AxioVision 4.2 software (Zeiss, Jena, Germany). Cell
morphology was examined by using batch cultures grown to the early-exponential, late-exponential, and
stationary growth phases. For preparation of ultrathin sections, cells of the exponentially growing culture
of strain C50C1 were collected by centrifugation and prefixed with 1.5% (wt/vol) glutaraldehyde in
0.05 M cacodylate buffer (pH 6.5) for 1 h at 4°C and then fixed with 1% (wt/vol) OsO4 in the same buffer
for 4 h at 20°C. After dehydration in an ethanol series, the samples were embedded into Epon 812 epoxy
resin. Thin sections were cut on an LKB-4800 microtome (LKB-Produkter AB, Stockholm, Sweden) and
stained with 3% (wt/vol) uranyl acetate in 70% (vol/vol) ethanol. The specimen samples were examined
with a JEM-100B transmission electron microscope (JEOL, Tokyo, Japan) at an accelerating voltage of
80 kV.

Growth experiments. Physiological tests were performed in liquid, 2-fold-diluted NMS medium with
methane. The growth of strain C50C1 was monitored by measuring its optical density at 600 nm (OD600)
for 2 weeks under a variety of conditions, including temperatures of 2 to 37°C, pHs of 4.0 to 8.5, and NaCl
concentrations of 0 to 4.0% (wt/vol). Variations in pH were achieved by mixing 0.1 M solutions of H3PO4,
KH2PO4, K2HPO4, and K3PO4. The utilization of potential carbon sources was examined using 0.05%
(wt/vol) concentrations of the following compounds: formate, glucose, sucrose, galactose, lactose,
fructose, citrate, succinate, pyruvate, acetate, and ethanol. The ability to grow on methanol was tested
in NMS medium containing 0.01 to 5% (vol/vol) methanol.

Nitrogen fixation activity was assessed by monitoring growth in nitrogen-free medium. Incubations
were performed in batches in triplicates. Bottles of 120 ml were sterilized and aseptically supplied with
17 ml of liquid 5-fold-diluted sterilized ammonium mineral salts (AMS) medium or 5-fold-diluted
nitrogen-free mineral salts (MS) medium (Table S1). The headspace contained either an ambient or low
O2 atmosphere (2%, vol/vol). Low O2 concentrations in the headspace were achieved by 5 rounds of
vacuum application to the bottles, followed by flushing with N2-CO2 (90%/10%, vol/vol). Subsequently,
2% (vol/vol) O2 was added aseptically. All bottles received 10% (vol/vol) CH4 aseptically. Prior to
inoculation, biomasses from 3 batch incubations pregrown on 5-fold-diluted AMS, NMS, or MS medium
to mid-exponential phase were pooled. Cells were washed twice to remove any remaining nitrogen
source by pelleting the biomass in 50-ml tubes at 1,000 � g for 10 min (5810 centrifuge; Eppendorf,
Hamburg, Germany). Subsequently, the supernatant was removed and replaced with nitrogen-free,
5-fold-diluted MS medium. Cells were dissolved in 5-fold-diluted MS medium. All bottles were inoculated
with 3 ml of the washed cells at a starting OD600 of 0.05. The OD600 was measured using a spectropho-
tometer (Spectronic200; ThermoFisher Scientific, Waltham, MA, USA). The CH4 concentrations in the
headspace were measured by injection of 50-�l gas samples into an HP 5890 gas chromatograph
(Hewlett Packard, Palo Alto, CA, USA) equipped with a Porapak Q 100/120 mesh (Sigma-Aldrich, Saint
Louis, MO, USA) and a flame ionization detector (FID). O2 concentrations were determined using an
Agilent 6890 series gas chromatograph coupled to a mass spectrometer (Agilent, Santa Clara, USA)
equipped with a Porapak Q column heated at 80°C, with helium as the carrier gas, as described
previously (75).

Molecular analyses. Extraction, analysis, and identification of phospholipid-derived fatty acids
(PLFAs), including dimethyl disulfide (DMDS) derivatization to determine double-bond positions, was
performed as described by Dedysh et al. (19). DNA was extracted from 2 ml liquid culture using the
PowerSoil DNA isolation kit (MO Bio Laboratories Inc., Carlsbad, CA, USA) according to the manufacturer’s
protocol. The genomic DNA was sequenced on the Illumina MiSeq platform, with MiSeq reagent kit v3
(600 cycles, yielding 2� 300-bp paired-end sequencing reads; Life Technologies, Carlsbad, CA, USA). For
genomic library preparation using the Nextera XT kit (Illumina, San Diego, CA, USA), in total 5 �l genomic
DNA (gDNA) normalized to 0.2 ng/�l was used. Fragmentation was performed enzymatically, followed by
incorporation of the indexing adapters and amplification of the library as described by the manufacturer.
Purification of the amplified library was performed using AMPure XP beads, and the quality and size
distribution of the library were checked using the Agilent 2100 Bioanalyzer and the high-sensitivity DNA
kit (Agilent Technologies, Santa Clara, CA, USA). Fluorimetric quantitation of the library was performed
by Qubit using the double-stranded DNA (dsDNA) HS assay kit (Thermo Fisher Scientific Inc., Waltham,
USA). For normalization of the library, the concentration measured by Qubit and the average fragment
size obtained with the Agilent 2100 bioanalyzer were used. After dilution to a 4 nM end concentration,
the library was denatured and diluted according to the MiSeq System Denature and Dilute Libraries Guide
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(76) and loaded in the cartridge, and the sequence run was started using the Illumina MiSeq platform
(Illumina, San Diego, CA, USA).

Bioinformatic analysis. Illumina raw sequencing reads were imported into CLC Genomics Work-
bench (v11.0.2; Qiagen/CLCbio, Aarhus, Denmark) and trimmed on the bases of quality and length
(�100 bp), resulting in nearly 11.5 million reads, which were used for subsequent analyses. Reads were
assembled using CLC Genomics Workbench (assembly parameters were a word size of 20, a bubble size
of 50, and a minimum contig length of 200; mapping parameters were a mismatch cost of 2, an insertion
cost of 3, a deletion cost of 3, a length fraction of 0.5, and a similarity fraction of 0.8). As a slight
contamination in the culture used for DNA extraction was observed, metagenomic binning was per-
formed based on C�G content and sequencing depth (77). The assembled genome of strain C50C1 was
composed of 42 contigs with an N50 of 199.476 bp, an overall genome size of 4.8 Mbp, and an average
G�C content of 63%. Genome completeness and contamination were estimated by CheckM (78) to
be 99.1% and 3.3%, respectively. Binned contig sequences were submitted to the RAST automated
annotation pipeline (79), which includes genomic object prediction (CDSs and RNA genes), sequence
homology searches, prediction of protein localization, and reconstruction of metabolic networks.
Subsequently, the annotation was refined manually and compared to publicly available genomes of
aerobic MOB.

Data availability. The high-quality draft genome of strain C50C1 is available at NCBI under
BioProject accession number PRJNA361434.

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at https://doi.org/10.1128/
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FIG S1, PDF file, 0.3 MB.
FIG S2, PDF file, 0.04 MB.
TABLE S1, DOCX file, 0.02 MB.
TABLE S2, DOCX file, 0.02 MB.
TABLE S3, DOCX file, 0.02 MB.
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