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Abstract
Background: Using single-nucleotide polymorphism (SNP) genotypes and selected gene
expression phenotypes from 14 CEPH (Centre d'Etude du Polymorphisme Humain) pedigrees
provided for Genetic Analysis Workshop 15 (GAW15), we analyzed quantitative traits with
artificial neural networks (ANNs). Our goals were to identify individual linkage signals and examine
gene × gene interactions. First, we used classical multipoint methods to identify phenotypes having
nominal linkage evidence at two or more loci. ANNs were then applied to sib-pair identity-by-
descent (IBD) allele sharing across the genome as input variables and squared trait sums and
differences for the sib pairs as output variables. The weights of the trained networks were analyzed
to assess the linkage evidence at each locus as well as potential interactions between them.

Results: Loci identified by classical linkage analysis could also be identified by our ANN analysis.
However some ANN results were noisy, and our attempts to use cross-validated training to avoid
overtraining and thereby improve results were only partially successful. Potential interactions
between loci with high-ranked weight measures were also evaluated, with the resulting patterns
suggesting existence of both synergistic and antagonistic effects between loci.

Conclusion: Our results suggest that ANNs can serve as a useful method to analyze quantitative
traits and are a potential tool for detecting gene × gene interactions. However, for the approach
implemented here, optimizing the ANNs and obtaining stable results remains challenging.

from Genetic Analysis Workshop 15
St. Pete Beach, Florida, USA. 11–15 November 2006

Published: 18 December 2007

BMC Proceedings 2007, 1(Suppl 1):S47

<supplement> <title> <p>Genetic Analysis Workshop 15: Gene Expression Analysis and Approaches to Detecting Multiple Functional Loci</p> </title> <editor>Heather J Cordell, Mariza de Andrade, Marie-Claude Babron, Christopher W Bartlett, Joseph Beyene, Heike Bickeböller, Robert Culverhouse, Adrienne Cupples, E Warwick Daw, Josée Dupuis, Catherine T Falk, Saurabh Ghosh, Katrina A Goddard, Ellen L Goode, Elizabeth R Hauser, Lisa J Martin, Maria Martinez, Kari E North, Nancy L Saccone, Silke Schmidt, William Tapper, Duncan Thomas, David Tritchler, Veronica J Vieland, Ellen M Wijsman, Marsha A Wilcox, John S Witte, Qiong Yang, Andreas Ziegler, Laura Almasy and Jean W MacCluer</editor> <note>Proceedings</note> <url>http://www.biomedcentral.com/content/pdf/1753-6561-1-S1-info.pdf</url> </supplement>

This article is available from: http://www.biomedcentral.com/1753-6561/1/S1/S47

© 2007 Liu et al; licensee BioMed Central Ltd. 
This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 6
(page number not for citation purposes)

http://www.biomedcentral.com/1753-6561/1/S1/S47
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/


BMC Proceedings 2007, 1(Suppl 1):S47 http://www.biomedcentral.com/1753-6561/1/S1/S47
Background
Complex traits are often hypothesized to be influenced by
multiple interacting loci. Detecting gene × gene interac-
tions remains a challenge. Artificial neural networks
(ANNs), however, are suited for pattern recognition
involving combinations of loci.

ANNs were first applied for human linkage analysis in
Genetic Analysis Workshop 10 (GAW) [1]. We have previ-
ously used ANNs to identify loci linked to discrete disease
traits simulated for GAW11 [2]. Others have applied
ANNs for linkage [3,4] or association analysis [5]. For
GAW15, we extend our ANN method to quantitative
traits, and aim to identify not only linked loci but also
potential interactions between loci.

Methods
The GAW15 Problem 1 data set, from Morley et al. [6],
includes single-nucleotide polymorphism (SNP) geno-
types at 2882 loci across the genome and 3554 gene
expression phenotypes in lymphoblastoid cells, for 14
three-generation CEPH (Centre d'Etude du Polymor-
phisme Humain) Utah families.

To select phenotypes for ANN analysis, we carried out
Haseman-Elston (H-E) regression [7] using the Statistical
Analysis for Genetic Epidemiology package (S.A.G.E.,
Release 5.2: http://genepi.cwru.edu/) and variance-com-
ponents (VC) linkage analysis using Merlin [8]. The
former analysis is the same as that used by Morley et al.
[6].

We used two different genetic maps. We compiled Map 1
from the SNP Consortium map data http://snp.cshl.org/
linkage_maps/[9]. Map 2 was provided by Ellen Wijs-
man's group http://faculty.washington.edu/wijsman/
gaw15.shtml[10]. Comparing the two maps, we found
that Map 2 included a greater number of the GAW15
markers. Early ANN analyses used Map 1 and were then
updated using Map 2; we report the latter results, and
describe some contrasts with Map 1 results in the Discus-
sion. Identity-by-descent (IBD) sharing was estimated
across the genome for 378 sib pairs using Merlin. IBD
sharing at 10-cM gridpoints was presented as input data to
the ANNs, coded as a continuous variable between 0 and
1. Phenotype data was used as the output values at two
output nodes: the first for the squared trait difference, and
the second for the mean-corrected trait sum. This coding
thus contains the key phenotypic information also used
by the "new" H-E method [11].

We used the Stuttgart Neural Network Simulator (SNNS),
Version 4.2 http://www-ra.informatik.uni-tuebingen.de/
SNNS/[12]. ANN training used standard back-propaga-
tion with weight decay. Initial runs used all sib pairs for

both training and validation, similar to the method of
Lucek and colleagues [1,3]; after a fixed number of cycles,
the trained net having lowest sum-of-squares-error (SSE)
between network outputs and data-specified target out-
puts underwent further analysis of its weights. Subse-
quently, we used five-fold cross-validated training to
avoid overtraining and improve the generalization ability
of the ANN models; we also hoped that cross-validated
models would lead to more stable linkage results. An
important feature of our previous ANN work was our use
of cross-validation to select models before the ANN
weights were analyzed for linkage evidence [2]. We
hypothesized that cross-validation would also help
address concerns about unstable ANN linkage results such
as reported in [13].

We used a network architecture with two hidden layers.
We found that two hidden layers performed better than a
single layer, attaining lower error and more appropriate
output values. Note that the phenotype coding allows the
squared trait sums and differences to range freely. Thus,
the activation function at the output nodes was the iden-
tity function rather than the usual logistic sigmoid func-
tion, since the latter would restrict outputs to range
between 0 and 1. We believe the second hidden layer is
therefore performing some rescaling needed to obtain
appropriate output values. Thus, the primary ANNs con-
tained 362 input nodes, two hidden layers of 50 nodes
each, and two output nodes.

To identify input loci that are important in determining
phenotypic status, we used an algorithm similar to those
in our previous work [2]. Consider a trained network with
I input nodes, two hidden layers with H nodes each, and
O output nodes, such that each node in a given layer is
connected to every node in the next layer. Suppose the ith

input xi is connected to the jth hidden node via a weight uij,

the jth hidden node is in turn connected to the kth hidden
node in the next layer via a weight vjk, and this kth hidden

node is connected to the lth output node via wkl. Then we

calculate an "importance measure" for the ith input:

. To combine results across

the five separate ANNs generated by cross-validated anal-
yses, we standardized the importance measure by sub-
tracting the mean and dividing by the standard deviation,
then averaged across the five ANNs to rank the signals at
each input.

For our novel analysis of the interaction between a given
pair of loci, we considered the weights for each pair of
connections leading from the two loci to the same node in
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the next, hidden layer. We calculated the Pearson correla-
tion for the resulting data set of 50 pairs of weights. A
strong positive correlation is interpreted as cumulative or
synergistic action of the loci, and a strong negative corre-
lation may be interpreted as either antagonistic or com-
plementary action. The rationale for this correlation
analysis relies on the following details of an ANN's oper-
ation. For the generic network described above, a linear
combination of the I inputs xi forms the argument for the

activation function fj of the jth node of the next layer, with

weights uij as the coefficients, as follows:

, where aj is an intercept term. We

hypothesized that if two inputs have positively correlated
weights leading to the next layer, similar input values will
have cumulative effect on the arguments of the activation
functions; for two inputs with negatively correlated
weights, similar input values will have antagonistic effect.
A simplified example, in which the weights from one
input node are a fixed multiple of those from a second,
unlinked input node and thus are perfectly correlated
with those latter weights, demonstrates this most clearly.
Letting c be the scaling factor for the weights and indexing
these two inputs with 1 and 2, then u2j = cu1j for all j, and

the jth activation function value is:

. In the extreme case

in which |c| = 1, we see that when c is positive, similar
input values will have cumulative effects across all activa-
tion functions in the hidden layer, and when c is negative,
subtraction will cancel out the effects of two similar input
values.

To further evaluate potential interactions detected by our
correlation analysis, we used both VC (SOLAR with the "-
epistasis" option [14]) and a simple categorical "bin"
analysis. For the latter, we subdivided the sibpairs into a

three-by-three table of low (0 ≤ IBD < 1/3) medium (1/3
≤ IBD < 2/3) and high (2/3 ≤ IBD ≤ 1) IBD categories at
each locus in the pair. In each cell the proportion of "trait
dissimilar" sib pairs was calculated, where pairs were
labeled dissimilar if their squared trait difference was
greater than the overall average. This descriptive analysis
helped us assess our hypotheses about the effects of posi-
tively versus negatively correlated weights.

Results
We selected two gene expression phenotypes for ANN
analysis: probe sets 203313_s_at (gene TGIF, TGFB-
induced factor) and 210910_s_at (gene ZP3, zona pelluc-
ida glycoprotein 3). These traits gave at least two distinct
H-E signals with p-values less than 0.0001, and had con-
sistent VC results (Table 1). Probe set 203313_s_at was
also reported to have multiple linkage peaks by Morley et
al. [6].

ANN analysis of TGIF with Map 2 detected linkage on
chromosomes 1, 9, and 15, as expected from the H-E and
VC results; however, results were noisy with multiple
other putative peaks (Fig. 1). An interesting pattern of
interaction was suggested by the correlation analysis,
which revealed strong positive correlation between the
chromosomes 1 and 15 signals (r = 0.961), and strong
negative correlation between the chromosomes 1 and 9
signals (r = -0.896) (Table 2). These pairings were ranked
second and nineteenth, respectively, across all pairings of
the chromosome 1 locus with each 10-cM gridpoint
across the map.

ANN results for 210910_s_at (ZP3) using Map 2 are given
in Figure 2. The highest peak identified by the ANN is con-
sistent with the strongest linkage peak from both H-E and
VC analyses, and the secondary peak on chromosome 14
matches one of the additional notable linkage peaks. Cor-
relation results are given in Table 2. Interestingly,
although chromosome 15 (the second best signal from
traditional analysis) was not detected by the ANN method
(Fig. 2), the interaction analysis highlighted a strong cor-
relation with the chromosome 7 locus.

f a u xj j iji
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Table 1: Selected gene expression phenotypes

Probe set Gene H-E p-value H-E Location VC p-value VC location

203313_s_at TGIF 8.8 × 10-12 Chr 1: 28 cM 4.00 × 10-5 Chr 1: 27 cM
4.8 × 10-6 Chr 15: 22 cM 5.00 × 10-3 Chr 15: 25 cM
2.00 × 10-5 Chr 9: 127 cM - -
2.21 × 10-5 Chr 9: 14 cM - -

210910_s_at ZP3 3.75E × 10-16 Chr 7: 83 cM 0.0 Chr 7: 83 cM
1.24 × 10-5 Chr 15: 41 cM 3.00 × 10-3 Chr 15: 41 cM
4.00 × 10-4 Chr 12: 103 cM - -
1.80 × 10-3 Chr 14: 103 cM 4.00 × 10-3 Chr 14: 103 cM
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We subjected the most interesting locus pairings from our
weight correlation analysis of TGIF to epistasis analysis in
a VC framework, and also to a simple categorical "bin"
analysis. The VC analysis did estimate a non-zero coeffi-
cient for the epistasis term, but this did not significantly
improve the log-likelihood fit compared with sequential
single locus scanning. However, our bin analysis revealed
interesting patterns. We had observed a strong positive
correlation for chromosome 1, 40 cM and chromosome
15, 20 cM (Table 2); correspondingly, the highest ratio of
dissimilar pairs (66%) occurred in the bin corresponding
to low sharing at both loci, consistent with our hypothesis
of cumulative effect. In contrast, for the pairing that gave
a strong negative correlation (chromosome 1, 40 cM and
chromosome 9, 110 cM), the highest ratio of dissimilar
pairs (56%) was in the bin corresponding to low sharing
at the first locus and high sharing at the second. Thus,
while from H-E we expect low trait similarity among low

IBD sib pairs at each locus, considering the IBD status
jointly reveals an interaction. The negative correlation was
observed in the presence of an underlying pattern in
which high sharing at one locus together with low sharing
at the other led to reduced trait similarity.

For the computationally intensive cross-validated analy-
ses, we targeted only TGIF. We completed three five-fold
cross-validated runs and observed whether the H-E/VC
verified loci were supported. The first run supported the
loci at chromosome 1, 40 cM (rank = 7); chromosome 9,
110 cM (rank = 4); and chromosome 15, 20 cM (rank =
8). The second supported only the chromosome 9 locus
(rank = 4), and the third supported chromosome 9 (rank
= 6) and chromosome 15 (rank = 5), with evidence on
chromosome 1, 90 cM (rank = 1). Other high-ranking loci
were not always in common across the three runs. Thus

ANN analysis of 203313_s_at (TGIF), using Map 2 and all sib pairsFigure 1
ANN analysis of 203313_s_at (TGIF), using Map 2 and all sib pairs.
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Table 2: Correlation analysis of two-locus interactions using the ANN weights

Phenotype Input 1a Input 2a Pearson r Rank of |r|

203313_s_at (TGIF) Chr 1: 40 cM Chr 15: 20 cM 0.961 2
Chr 1: 40 cM Chr 9: 110 cM -0.896 19

210910_s_at (ZP3) Chr 7: 90 cM Chr 7: 83 cM 0.957 1
Chr 7: 90 cM Chr 15: 40 cM 0.703 3

a Loci with high ANN importance measure, and supported by H-E and VC analysis.
Page 4 of 6
(page number not for citation purposes)



BMC Proceedings 2007, 1(Suppl 1):S47 http://www.biomedcentral.com/1753-6561/1/S1/S47
these results were not as consistent as expected; however,
they did provide some support for the key loci.

We performed secondary analyses of rescaled data (inputs
and outputs), but results did not notably improve. Based
on our results, we did not further develop those
approaches.

Discussion and conclusion
Currently, genome-wide linkage scans are typically carried
out one chromosome at a time. Approaches that can ana-
lyze all markers simultaneously and detect patterns of
locus interactions are a desired alternative. We applied
ANNs to map QTLs and calculated correlations between
the ANN weights to evaluate potential interactions.

Training and testing ANNs on all sib pairs (rather than
using cross-validation) did detect linkage evidence at loci
highlighted by traditional methods. We favor the use of
cross-validation when possible [2]. We applied five-fold
cross-validation to select models; however, this approach
did not appear to ultimately improve stability of the link-
age results: the first cross-validated analysis supported the
loci detected traditional analysis; subsequent cross-vali-
dated results were not as consistent with each other as we
had hoped. Given our previous success in using cross-val-
idated ANNs for analysis of discrete traits [2], we speculate
that quantitative traits may present a greater challenge for

ANN-based linkage analysis. It is also possible that an
alternative coding of the quantitative phenotype data
would have been more suitable than what we used here.
Alternative ANN configurations were considered and
trained on the data. Although using 50 nodes for the hid-
den layers was somewhat arbitrary, alternative configura-
tions did not seem to improve performance. Nevertheless,
choice of architecture remains an issue for ANN applica-
tions.

Our initial ANN analysis run used the 203313_s_at
(TGIF) gene expression phenotype, Map 1, and a ran-
domly selected training subset of four-fifths of the sib
pairs (data not shown). This preliminary analysis was
promising because it detected the expected linkage peaks
on chromosomes 1, 9, and 15, and only one additional
unconfirmed peak. Furthermore, the correlation analysis
was even more striking (r = 0.985 and -0.917), with these
being the two strongest correlations between distinct loci
across the genome. When updating to Map 2, analyzing
all sib pairs gave what appear to be noisier results (Fig. 1),
but using only the above-mentioned four-fifths subset of
sib pairs resulted in peaks more similar to those from the
initial Map 1 analysis (data not shown). This suggests that
this particular four-fifths subset explains in part the con-
trast between our Map 1 and Map 2 results, and may be
more informative for linkage of TGIF than the full data
set. Nevertheless, it seemed most appropriate to focus on

ANN analysis of 210910_s_at (ZP3), using Map 2 and all sib pairsFigure 2
ANN analysis of 210910_s_at (ZP3), using Map 2 and all sib pairs.
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results for the more comprehensive Map 2, and the full
available data set.

To our knowledge, this study is the first to use ANNs for
linkage analysis of quantitative traits, and the first attempt
to analyze ANN weights for evidence of interactions
explicitly. Our approach was able to detect linkage signals
indicated by classical methods. However, optimizing net-
work and training parameters and obtaining stable results
remains challenging, especially when dealing with
"noisy" real data sets. Despite these difficulties, we
observed that when a trained ANN recapitulated signals
from traditional analysis, correlation analysis of the
weights appeared to provide some insight into locus ×
locus interactions. Future analysis with simulation data
will be useful to systematically evaluate these methods.
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