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Abstract

There are many psychological applications that require collapsing the information in a two-

mode (e.g., respondents-by-attributes) binary matrix into a one-mode (e.g., attributes-by-

attributes) similarity matrix. This process requires the selection of a measure of similarity

between binary attributes. A vast number of binary similarity coefficients have been pro-

posed in fields such as biology, geology, and ecology. Although previous studies have

reported cluster analyses of binary similarity coefficients, there has been little exploration of

how cluster memberships are affected by the base rates (percentage of ones) for the binary

attributes. We conducted a simulation experiment that compared two-cluster K-median par-

titions of 71 binary similarity coefficients based on their pairwise correlations obtained under

15 different base-rate configurations. The results reveal that some subsets of coefficients

consistently group together regardless of the base rates. However, there are other subsets

of coefficients that group together for some base rates, but not for others.

Introduction

Two-way, two-mode data are extremely common in psychology and other areas of scientific

inquiry. The two-way nature of data pertains to their arrangement in a two-dimensional array,

where there are measurements for each row and column of the array. The two-mode aspect of

the data relates to the fact that the n rows and p columns of the n × p two-dimensional array

correspond to two distinct sets of objects. In psychological contexts, it is particularly common

for the row objects to be individuals (e.g., patients, examinees, respondents, etc.), and the col-

umn objects to be attributes (e.g., symptoms, test questions, survey items, etc.).

Our focus in this paper is on two-mode binary data. The data are arranged in a two-dimen-

sional array, X = [xij], where xij = 1 if attribute j is affirmatively measured for individual i and

xij = 0 if attribute j is not affirmatively measured for individual i, for all 1� i� n and 1� j�
p. The psychological literature is replete with examples of two-mode binary data. For example,

in an educational testing context, xij = 1 could correspond to examinee i providing a correct

response to test question j. Likewise, in a psychopathology setting, xij = 1 might reflect the

presence of symptom j for patient i.
In this paper, our focus is on the analysis of the attributes, which is especially relevant to

psychological applications such as item-scale development in exploratory Mokken scaling
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analysis [1–4] and network analysis of symptoms in psychopathology [5]. In these and other

applications, it is common for the number of individuals to far exceed the number of attributes

(i.e., n>>>p). Therefore, when the focus is on the attributes, a typical starting point is to

establish binary similarity coefficients that measure inter-attribute similarity. To maintain

greater clarity, we limit our focus in this paper to binary similarity coefficients where larger

coefficient values reflect greater similarity. Although less common, there are also binary dis-
similarity coefficients, whereby larger coefficient values indicate less similarity. In most

instances, coefficients can be transformed from similarity to dissimilarity (or vice versa) by

taking one minus the coefficient value. The problem of specifying binary similarity coefficients

has been studied for more than 100 years, spanning the pioneering development of the earliest

coefficients [6–9], comparative studies in the 1980’s [10–12], and several surveys in the last

dozen years [13–16].

Table 1 displays the standard convention for the presentation of binary similarity coeffi-

cients. The four cells of the table correspond to all possible pairings of binary measurements

for two attributes j and l. The value of a is a count of the number of matches of 1s for j and l
(i.e., xij = xil = 1) across all n respondents. Likewise, the value of d is a count of the number of

matches of 0s for j and l (i.e., xij = xil = 0) across all n respondents. Some authors refer to

matches of 1s as presence matches and matches of 0s as absencematches [11]. Other authors

use the terms positive and negative matches to refer to matches of 1s and 0s, respectively [13].

The values of b and c are counts of mismatches between j and l across all n respondents. Mea-

sure b is a count (across all 1� i� n) of mismatches where xij = 1 and xil = 0, and measure c is

a count (across all 1� i� n) of mismatches where xij = 0 and xil = 1.

It is abundantly clear from the literature that some binary similarity coefficients are quite

familiar to psychological researchers, whereas many others are virtually unknown. However, it

is important to note that these same coefficients, despite relative unfamiliarity among psycho-

logical researchers, are actively used and well known in areas such as chemistry [14], ecology

[12], and bioinformatics [16]. In light of the vast array of binary similarity coefficients, it is

helpful to ascertain how coefficients tend to group together. In [13], the authors randomly gen-

erated binary vectors and computed 76 coefficients for each pair of vectors. An agglomerative

hierarchical cluster analysis (using single linkage) of the coefficients was performed based on

their pairwise correlations across 100 trials. The precise details of the generation of the data

sets was not provided. Later, in [14], researchers conducted a multidimensional scaling analy-

sis of binary similarity coefficients based on their pairwise correlations obtained across

100,000 trials. Rather than generate binary vectors, these authors randomly generated values

for a, b, c, and d, while assuring that they summed to a fixed constant. This data generation

process resulted in rather extreme conditions across the 100,000 trials.

Table 1. Contingency table structure for two binary attributes (j and l) measured across 1� i� n observations.

Attribute l assuming a value of 1 Attribute l assuming a value of 0

Attribute j assuming a

value of 1

a = number of positive matches

a =
Xn

i¼1

xijxil

b = number of mismatches (attribute j
occurrence)

b =
Xn

i¼1

xijð1 � xilÞ

Attribute j assuming a

value of 0

c = number of mismatches (attribute l
occurrence)

c =
Xn

i¼1

ð1 � xijÞxil

d = number of negative matches

d =
Xn

i¼1

ð1 � xijÞð1 � xilÞ

https://doi.org/10.1371/journal.pone.0247751.t001
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Neither of these previous studies provided any insight as to how the relative agreement of

binary similarity coefficients is affected by the base rates of the binary vectors. The base rate

for a binary vector is simply the percentage of ones in the vector. We hypothesize that,

although the concordance between some binary similarity coefficients might be unaffected by

the base rates, the agreement between other coefficients could be profoundly affected. Accord-

ingly, we conducted a simulation analysis that systematically evaluated the effect of base rates

on the grouping of 71 binary similarity coefficients. A summary of the workflow associated

with this simulation analysis is provided in Fig 1. This required an experimental design that

explicitly controlled for the base rates by establishing a design level corresponding to a pair of

base rates for the binary vectors. A separate partitioning analysis was completed for each

design level.

The partitioning method that we have selected for our analysis is K-median partitioning

[17–20]. The rationale for selecting this method was based, in large part, on the fact that K-

median partitioning is flexible and can accommodate either similarity or dissimilarity proxim-

ity data with relative ease [21–23]. By contrast, the popular K-means partitioning method

[24,25] is designed for dissimilarity data based on squared Euclidean distances.

Fig 1. A summary of the workflow of the experimental study.

https://doi.org/10.1371/journal.pone.0247751.g001
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In the next section, we discuss the selection of the 71 binary similarity coefficients that are

considered in our comparative analyses. This is followed by a section that describes the K-

median partitioning problem and the heuristic that we use to obtain solutions. We then use

the K-median heuristic to produce a partition of the 71 binary similarity coefficients based on

their inter-coefficient correlations established from a large number of simulated trials. This is

followed by a conclusion section that summarizes the paper, provides recommendations, and

discusses the limitations and extensions.

Binary similarity coefficients

There are several different possible schemes that can be used to categorize binary similarity

coefficients. For example, one classification scheme [12,26] divides coefficients into two cate-

gories: co-occurrence and association. Co-occurrence coefficients typically range from 0 to 1,

and often have a (or a+d) in their numerator. Thus, they are largely determined by the fre-

quency of occurrences for the attributes. By contrast, association coefficients typically range

from -1 to +1, and often have (ad–bc) in their numerator. In [12], it was posited that associa-

tion coefficients have an inherent centering effect that makes them less vulnerable to size effects
that can occur with co-occurrence coefficients. A size effect in our context would pertain to

the resulting partitions being overly sensitive to the relative frequencies of 1s in the data.

A second classification scheme for binary similarity coefficients pertains to the inclusion,

exclusion, or differential weighting of negative matches (d) in the computation of the coeffi-

cient. Many coefficients (including all of the association coefficients) include a, b, c, and d in

their computation. However, there are also coefficients that either exclude d entirely in the

computation [6,27,28], or include d but reduce its contribution to the index relative to a [29].

These are sometimes referred to as asymmetric coefficients. The motivation for excluding (or

diminishing the contribution of) d has its foundation in the principle that shared presences are

more informative than shared absences in ecological/biological data [26,29,30]. In fact, it had

been suggested that negative matches might not reflect any similarity between attributes at all

[13,31]. On the other hand, in [10] it was have noted that some applications do not use 1 and 0

to indicate, respectively, the presence or absence of an attribute, but rather qualitative differ-

ences of equal status (e.g., male or female, married or single, working or retired).

Based primarily on two of the most recent surveys [13,14], we assembled 71 binary similar-

ity coefficients for evaluation in our analyses. An effort was made in the selection process to

exclude coefficients that were obviously identical to other coefficients. Typically, this occurs

because some coefficients are called by different names. For example, the popular Jaccard coef-

ficient is sometimes referred to as the Tanimoto coefficient. Likewise, the closely-related Glea-

son coefficient is also known as the Czekanowski, Dice, Sørensen, and Sørensen-Dice

coefficient. The 71 coefficients are provided in the Appendix.

Model and method for K-median partitioning

Model formulation

A partition of the attributes into K clusters can be established for each similarity matrix using

K-median partitioning [17,18], which is also sometimes known as p-median partitioning [20]

or partitioning around medoids [19]. Denoting the p attributes via the index set P = {1,. . ., p},

K-median partitioning seeks to identify a subset Q that consists of K representative attributes

(known as exemplars), and to assign each attribute to its most similar exemplar, such that the

sum (across all attributes) of the similarities between each attribute and its nearest exemplar is

maximized. A succinct mathematical statement of the K-median problem in dissimilarity form

was provided in [32], which was adapted to the similarity context in [23]. For a given similarity
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matrix S = [sij], the mathematical formulation is as follows:

Maximize
Q

: Z ¼
X

i2P

max
j2Q
fsijg

h i
; ð1Þ

subject to : Q � P; ð2Þ

jQj ¼ K: ð3Þ

Eqs (2) and (3) are constraints that assure, respectively, that Q is a subset of the set of attri-

bute indices and the number of indices in Q (denoted by |Q|) is equal to the desired number of

clusters, K. Eq (1) is the objective function, which seeks the particular subset Q that maximizes

the sum (across all attributes) of the similarity between the attribute and the exemplar to

which it is most similar. It is assumed that sjj is the largest element in row j (for all 1� j� p),

which assures that, if attribute j is selected as an exemplar, then attribute j will be assigned to

the cluster for which it is the exemplar.

Solution methods and computer implementation

An optimal solution to the optimization problem posed by Eqs (1–3) can be obtained by re-

formulation and solution via integer linear programming [20,33–35]. Methods based on

Lagrangian relaxation and branch-and-bound programming have also proven to be computa-

tionally effective [22]. Numerous heuristic procedures have also been developed (see [32] for a

review). An effective and efficient fast interchange heuristic method was proposed in [36] and

later improved in [37,38]. A multistart implementation of this procedure has been used for

application to real datasets in [21,23], as well as for a recent large-scale simulation study [39].

We used this multistart heuristic for obtaining attribute partitions in the subsequent sections

of this paper. The steps of the procedure are as follows:

1. Randomly choose K attributes as initial exemplars.

2. Place each attribute in the cluster associated with its nearest exemplar.

3. Evaluate the replacement of each exemplar with one of the attributes not currently selected

as an exemplar. If a replacement increases the sum of the similarities between the attributes

and their most similar exemplar (i.e., Z in Eq (1)), then that replacement should be accepted.

4. Repeat Step 3 until no exemplar replacement will further increase Z.

The fast interchange heuristic does not guarantee a globally-optimal solution; however, the

solution is locally-optimal in terms of all possible replacements of an exemplar with an attri-

bute not chosen as an exemplar. A recommendation of restarting the algorithm 2000 times

and adopting the best solution across the 2000 restarts was proposed in [21] and was used in

our analyses. Several studies support the notion that this multistart fast interchange procedure

will provide good (and frequently globally-optimal solutions) for the size of K-median prob-

lems commonly encountered in psychology [21,23,38]. For problems where K exceeds 10, we

recommend the use of metaheuristics for K-median clustering (see [32] for a review).

Simulation experiment

Data generation process

Our primary interest in this paper is on the effect that base rates have on partitions of binary

similarity coefficients. This requires an experimental design and data generation process that
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is somewhat different from those used in previous studies [13,14]. The data generation process

in [13] is not described in sufficient detail to enable a comparative analysis; however, base

rates are not mentioned. In [14], 100,000 sets of four numbers (corresponding to a, b, c, d)

were selected randomly from a uniform distribution subject to constraints that a + b + c + d =

n = 1024. This process generates a very diverse set of 100,000 quadruples; however, it does not

allow for an assessment of how the binary similarity coefficients compare to one another for

different base rates.

We also generated 100,000 quadruples in our experiment, but did so using a rather different

process. First, we selected pairs of base rates (π1 and π2) for the two attributes. Second, we gen-

erated two n × 1 random vectors, x1 and x2, corresponding to the base rates π1 and π2, respec-

tively. Third, we computed a, b, c, and d corresponding to the x1 and x2 vectors. This process

was repeated 100,000 times for each of 15 different pairs of base rates. The 15 base rate pairs

[π1 and π2] that we used in the simulation experiment were: [.1, .1], [.1, .3], [.1, .5], [.1, .7], [.1,

.9], [.3, .3], [.3, .5], [.3, .7], [.3, .9], [.5, .5], [.5, .7], [.5, .9], [.7, .7], [.7, .9], and [.9, .9]. To assure

non-zero values for a, b, c, and d, we used n = 2000 in the data generation process.

The simulation experiment was conducted in MATLAB and the m-file used to generate the

100,000 trials for each pair of base rates is available at https://figshare.com/articles/Binary_

Similarity_Coefficients_Article_-_Brusco_Cradit_Steinley/12234716. The generation of

100,000 trials for 15 different base rate pairs results in a total of 1.5 million quadruples (a, b, c,
d). For each of these quadruples, we computed the 71 binary similarity coefficients. Subse-

quently, for each base-rate pair, we obtained the 71 × 71 correlation matrix based on the

100,000 trials for that pair. For most of the base-rate pairs, the correlations between the Good-

man and Kruskal I coefficient and all other coefficients were reported as ‘NaN’ (not a number,

or undefined). The same was true for the Anderberg coefficient, which is based on the Good-

man and Kruskal I coefficient. The Goodman and Kruskal I and Anderberg coefficients were

dropped from the study because these two coefficients were always zero for many of the base-

rate pairs and, therefore, it was not possible to compute correlations between these and other

coefficients. We proceeded with analysis of 69 × 69 correlation matrices throughout the

remainder of the analyses.

One preliminary finding from the study was that, for each pair of base rates, there was per-
fect correlation between several subsets of binary similarity coefficients: (i) {Sokal and Miche-

ner, Hamann}, (ii) {Rogot and Goldberg, Scott}, (iii) {Gower and Legendre, Sokal and Sneath

II), (iv) {Kulczynski II, McConnaughey, Johnson}, (v) {Baroni-Urbani and Buser I, Baroni-

Urbani and Buser II}, and (vi) {Gleason, Van der Maarle}. These findings are consistent with

those reported in [14, p. 2891).

Partition agreement for different base-rate pairs

The next step of the analysis was to obtain, for each of the 15 base-rate pairs, a partition of the

binary similarity coefficients into two clusters, based on the correlation matrix. We selected

K = 2 clusters for two reasons. First, most of the improvement in the clustering index value for

K-median partitioning occurs when moving from one to two clusters. Second, trying to select

the ‘best’ number of clusters for each of 15 different base rate pairs adds a lot of subjectivity to

the analysis and is apt to lead to a comparison that is much more confusing. The K-median

clustering method described in the previous section was applied to the correlation matrix for

each base-rate pair under the assumption of K = 2 clusters. The agreement between each of the

15(14)/2 = 105 pairs of two-cluster partitions was computed using the adjusted Rand index

[ARI: 40]. Although the ARI is one of the binary similarity coefficients evaluated in the study,

its most important role is that it is the gold standard for measuring partition agreement [41–
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43]. The ARI achieves a value of one for perfect agreement between two partitions and a value

near zero for chance agreement. In [41], thresholds of .65, .80, and .90 for ‘fair’, ‘good’, and

‘excellent’ agreement, respectively.

Table 2 provides the ARI values between all pairs of partitions. Along the main diagonal of

Table 2 are blocks of submatrices that help to identify four groups of base-rate pairs for which

partition agreement between all members of the group met the threshold for ‘fair agreement’

(i.e., > .65) or better. The 4 × 4 submatrix in the top left portion of Table 2 corresponds to four

conditions where both base-rate pairs are comparatively low (i.e., π1 + π2� 0.6) and, therefore,

we refer to this group as the low-base-rate group. The ARI value of .9366 between the partitions

for the [.1, .1] and [.1, .3] base-rate pairs meets the threshold for excellent agreement, whereas

the ARI of .8233 between the partitions for [.1, .5] and [.3, .3] is good agreement. The agree-

ment between all of the other base-rate pairs of the four-member group is fair.

Moving down along the main diagonal, there is a 3 × 3 submatrix in Table 2 that corre-

sponds to three conditions whereby π2 –π1� 0.6 and, therefore, we refer to this second group

of base rate pairs as the diverse-base-rate group. The agreement between the partitions for two

of these base-rate pairs, [.1, .7] and [.1, .9] was perfect (1.0), and their agreement with the parti-

tion for the third base-rate pair, [.3, .9] was fair.

Continuing down the main diagonal, there is a 4 × 4 submatrix in Table 2 that corresponds

to what we refer to as the mid-level-base group. The partitions for two of the base-rate pairs in

this group, [.3, .5] and [.3, .7] were identical, and the partitions for the other two-base-rate

pairs in the group, [.5, .5] and [.5, .7] were also identical. The ARI of .7887 between the [.3, .5]/

[.3, .7] partition and the [.5, .5]/[.5, .7] partition was near the threshold for good agreement.

Finally, there is a 4 × 4 submatrix in the bottom-right corner of Table 2 that corresponds to

a group consisting of some of the higher base-rate pairs. The ARI value of .9420 between the

partitions for the [.7, .7] and [.9, .9] base-rate pairs meets the threshold for excellent agreement

and the ARI of .8857 between the partitions for [.5, .9] and [.7, .9] approaches the threshold for

excellent agreement. The ARI of .8312 between the [.7, .9] and [.9, .9] partitions also satisfies

the threshold for good agreement.

Table 2. Two-cluster partition agreement (as measured by the ARI) among the 15 base-rate pairs.

[.1,.1] [.1,.3] [.1,.5] [.3,.3] [.1,.7] [.1,.9] [.3,.9] [.3,.5] [.3,.7] [.5,.5] [.5,.7] [.5,.9] [.7,.7] [.7,.9] [.9,.9]

[.1,.1] 1.0000 .9366 .6576 .7075 .0511 .0511 .0496 -.0248 -.0248 .0464 .0464 .0829 .0834 .1220 .1016

[.1,.3] .9366 1.0000 .7120 .7641 .0660 .0660 .0647 -.0286 -.0286 .0365 .0365 .1012 .0660 .1012 .0825

[.1,.5] .6576 .7120 1.0000 .8239 .0495 .0495 .0486 .2073 .2073 .2876 .2876 .0492 .0053 .0492 .0135

[.3,.3] .7075 .7641 .8239 1.0000 .0142 .0142 .0131 .1521 .1521 .2301 .2301 .0359 .0142 .0359 .0240

[.1,.7] .0511 .0660 .0495 .0142 1.0000 1.0000 .6777 .0004 .0004 .0004 .0004 .4168 .2172 .3434 .2462

[.1,.9] .0511 .0660 .0495 .0142 1.0000 1.0000 .6777 .0004 .0004 .0004 .0004 .4168 .2172 .3434 .2462

[.3,.9] .0496 .0647 .0486 .0131 .6777 .6777 1.0000 .0089 .0089 .0089 .0089 .6777 .4168 .5839 .4560

[.3,.5] -.0248 -.0286 .2073 .1521 .0004 .0004 .0089 1.0000 1.0000 .7887 .7887 -.0007 .0004 -.0058 .0044

[.3,.7] -.0248 -.0286 .2073 .1521 .0004 .0004 .0089 1.0000 1.0000 .7887 .7887 -.0007 .0004 -.0058 .0044

[.5,.5] .0464 .0365 .2876 .2301 .0004 .0004 .0089 .7887 .7887 1.0000 1.0000 .0111 .0123 -.0007 .0196

[.5,.7] .0464 .0365 .2876 .2301 .0004 .0004 .0089 .7887 .7887 1.0000 1.0000 .0111 .0123 -.0007 .0196

[.5,.9] .0829 .1012 .0492 .0359 .4168 .4168 .6777 -.0007 -.0007 .0111 .0111 1.0000 .6777 .8857 .7272

[.7,.7] .0834 .0660 .0053 .0142 .2172 .2172 .4168 .0004 .0004 .0123 .0123 .6777 1.0000 .7783 .9420

[.7,.9] .1220 .1012 .0492 .0359 .3434 .3434 .5839 -.0058 -.0058 -.0007 -.0007 .8857 .7783 1.0000 .8312

[.9,.9] .1016 .0825 .0135 .0240 .2462 .2462 .4560 .0044 .0044 .0196 .0196 .7272 .9420 .8312 1.0000

The four blocks highlighted in bold along the main diagonal are groups of base-rate pairs for which the partition agreement among all members of the group is .65 or

larger (.65 is the guideline from [41] for fair agreement).

https://doi.org/10.1371/journal.pone.0247751.t002
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Although the agreement within the submatrices of the four groups of base-rates is impor-

tant, what is especially striking is the fact that agreement measures outside these submatrices

are generally poor. There is only one ARI value outside the main diagonal blocks that meets

the threshold for fair agreement: That is, the ARI of .6777 between the [.3, .9] and [.5, .9] parti-

tion. Moreover, most of the ARI values outside of the main diagonal blocks are less than 0.1.

The clear implication of these results is that the concordance of binary similarity coefficients

can be profoundly affected by differences in base-rate pairs. Similar base-rate pairs tend to

result in similar two-cluster partitions of the binary similarity coefficients. However, for

markedly different base-rate pairs, the partitions often exhibit little more than chance

agreement.

Subsets of binary similarity coefficients

Given the discordance of some partitions of the binary similarity coefficients for different

base-rate pairs, it is important to establish which subsets of binary similarity coefficients are

robust to changes in base-rate pairs. Table 3 presents subsets of binary similarity coefficients

that were contained in the same cluster for all 15 base-rate pairs. A few coefficients that were

consistent for 14 of the 15 base-rate pairs are also identified in Table 3 and are indicated with

an asterisk and italic font. Subset 1 consists of 22 coefficients, which are anchored by some of

the most popular association measures {phi, tetrachoric, Yule’s Q, Yule’s W, Dispersion,

Cohen}. More than half of the coefficients in Subset 1 have the term ad–bc in their numerator

and two other coefficients (Forbes II and Tarwid) could be rewritten to have an ad–bc term in

the numerator. As noted in [11, p. 674], ad–bc is the determinant of the contingency table and

its commonness is based on its relationship to a comparison of a to its expectation under the

assumption that the two binary vectors are independent.

Table 3. Subsets of coefficients that fall in the same cluster for all 15 base-rate pairs.

Subset 1 Phi Cole I Sokal and Sneath IV Eyraud

Tetrachoric Cole II Tarantula Michael

Yule’s Q Peirce I Gilbert and Wells CT V

Yule’s W Peirce II Maxwell and Pilliner Tarwid

Dispersion Forbes I Odds Ratio Dennis

Cohen Forbes II

Subset 2 Jaccard Kulczynski I Baroni-Urbani and Buser I Russell and Rao

SWJaccard Dice II Baroni-Urbani and Buser II Braun-Blanquet

Gleason CT III Driver and Kroeber Van der Maarle

Fossum Sorgenfrei Sokal and Sneath I

Subset 3 Sokal and Michener Hamann Sokal and Sneath II �Faith
Gower and Legendre CT I Sokal and Sneath III �CT IV
Rogers and Tanimoto CT II Austin and Colwell

Subset 4 Rogot and Goldberg Scott Harris and Lahey �Sokal and Sneath V
�Goodman and Kruskal II

Subset 5 Kulczynski II McConnaughey Johnson �Mountford
Subset 6 Pearson I Pearson II Stiles

Subset 7 Dice I Simpson

Ungrouped Loevingers H ARI Fager and McGowan Peirce III

Gower Rand Hawkins and Dotson

Note–coefficients denoted by ‘�’ share cluster membership for 14 of the 15 base-rate pairs.

https://doi.org/10.1371/journal.pone.0247751.t003
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Subset 2 is comprised of 15 coefficients that limit the impact of negative matches. Eleven of

the members of Subset 2 are co-occurrence measures that do not incorporate negative matches

(i.e., neither a or d appear in their formulas). Among the most popular of these coefficients are

{Jaccard, Gleason, Driver and Kroeber, Sorgenfrei, Sokal and Sneath I, Dice II}. One of the

other members of Subset 2 is the Russell and Rao coefficient, which is simply the proportion of

positive matches. The logarithmic analog of the Russell and Rao coefficient, CT III, is also

included in Subset 2. The remaining two members of Subset 2 are the Baroni-Urbani and

Buser I and II coefficients, which significantly down-weight d relative to a in their numerator.

Subset 3 consists of 11 coefficients, most of which are co-occurrence measures that do

include negative matches in their computation. The subset is anchored by four popular coeffi-

cients that have the term (a + d) as their numerator (Sokal and Michener, Rogers and Tani-

moto, Gower and Legendre, Sokal and Sneath III). Logarithmic (CT I) and transcendental

(Austin and Colwell) adaptation of the simple matching measure of Sokal and Michener are

also included in Subset 3. Two other measures, Hamann and Sokal and Sneath II, have slightly

modified numerators of (a + d–b–c) and 2 (a + d), respectively.

The four remaining subsets are small and the coefficients in three of these subsets tend to

have strong concordance with the coefficients in either Subset 1 or Subset 2. The five coeffi-

cients in Subset 4 {Rogot and Goldberg, Scott, Harris and Lahey, Sokal and Sneath V, Good-

man and Kruskal II} are also commonly included in clusters with the coefficients in Subset 1.

The Rogot and Goldberg, Scott, and Harris and Lahey coefficients occur in the same cluster as

the coefficients in Subset 1 for 12 of the 15 base-rate pairs, and the Sokal and Sneath V and

Goodman and Kruskal II coefficients occur in the same cluster as the coefficients in Subset 1

for 13 of the 15 base-rate pairs. The two coefficients in Subset 6 {Dice I, Simpson} also occur in

the same cluster as the coefficients in Subset 1 for 13 of the 15 base-rate pairs. In a similar fash-

ion, the four coefficients in Subset 5 {Kulczynski II, Johnson, McConnaughey, Mountford} are

commonly included in clusters with the coefficients in Subset 2. The Kulczynski II, Johnson,

and McConnaughey coefficients occur in the same cluster as the coefficients in Subset 2 for 13

of the 15 base-rate pairs. The coefficients in Subset 7 {Pearson I, Pearson II, Stiles} are chi-

square-type measures. The Pearson I and Pearson II coefficients are driven by (ad–bc)2 in the

numerator term, and the Stiles coefficient has the term (|ad–bc|–n/2)2 in its numerator. None

of the coefficients in Subset 7 are strongly tied to any of the coefficients in Subsets 1, 2, or 3.

The same is true for the ungrouped coefficients {ARI, Rand, Loevinger H, Peirce III, Gower,

Hawkins and Dotson, Fager and McGowan} with one exception: the Peirce III coefficient

occurs in the same cluster as the coefficients in Subset 2 for 13 of the 15 base-rate pairs.

Next, we turn to a more detailed analysis of the coefficients in Subsets 1, 2, and 3. The coef-

ficients in Subset 2 are in the same cluster as the coefficients in Subset 1 for only eight of the 15

base-rate-pair partitions. There is somewhat more consistency between the coefficients in Sub-

set 2 and Subset 3, which are in the same cluster for 11 of the 15 base-rate-pair partitions. By

contrast, the coefficients in Subset 1 are in the same cluster as the Subset 3 coefficients for only

four of the 15 base-rate-pair partitions. To better understand the base-rate-pair conditions

where the coefficients in Subsets 1, 2, and 3 were comparable or less comparable from one

another, we selected a popular exemplar from each subset. The phi coefficient, which is the

Pearson correlation coefficient between two binary vectors, was selected from Subset 1. The

Jaccard coefficient was selected from Subset 2. The Sokal and Michener coefficient, which is a

measure of simple matching between two binary vectors, was selected from Subset 3. Table 4

provides the correlation, r, between all pairs of these three exemplars for each base-rate-pair

combination.

The phi and Jaccard coefficients have their strongest level of concordance at the lower base

rates, and also tend to be stronger when the base rates are more comparable in magnitude. The

PLOS ONE 71 binary similarity coefficients

PLOS ONE | https://doi.org/10.1371/journal.pone.0247751 April 7, 2021 9 / 19

https://doi.org/10.1371/journal.pone.0247751


largest (r = .9731) correlation between these two coefficients occurs for the base-rate pair [.1,

.1]. The correlation (r = .9075) remains strong for the base-rate pair [.3, .3]. For the base-rate

pair [.5, .5], correlation dips to (r = .8309) and, subsequently to (r = .6787) for [.7, .7]. The cor-

relation for the base-rate pair [.9, .9] is poor (r = .4241). The propensity for the concordance

between the phi and Jaccard coefficients to weaken as the base rates become more disparate is

also easily observed. For example, the weakest correlation (r = .3492) occurs for the most dis-

parate base-rate pair [.1, .9], and the second weakest correlation (r = .4043) occurs for the

base-rate pair [.3, .9].

Table 4 clearly shows that the correlation between the Jaccard and Sokal and Michener

coefficients becomes stronger as the base rates increase. The smallest (r = .2564) pairwise cor-

relation between these two coefficients occurs for the base-rate pair [.1, .1]. The largest (r =

.9989) pairwise correlation between the Jaccard and Sokal and Michener coefficients occurs

for the base-rate pair [.9, .9]. There are six base-rate pairs where the correlation between these

two coefficients is r� .9.

The correlation between the phi and Sokal and Michener coefficients is somewhat weaker,

as a correlation of 0.7 or larger is only achieved for 6 of the 15 base-rate pairs. The strongest

correlation occurs when the base-rates for the two samples are close to 0.5. The correlation

between the phi and Sokal and Michener coefficients is near-perfect (r = .9997) for the base-

rate pair [.5, .5], and is also quite strong for the base-rate pairs [.3, .5] (r = .9168) and [.5, .7] (r
= .9173). However, when moving farther away from base rates of .5, the correlations quickly

begin to fall. The correlation values also convey the strong symmetry of agreement about the

[.5, .5] base rate pair. Symmetry is evident from the fact that: (i) the correlations for base-rate

pairs [.1, .1] and [.9, .9] are nearly the same, (ii) the correlations for base-rate pairs [.1, .3] and

[.7, .9] are nearly the same, (iii) the correlations for base-rate pairs [.1, .5] and [.5, .9] are nearly

the same, (iv) the correlations for base-rate pairs [.1, .7] and [.3, .9] are nearly the same, and (v)

the correlations for base-rate pairs [.3, .3] and [.7, .7] are nearly the same.

Table 4 also provides comparisons for the phi coefficient with two popular coefficients that

were in the ungrouped category in Table 2: (i) Loevinger’s H and (ii) ARI. Loevinger’s H is a

widely used coefficient in Mokken scaling analysis [1]. The results in Table 4 reveal that the

Table 4. Correlations between selected pairs of coefficients at all 15 base-rate pairs.

Base-rate phi. phi Jaccard phi phi

pairs Jaccard Sokal-Michener Sokal-Michener Loevinger H ARI

[.1, .1] .9731 .4714 .2564 .3165 .9999

[.1, .3] .8948 .5781 .3477 .5402 .9982

[.1, .5] .7677 .6015 .4284 .6870 -.0018

[.1, .7] .6011 .5808 .5328 .8042 -.9982

[.1, .9] .3492 .4683 .7428 .9030 -.9999

[.3, .3] .9075 .8507 .5520 .5142 .9946

[.3, .5] .8309 .9168 .6817 .6403 -.0003

[.3, .7] .6769 .8503 .7955 .7335 -.9946

[.3, .9] .4043 .5797 .9242 .8049 -.9982

[.5, .5] .8179 .9998 .8179 .5765 .0055

[.5, .7] .7154 .9173 .9077 .6425 -.0041

[.5, .9] .4545 .6006 .9731 .6870 .0009

[.7, .7] .6787 .8510 .9632 .5147 .9947

[.7, .9] .4788 .5776 .9919 .5390 .9982

[.9, .9] .4241 .4663 .9989 .3164 .9999

https://doi.org/10.1371/journal.pone.0247751.t004
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strongest correlation between the phi and Loevinger’s H coefficients occurs when the base

rates are most disparate. The largest (r = .9030), second largest (r = .8049), and third largest (r
= .8042) correlations between these two coefficients occurred for the [.1, .9], [.3, .9], and [.1, .7]

base-rate pairs, respectively. Like the relationship between the phi and Sokal and Michener

coefficients, there was also a marked symmetry between the phi and Loevinger’s H coefficients.

The nature of the correlations between the phi and ARI coefficients was particularly fascinat-

ing. There is virtually no correlation (|r|< .01) between these two coefficients for the five base-

rate pair conditions when one or both of the base rates was .5. For the six base-rate pairs where

either π1� π2� 0.3 or π2� π1� 0.7, the correlation approached +1 (r> .99). However, for

the four base-rate pairs where π1� 0.3 and π2� 0.7, the correlation approached -1 (r< -.99).

Conclusions

Summary

There are numerous applications in the psychological sciences that require the analysis of an n
× p binary matrix. When the focus in on the attributes, a preliminary step is the preparation of

a p × p similarity matrix. This can be accomplished using any one of several dozen available

binary similarity coefficients. The coefficients can be distinguished on different characteristics,

such as: (i) whether they are association or co-occurrence measures, and (ii) whether they

retain or exclude information pertaining to negative matches.

Although there have been two recent surveys [13,14] that provide correlation-based groupings

of binary similarity coefficients, neither study provided an assessment of how the agreement of

the coefficients is affected by base rates. To address this issue, we conducted a simulation experi-

ment that carefully controlled for base rates in the experimental design. More specifically, two-

cluster K-median partitions of 69 binary similarity coefficients were obtained based on their inter-

coefficient correlations (computed across 100,000 samples) for 15 different combinations of base-

rate pairs. A succinct summary of the results of that experiment is as follows:

1. There were four groups of base-rate pairs whereby the level of partition agreement between

all pairs in the group was at least ‘fair’ based on the ARI standards published by Steinely

(2004): (a) {[.1, .1], [.1, .3], [.1, .5], [.3, .3]}, (b) {[.1, .7], [.1, .9], [.3, .9]}, (c) {[.3, .5], [.3, .7],

[.5, .5], [.5, .7]}, and (d) {[.5, .9], [.7, .7], [.7, .9], [.9, .9]}.

2. With only one exception, the ARI between the base-rate pairs not in the same group was

below the ARI threshold for ‘fair’ and, in most instances the ARI was less than 0.1, thus sug-

gesting only chance agreement.

3. There were three sizable subsets of coefficients that were in the same cluster of the K-median

partition for all 15 base-rate pairs. These include a subset anchored by popular association

coefficients {phi, tetrachoric, Yule’s Q, Yule’s W, Dispersion, Cohen}, a subset anchored by

co-occurrence coefficients that do not incorporate negative matches {Jaccard, Gleason,

Driver and Kroeber, Sorgenfrei, Sokal and Sneath I, Dice II}, and a subset anchored by co-

occurrence coefficients that do incorporate negative matches{Sokal and Michener, Rogers

and Tanimoto, Gower and Legendre, Sokal and Sneath II, Sokal and Sneath III)}.

4. The correlations between coefficients in different subsets were quite strong for some base-

rate pairs, but weak for others. Table 4 was useful for disentangling the base-rate conditions

for which coefficients for the different subsets tended to be strong or weak.

The key finding of the simulation study is that base rates do matter when comparing binary

similarity coefficients. The agreement between some subsets of coefficients is robust to changes

in the base rates; however, the agreement between other subsets is highly sensitive to changes.
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Implications for analysis of real psychological data sets

We do not contend that base rates should be the primary factor for selecting a binary similarity

coefficient for psychological applications. Instead, the context of the particular application is

much more important. Nevertheless, information about the base rates does offer researchers

some guidance as to when two different coefficients are likely to produce similar results. To

illustrate, we consider two different psychological applications discussed earlier in the paper:

(1) item-scale development and (2) psychopathology networks.

In the first application context [2,4], the data pertained to the performance of schoolchil-

dren on 12 transitive reasoning problems. The binary measurements indicated whether a stu-

dent got a problem right (xij = 1) or wrong (xij = 0). Accordingly, these data are not of the

‘attribute presence or absence’ variety, but rather reflect performance-based measurements.

The base rates for the 12 problems ranged from 30.1% (hardest problem) to 97.4% (easiest

problem) with an average of 74.5%. In light of the lack of presence/absence interpretation and

the relative ‘easiness’ of the problems, it is arguable that the zeros in the raw data matrix should

be considered at least as important as the ones. This might suggest that association coefficients

or, possibly, cooccurrence coefficients that include d might be useful for this application.

Five-cluster partitions of the 12 transitive reasoning problems were obtained in [2,4] based

on Mokken scaling analysis using the Loevinger H coefficient. A similar five-cluster partition

was obtained using the K-median method based on the association measures tetrachoric corre-

lation and Yule’s Q. By contrast, five-cluster partitions obtained using cooccurrence measures

that include d (e.g., Sokal-Michener) and exclude d (e.g., Jaccard) spuriously placed the prob-

lems with the four highest base rates in their own individual clusters, thus exhibiting a mani-

festation of the size effect noted by Jackson et al. (1989) [12]. The disparity between the results

obtained by association and cooccurrence methods was predicted by our findings in Table 4,

which shows that phi is weakly correlated to both Jaccard and Sokal-Michener when base rates

are very high. The similarity of the Jaccard and Sokal-Michener results was also predicted by

the results in Table 4, which shows strong concurrence between these two coefficients when

base rates are high.

In the second application context [5,44], the data pertained to 18 depression/anxiety symp-

toms among a set of patients. Unlike the transitive reasoning data, the depression/anxiety data,

which focuses on the presence or absence of symptoms, does comport more with the ‘attribute

presence/absence’ interpretation. The base rates for the depression/anxiety data ranged from

10.3% (least prevalent symptom) to 51.5% (easiest problem) with an average of 20.8%. This

average is less than one-third of the corresponding figure for the transitive reasoning data.

Given the presence-absence interpretation of the data and the modest prevalence of symptoms,

it was argued in [44] that it is reasonable in this context to give stronger consideration to

binary coefficients that ignore (or reduce the contribution of) negative matches, such as the

Jaccard index. The Jaccard index (and two other coefficients from its cluster: Kulczynski II

and Driver and Kroeber) led to a particularly relevant and interpretable three-cluster partition

of the symptoms. Cooccurrence coefficients that include d (Sokal-Michener, Faith, Gower and

Legendre) led to a different, yet still interpretable, partition. Thus, the size effect problem

noted by Jackson et al. (1989) [12] did not manifest itself in this application context because of

the lower base rates. The association coefficients (tetrachoric, Yule’s Q) led to yet a different

partition that was also interpretable, but not as relevant as the one associated with the cooccur-

rence measures that exclude d. Again, the disparity among the association, cooccurrence

(exclude d), and cooccurrence (include d) partitions was predicted by the results in Table 4,

which shows rather lower agreement among exemplars for these three categories at low-to-

moderate base rates.
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To summarize, the selection of a binary similarity coefficient will largely be driven by the

context of the particular application. Nevertheless, our results enable researchers to better

understand the feasibility of different coefficient options based on base-rate information. For

example, if a researcher perceives that negative matches are of comparable importance to posi-

tive matches, then the selection of an association coefficient from Subset 1 (e.g., phi) is appro-

priate. Our findings suggest that, if the researcher’s data approximate the (.5, .5) base-rate

condition, then the researcher could replace an association coefficient from Subset 1 with a co-

occurrence coefficient from Subset 3 (e.g., Sokal-Michener) and obtain comparable results.

However, there is a greater discordance between coefficients from Subsets 1 and 3 as the base

rates depart from the (.5, .5) condition.

In a study where the presence/absence of attributes is measured and the researcher per-

ceives that negative matches are of lesser importance, then the selection of a co-occurrence

coefficient from Subset 2 (e.g., Jaccard) is appropriate. Our results suggest that, under a low

base-rate condition such as (.1, .1), it should be possible to replace the co-occurrence coeffi-

cient from Subset 2 with an association coefficient from Subset 1 (e.g., phi) and realize compa-

rable results. Likewise, under a high base-rate conditions such as (.9, .9), it is possible to

replace the co-occurrence coefficient from Subset 2 with a co-occurrence coefficient from Sub-

set 3 (e.g., Sokal-Michener) that incorporates negative matches and obtain comparable results.

Limitations and extensions

One of the primary intentions of this paper was to draw attention to the many different binary

similarity coefficients that are available. As noted in the introduction of this manuscript, some

of these coefficients (e.g., tetrachoric correlation) are well known, but most are not. We con-

sidered a sample of 71 coefficients from the broader literature (e.g., biology, ecology. etc.) that

provided both breadth and depth with respect to the distinguishing features of association vs.

co-occurrence and inclusion vs. exclusion of negative matches. However, our assembly of coef-

ficients is not exhaustive and this could be perceived as one limitation of our paper.

Another potential limitation is the fact that we conducted our evaluation within the frame-

work of two-cluster K-median partitioning. It might be interesting to investigate clusters of the

binary similarity coefficients using other partitioning methods, or possibly alternative data

analysis approaches such as multidimensional scaling.

A closely related limitation is the fact that we limited our comparisons to two-cluster parti-

tions of the coefficients for each of the 15 combinations of base-rate pairs. As noted previously,

this is somewhat justified by the fact that, for most base-rate pairs, the largest improvement in

the K-median objective function tended to occur when moving from one to two clusters. Nev-

ertheless, we recognize that two might not be the ‘best’ number of clusters for any given base-

rate pair; however, it does facilitate a coherent comparison across the 15 base-rate pairs. Using

ad hoc rules for choosing the number of clusters for each of the 15 different base-rate pairs

would result in a comparative analysis that is both confusing and unwieldy, as well as sensitive

to the rule used for choosing K.

A potential extension of our findings is to investigate the utility of using multiple coeffi-

cients as a means for building confidence in an experimental analysis (e.g., a cluster analysis, a

multidimensional scaling study, etc.). For example, a researcher could conduct an experimen-

tal analysis using a well-known coefficient from each of three major categories of coefficients

to establish a similarity matrix: (1) a correlation coefficient (e.g., phi), (2) a co-occurrence coef-

ficient that includes negative matches (e.g., Sokal and Michener), and (3) a co-occurrence

measure that excludes negative matches (e.g., Jaccard). If the results of the analyses are fairly

robust across the three coefficients used to construct the similarity matrix, then considerable
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confidence is realized. Contrastingly, if there are salient differences among the analyses, then

the researcher will need to give more careful consideration as to what type of similarity is most

appropriate for the problem at hand.

Appendix: 71 binary similarity coefficients

Some general definitions used in the presentation of the 71 binary similarity coefficients indi-

ces are n = a + b + c + d), τ1 = (max{a, b} + max{c, d} + max(a, c} + max{b, d}), τ2 = (max{a + c,
b + d} + max{a + b, c + d}), N = n(n-1)/2, B = ab+cd, C = ac + bd, D = ad + bc, A = N–B–C–D,

and π1� π2 are the base rates for the two binary random variables. The first 18 measures are

co-occurrence coefficients that do not consider negative matches, d (we note that coefficients

that include n, by definition, include a, b, c, and d). Coefficients A.19 and A.20 involve the

ratio of a to n. Coefficients A.21 to A.30 have total matches (i.e., a+d) in the numerator. The

next 16 coefficients (A.31 to A.46) involve some form of ad–bc in the numerator term. Coeffi-

cients A.47 to A.49 are related association coefficients that involve ad and/or bc products.

Coefficients A.50 to A.51 are, respectively, the Rand index and adjusted Rand index, which are

enormously popular in the clustering literature. Coefficient A.52 is Loevinger’s H, which is

popular in Mokken scaling applications. The remaining 19 coefficients are assorted co-occur-

rence measures.

Dice I [45] s1ij ¼
a

ðaþbÞ (A.1)

Dice II [45] s2ij ¼
a
ðaþcÞ (A.2)

Jaccard [6] s3ij ¼
a

ðaþbþcÞ (A.3)

SWJaccard [6] s4ij ¼
3a

ð3aþbþcÞ (A.4)

Gleason [46] s5ij ¼
2a

ð2aþbþcÞ (A.5)

Kulczynski I [27] s6ij ¼
a
ðbþcÞ (A.6)

Kulczynski II [27] s7ij ¼
1

2

a
ðaþbÞ þ

a
ðaþcÞ

� �
(A.7)

Driver and Kroeber [47]/Ochiai [28] s8ij ¼
affiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðaþbÞðaþcÞ
p (A.8)

Braun-Blanquet [48] s9ij ¼
a

maxfaþb;aþcg (A.9)

Simpson [49] s10
ij ¼

a
minfaþb;aþcg (A.10)

Sorgenfrei [50] s11
ij ¼

a2

ðaþbÞðaþcÞ (A.11)

Mountford [51] s12
ij ¼

2a
ðabþacþ2bcÞ (A.12)

Fager and McGowan [52] s13
ij ¼

affiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaþbÞðaþcÞ
p �

maxðaþb;aþcÞ
2

(A.13)

Sokal and Sneath I [31] s14
ij ¼

a
ðaþ2bþ2cÞ (A.14)

McConaughey [53] s15
ij ¼

ða2� bcÞ
ðaþbÞðaþcÞ (A.15)

Johnson [54] s16
ij ¼

a
ðaþbÞ þ

a
ðaþcÞ (A.16)

Van der Maarel [55] s17
ij ¼

ð2a� b� cÞ
ð2aþbþcÞ (A.17)

Consonni and Todeschini [56] (CT IV) s18
ij ¼

lnð1þaÞ
lnð1þaþbþcÞ (A.18)

Russell and Rao [57] s19
ij ¼

a
n (A.19)

Consonni and Todeschini [56] (CT III) s20
ij ¼

ðlnð1þaÞ
lnð1þnÞ (A.20)

Sokal and Michener [58] s21
ij ¼

ðaþdÞ
n (A.21)

Rogers and Tanimoto [59] s22
ij ¼

ðaþdÞ
ðnþbþcÞ (A.22)

Sokal and Sneath II [31] s23
ij ¼

2ðaþdÞ
ðnþaþdÞ (A.23)

Sokal and Sneath III [31] s24
ij ¼

ðaþdÞ
ðbþcÞ (A.24)
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Faith [29] s25
ij ¼

aþd
2ð Þ

n (A.25)

Gower and Legendre [10] s26
ij ¼

ðaþdÞ

aþdþðbþcÞ
2ð Þ

(A.26)

Gower (see [13]) s27
ij ¼

aþdffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaþbÞðaþcÞðbþdÞðcþdÞ
p (A.27)

Austin and Colwell [60] s28
ij ¼

2

p
sin� 1

ffiffiffiffiffiffiffiffi
ðaþdÞ
n

q

(A.28)

Consonni and Todeschini [56] (CT I) s29
ij ¼

lnð1þaþdÞ
lnð1þnÞ (A.29)

Hamann [61] s30
ij ¼

ðaþd� b� cÞ
n (A.30)

Peirce I [8] s31
ij ¼

ðad� bcÞ
ðaþbÞðcþdÞ (A.31)

Peirce II [8] s32
ij ¼

ðad� bcÞ
ðaþcÞðbþdÞ (A.32)

Yule’s Q [9] s33
ij ¼

ðad� bcÞ
ðadþbcÞ (A.33)

Yule’s W [9] s34
ij ¼

ð
ffiffiffi
ad
p
�
ffiffiffi
bc
p
Þ

ð
ffiffiffi
ad
p
þ
ffiffiffi
bc
p
Þ

(A.34)

Pearson I [62] s35
ij ¼ w

2 ¼
nðad� bcÞ2

ðaþbÞðaþcÞðbþdÞðcþdÞ (A.35)

Pearson II [62] s36
ij ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2

ðnþw2Þ

� �r

(A.36)

Phi [63] s37
ij ¼ � ¼

ðad� bcÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaþbÞðaþcÞðbþdÞðcþdÞ
p (A.37)

Michael [64] s38
ij ¼

4ðad� bcÞ
ðaþdÞ2þðbþcÞ2

(A.38)

Cole I [65] s39
ij ¼

ðad� bcÞ
ðaþcÞðcþdÞ (A.39)

Cole II [65] s40
ij ¼

ðad� bcÞ
ðaþbÞðbþdÞ (A.40)

Cohen [66] s41
ij ¼

2ðad� bcÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaþbÞðbþdÞþðaþcÞðcþdÞ
p (A.41)

Maxwell and Pilliner [67] s42
ij ¼

2ðad� bcÞ
ðaþbÞðcþdÞþðaþcÞðbþdÞ (A.42)

Dennis (see [13]) s43
ij ¼

ðad� bcÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðaþbÞðaþcÞ
p (A.43)

Dispersion (see [13]) s44
ij ¼

ðad� bcÞ
n2 (A.44)

Consonni and Todeschini [56] (CT V) s45
ij ¼

ðlnð1þadÞ� lnð1þbcÞÞ

ln 1þn
2

4ð Þ
(A.45)

Stiles [68] (see [13]) s46
ij ¼ log

10

n jad� bcj� n
2ð Þ

2

ðaþbÞðaþcÞðbþdÞðcþdÞ (A.46)

Scott [69] s47
ij ¼

4ad� ðbþcÞ2

ð2aþbþcÞð2dþbþcÞ (A.47)

Tetrachoric [7] s48
ij ¼ cos 180

1þ
ffiffiffi
ad
bc

p

� �

(A.48)

Odds ratio s49
ij ¼

ad
bc (A.49)

Rand [70] s50
ij ¼

ðAþBÞ
N (A.50)

ARI [40] s51
ij ¼

½NðAþDÞ� ½ðAþBÞðAþCÞþðCþDÞðBþDÞ��
½N2 � ½ðAþBÞðAþCÞþðCþDÞðBþDÞ�� (A.51)

Loevinger’s H [71] s52
ij ¼ 1 � b

np1p2
(A.52)

Sokal and Sneath IV [31] s53
ij ¼

1

4

a
ðaþbÞ þ

a
ðaþcÞ þ

d
ðbþdÞ þ

d
ðcþdÞ

� �
(A.53)

Sokal and Sneath V [31]/Ochiai [28] s54
ij ¼

adffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaþbÞðaþcÞðbþdÞðcþdÞ
p (A.54)

Rogot and Goldberg [72] s55
ij ¼

a
ð2aþbþcÞ þ

d
ð2dþbþcÞ (A.55)

Baroni-Urbani and Buser I [30] s56
ij ¼

ð
ffiffiffi
ad
p
þaÞ

ð
ffiffiffi
ad
p
þaþbþcÞ

(A.56)

Peirce III [8] s57
ij ¼

ðabþbcÞ
ðabþ2bcþcdÞ (A.57)
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Hawkins and Dotson [73] s58
ij ¼

1

2

a
ðaþbþcÞ þ

d
ðbþcþdÞ

� �
(A.58)

Tarantula (see [13]) s59
ij ¼

aðcþdÞ
cðaþbÞ (A.59)

Harris and Lahey [74] s60
ij ¼

að2dþbþcÞ
2ðaþbþcÞ þ

dð2aþbþcÞ
2ðbþcþdÞ (A.60)

Forbes I [75] s61
ij ¼

na
ðaþbÞðaþcÞ (A.61)

Baroni-Urbani and Buser II [30] s62
ij ¼

ð
ffiffiffi
ad
p
þa� b� cÞ

ð
ffiffiffi
ad
p
þaþbþcÞ

(A.62)

Fossum (see [76]) s63
ij ¼

nða� :5Þ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaþbÞðaþcÞ
p (A.63)

Forbes II [77] s64
ij ¼

ðna� ðaþbÞðaþcÞÞ
nðminðaþb;aþcÞÞ� ðaþbÞðaþcÞ (A.64)

Eyraud [78] s65
ij ¼

n2ðna� ðaþbÞðaþcÞÞ
ðaþbÞðaþcÞðbþdÞðcþdÞ (A.65)

Tarwid [79] s66
ij ¼

na� ðaþbÞðaþcÞ
naþðaþbÞðaþcÞ (A.66)

Goodman and Kruskal I [80] s67
ij ¼

t1 � t2
2n� t2

(A.67)

Anderberg [81] s68
ij ¼

t1 � t2
2n (A.68)

Goodman and Kruskal II [80] s69
ij ¼

ð2 minða;dÞ� b� cÞ
ð2 minða;dÞþbþcÞ (A.69)

Gilbert and Wells [82] s70
ij ¼ loga � logn � log aþb

n

� �
� log aþc

n

� �
(A.70)

Consonni and Todeschini II [56] (CT II) s71
ij ¼

ðlnð1þnÞ� lnð1þbþcÞÞ
lnð1þnÞ (A.71)

Author Contributions

Conceptualization: Michael Brusco, Douglas Steinley.

Formal analysis: Michael Brusco.

Funding acquisition: Douglas Steinley.

Methodology: Michael Brusco, J. Dennis Cradit, Douglas Steinley.

Writing – original draft: Michael Brusco.

Writing – review & editing: J. Dennis Cradit, Douglas Steinley.

References
1. Mokken RJ. A theory and procedure of scale analysis. The Hauge/Berlin: Mouton/DeGruyter, 1971.

2. Van der Ark LA. New developments in Mokken scale analysis in R. J. Stat. Soft. 2012; 48: 1–27.

3. Straat JH, Van der Ark LA, Sijtsma K. Comparing optimization algorithms for item selection in Mokken

scale analysis. J. Classification. 2013; 30: 75–99.
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