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Abstract: Background: In recent years, there has been great interest in developing molecular ad-
juvants based on antisense oligonucleotides (ASOs) targeting immunosuppressor pathways with
inhibitory effects on regulatory T cells (Tregs) to improve immunogenicity and vaccine efficacy. We
aim to evaluate the immunostimulating effect of 2′OMe phosphorothioated Foxp3-targeted ASO in
an antifungal adjuvanted recombinant vaccine. Methods: The uptake kinetics of Foxp3 ASO, its cyto-
toxicity and its ability to deplete Tregs were evaluated in murine splenocytes in vitro. Groups of mice
were vaccinated with recombinant enolase (Eno) of Sporothix schenckii in Montanide Gel 01 adjuvant
alone or in combination with either 1 µg or 8 µg of Foxp3 ASO. The titers of antigen-specific antibody
in serum samples from vaccinated mice (male C57BL/6) were determined by ELISA (enzyme-linked
immunosorbent assay). Cultured splenocytes from each group were activated in vitro with Eno and
the levels of IFN-γ and IL-12 were also measured by ELISA. The results showed that the anti-Eno
antibody titer was significantly higher upon addition of 8 µM Foxp3 ASO in the vaccine formulation
compared to the standard vaccine without ASO. In vitro and in vivo experiments suggest that Foxp3
ASO enhances specific immune responses by means of Treg depletion during vaccination. Conclusion:
Foxp3 ASO significantly enhances immune responses against co-delivered adjuvanted recombinant
Eno vaccine and it has the potential to improve vaccine immunogenicity.

Keywords: antisensense oligonucleotide; Foxp3; regulatory T cells; vaccine immunogenicity; Sporothrix
schenckii

1. Introduction

Regulatory T cells (Tregs) are a subset of CD4+ T-cells that play a suppressive role
in the immune system. Tregs control the immune response to self and foreign antigens,
helping to prevent over-inflammation and autoimmune disease [1–3]. On the other hand, a
great deal of evidence shows that Tregs are often involved in the failure of anti-infectious
defense [4–8] and effective vaccination [9–13].
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In recent years, there has been great interest in developing molecular adjuvants with in-
hibitory effects on Tregs, aiming to improve the immunogenicity and vaccine efficacy [14,15]
against deleterious foreign antigens. One of the newer strategies for depletion/inhibition of
Tregs in vaccines has been the use of antisense oligonucleotides (ASOs) targeting important
immunosuppressor pathways or immune checkpoints [16]. ASOs are small-sized (around
20 nucleotides) single-stranded oligonucleotides designed to bind specifically to the RNA
or DNA target, based on their sequence homology, and bring about gene silencing [17].
Several ASOs have already been approved by the United States Food and Drug Adminis-
tration (FDA) and many others to treat cardiovascular, metabolic, endocrine, neurological,
neuromuscular, inflammatory, and infectious diseases [18] are under study in clinical trials.

Foxp3 (forkhead box P3), also known as the scurfin protein, is a member of the
forkhead transcription factor family that is mainly expressed in Tregs. Foxp3 acts as a
transcription activator for several genes, such as CD25, Cytotoxic T-Lymphocyte Antigen 4
(CTLA-4), glucocorticoid-induced TNF receptor family gene (GITR), and folate receptor
4. The regulation of Foxp3 expression in Tregs occurs through the concerted action of
transcription factors, epigenetic control mechanisms, and post-translational modifications
that modulate Foxp3 function [19]. Vaccination of mice with dendritic cells transfected
with Foxp3 mRNA promoted selective depletion of Foxp3+ Tregs and stimulated specific
cytotoxic T lymphocytes (CTL) with enhanced vaccine-induced protective immunity [20].
An improvement of vaccine immunogenicity and Foxp3 targeting efficacy has been reported
using other strategies, including a chimeric Foxp3-Fc(IgG) fusion construct/protein to
stimulate the immune responses against Tregs [21], as well as synthetic peptides with the
ability to inhibit Foxp3 function [22–24].

In a previous study by our group, therapeutic vaccination was combined with either
Foxp3 or CTLA4 gene silencing to enhance the antitumor response following B16 tumor
cell transplantation. Either 2’-O-methyl phosphorotioate-modified oligonucleotides (2’-
OMe-PS-ASOs) or polypurine reverse Hoogsteen hairpins (PPRHs) were used for Foxp3 or
CTLA4 gene silencing. Combining the therapeutic vaccine with Foxp3 ASO achieved a
greater survival rate (50%) than with CTLA4 ASO (20%), associated with Treg depletion.
In that study, both ASOs were injected intraperitoneally, and the pharmacological effects
were observed only at the higher doses [25]. Thus, the high cost and the potential risk of
off-target effects and toxicity limited this strategy [26].

In this study, we evaluated whether a low dose of ASO Foxp3 as part of the vaccine
formulation could improve vaccine immunogenicity. We studied the kinetics of Foxp3 ASO
access into CD4+ T cells. The functional effects of the ASO on Treg depletion, cytotoxicity,
and its ability to enhance the immunogenicity of an antifungal adjuvanted vaccine against
sporotrichosis [27] were also evaluated.

2. Results
2.1. Primary Sequence of the Foxp3 Gene in FASTA Format and Target Region for Foxp3 Silencing

The target sequence of the ASO used for silencing the Foxp3 gene was located in
intron 1 of the last update of NCBI (Supplement Figure S1). This location allowed us to
estimate that its possible site of action could be at the pre-RNA level, still containing the
non-coding sequences. Therefore, the probable silencing mechanism could occur through
the action of an RNAse-H, which cleaves the heterodimer, or also by a steric hindrance
mechanism and splicing inhibition [16].

2.2. Oligonucleotide (ON) Uptake Kinetics in Murine Splenocytes

Before the in vivo studies, the optimal conditions for the ON uptake were determined
with a size-range study that encompassed those normally used for gene silencing, such as
the anti-Foxp3 ASO used in this study. The ability of two fluorescent ONs with different
sizes (13-mer and 20-mer) to enter splenocytes was evaluated. Fluorescence was deter-
mined by means of flow cytometry at different times between 0 and 120 min, employing
different concentrations (0.5, 1.0, 2.0, and 4.0 µM). As shown in Figure 1, after 10 min of
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incubation, most of the ONs could be detected in the cells. From that time on, although
the entry of ONs into the cells continued to increase at concentrations of 0.5, 1, and 2 µM,
at concentrations of 4 and 10 µM from 10 min of incubation no greater absorption of ONs
was observed. Regarding the sizes of the ONs, no differences were observed between the
13 and 20 mer ONs, and splenocytes and lymphocytes showed a similar pattern of uptake.
This result coincides with other studies carried out in our laboratory using human blood in
which similar absorption patterns were observed (results not-shown); thus, both mouse
splenocytes and human blood models can be used for studies of ON uptake kinetics.
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with labeled ONs in their cellular structure was confirmed, although it was not possible 
to precisely define their cellular location. 

Figure 1. Labeled oligonucleotide (ON) absorption kinetics in splenocytes. Labeled ONs with sizes of 13 or 20 mer were
cultured at different times and concentrations in the presence of C57BL6 mouse splenocytes. The fluorescent ONs of either
13 or 20 mer, labeled with Cy5 or FITC, were incubated independently at concentrations of 0.5, 1, 2, and 4 µM at 37 ◦C at 0,
10, 30, 60, and 120 min. At each time, the splenocytes were analyzed by means of flow cytometry to measure the ON uptake
and the % of ONs was calculated with respect to maximal relative fluorescence unit (RFU) values achieved. ON* refers to
fluorescent oligonucleotide.

To determine the possible cellular location of the labeled ONs, an imaging study was
carried out using InCell equipment. As shown in Figure 2, the presence of lymphocytes
with labeled ONs in their cellular structure was confirmed, although it was not possible to
precisely define their cellular location.
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in CD4+ lymphocytes. Scale bar represents 10 µm.
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2.3. Biological Activity of the ASO Foxp3

To confirm the silencing effect of the anti-Foxp3 ASO on this transcription factor, B16
cells from murine melanoma, which constitutively express high levels of Foxp3, were
cultured and incubated with anti-Foxp3 or Scrambled ONs. Considering the results of the
previous studies, it was determined to use a concentration of 2 µM and incubate it for 1 h.
After incubation, a 1:4 dilution with complete RPMI (Roswell Park Memorial Institute)
medium was performed and cells were kept in culture for 48 h at 37 ◦C and 5% CO2. Under
these conditions, Foxp3 mRNA expression was silenced by about 70%. Moreover, mouse
splenocytes were cultured with either anti-Foxp3 or scrambled ASO and the presence of
CD4 + CD25 + Foxp3 cells was measured. A significant reduction from ~3% to ~1% of
Tregs (p < 0.05) was observed with Foxp3 ASO treatment, as evidence of Treg depletion in
the culture (Figure 3).
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cytes on CD4 + Foxp3 + cell populations. The upper panel represents the strategy of gates and the confirmation of the
viability of the cells studied. The lower panel shows representative images of the reduction of CD4+ Foxp3+ population (as
%) in the cells treated with anti Foxp3 ASO. A one-way analysis of variance (ANOVA) with Tukey’s post-hoc test was used.
The confidence interval was established at 95% for all tests. The level of significance and p-values are shown as * (p < 0.05).

2.4. Cellular Viability

Next, the cytotoxicity of Eno, anti-Foxp3 ASO, and its scrambled control alone or in
combination was evaluated. The concentrations used were the same as those employed
in the functional studies and were incubated for 48 h as well. Cell viability was analyzed
using a combination of PI/Annexin V-FITC to determine the presence of necrosis (PI+
Annexin V−), late apoptosis (PI+ Annexin V+) and living cells (PI− Annexin V− or PI−
Annexin V+). Late apoptosis cells (PI+ Annexin V+) suffer irreversible damage, whereas
PI− Annexin V+ cells are in early apoptosis, which can be reversible. As shown in Figure 4,
live cells (both PI− Annexin V− and PI− Annexin V+) accounted for more than 90% in all
cells treated with Eno, ASO anti-Foxp3, scrambled or in their combinations. This result
showed that the direct cytotoxicity of both molecules at the concentrations employed is
low, and that they can be used in in vitro studies.
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2.5. Immunogenicity Study

With these initial results, an experimental study to evaluate the effect of the admin-
istration of anti-Foxp3 ASO on the immunogenicity of an experimental vaccine against
Sporothrix schenckii previously developed in our laboratory [27,28] was carried out. We
used the same experimental design previously described but including the anti-Foxp3
ASO within the formulation to determine its effect on the specific immune response. Two
doses of anti-Foxp3 ASO, 1 or 8 µg per mouse and dose, were used to evaluate a possible
dose-response effect.

2.5.1. Anti-Eno Antibodies

To evaluate the antibody response, the serum was extracted from the animals’ blood
samples and the titers of total IgG, IgG1, and specific IgG2a were quantified. As can be
seen in Figure 5, the groups immunized with the vaccine using adjuvant and ASO at
8 µg presented higher titers of specific IgG and IgG1 antibodies. In the case of IgG1, a
dose-response trend could be observed. For IgG2a, significant differences between the
groups with and without ASO were not observed.

This result shows that anti Foxp3 ASO mediated greater stimulation of the immune
response, suggesting that the inhibition of the suppressive effect of Tregs could have helped
to achieve a greater immunogenicity of enolase. Other authors have obtained similar results
using other ASOs targeting Tregs [29–32]. Further studies will be necessary to confirm
these findings.
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Figure 5. Specific antienolase antibodies. Mice (C57BL/6) were immunized on days 0 and 14. Specific antibodies to
S. schenckii enolase in serum were evaluated on day 21 by means of ELISA. A one-way analysis of variance (ANOVA) with
Tukey’s post hoc test was used. The confidence interval was established at 95% for all tests. The level of significance and
p-values are shown as * (p < 0.05); ** (p < 0.01); *** (p < 0.001); **** (p < 0.0001).

2.5.2. CD4+ CD25+ Foxp3 T Cells

To evaluate the effect of the different immunization regimens on Tregs, splenocytes
were cultured for 48 h in the presence of Eno or Eno+ anti-Foxp3 ASO. As shown in Figure 6,
the vaccinated groups exhibited a higher presence of Tregs after stimulation in vitro than
non-vaccinated groups. However, there were no differences between the group vaccinated
with Eno-Gel 01 and the groups treated with Eno and ASOs. Similarly, cells cultured with
Eno + ASO showed Treg reductions compared to cells that were only stimulated with
Eno, although this reduction was lower in the group immunized with the highest dose of
ASO anti-Foxp3.
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Figure 6. CD4+ CD25+ Foxp3 T cells in mouse spleens. Splenocytes were extracted on day 21 after immunization, then
they were stimulated for 48 with Eno of S. schenckii or with Eno + ASO anti-Foxp3. Treg % was evaluated by means of flow
cytometry. Top panel shows the gates strategy used in the study. A one-way analysis of variance (ANOVA) with Tukey’s
post hoc test was used. The confidence interval was established at 95% for all tests. The level of significance and p-values
are shown as * (p < 0.05); ** (p < 0.01).
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2.5.3. IFN-γ and IL-12 Production

To evaluate the effect of immunization using anti-Foxp3 ASO on the production of Th1
cytokines, we measured the production of IFN-γ and IL-12 in Eno-stimulated splenocytes.
These cytokines are importantly involved in the defense against S. schenckii [33,34]. As can
be seen in Figure 7, the mouse cells immunized with the vaccine formulation containing 8
µg ASO showed greater production of these cytokines than the rest of the groups. However,
when stimulation was produced with Eno + anti-Foxp3 ASO, no differences were observed
in cytokine production when compared to cells stimulated in vitro with Eno alone. In this
case, we expected that the reduction of Tregs would have a positive influence, causing
greater production of IFN-γ and IL-12.
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3. Discussion

In the last decade, there has been growing interest in the rational design of vac-
cines using defined molecules with well-characterized cellular and molecular mechanisms
of action. Given the known deleterious effects of Tregs in vaccine immunogenicity and
efficacy, one of the current directions of this approach is the development of subunit
vaccines and molecular adjuvants targeting immune regulatory networks to improve
vaccine immunogenicity [15]. The use of ASOs targeting important regulatory mecha-
nisms is one of the most promising molecular adjuvants for vaccine improvement [16].
Several ASOs have been designed against immunomodulatory components, such as
cytokines [29,30], immune checkpoints [31,32], or transcription factors [25]. Recently, in-
doleamine 2,3-dioxygenase (IDO), which is involved in Treg activation, has also been
targeted by silencing strategies [35]. In all cases, they showed a relevant activity enhancing
vaccine immunogenicity.

Foxp3 transcription is induced in Tregs by T cell receptor (TCR) signaling. Upon its
expression, an autoregulatory transcriptional circuit stabilizes Foxp3 gene expression to
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consolidate Treg differentiation and activate the suppressive function [36]. The block of
Foxp3 elicits Treg depletion and it promotes enhanced stimulation of effector immune
mechanisms [37]. Foxp3 blocking has been used for vaccine improvement using different
methods, including interfering with Foxp3 mRNA-transfected dendritic cells [20], synthetic
peptides [22–24], and ASOs [25].

In this study, we used an anti-Foxp3 ASO, selected according to the results of a pre-
vious study, in which several ASOs were evaluated to improve an anti-tumor vaccine.
The selected ASO showed the best Foxp3 silencing and immunostimulating activity [25].
Although several characterizations were made in that study, additional in vitro tests were
included herein to deepen our understanding of its mechanisms of action. We first evalu-
ated the capture kinetics of the ASO in murine splenocytes. This test allowed us to assess
the phenomenon that occurs in vivo in the target cells. We also used two ASOs with differ-
ent sizes (13 and 20 mer), and we observed that ONs in this size range can reach cells in a
noticeably short time under culture conditions, barely 10 min. The highest concentrations
in cells were achieved after two hours of incubation. Similar results were reported by other
authors using different cells such as RAW264.7 cells [30] and lymph node cells from naïve
ICR mice [31]. A parallel test was developed in human leucocytes from peripheral blood
(CD45+) and the same results were observed.

The target of our anti-Foxp3 ASO was located in intron 1 of Foxp3 gene, so it is
estimated that its site of action could lie at the preRNA level. In this way, the Foxp3
silencing effect and Treg depletion were evidenced in B16 cells and splenocytes, respectively.
Although the microscopic images in splenocytes did not reveal the exact localization of
the ONs, the heterogeneous distribution of the fluorescence suggests that they reached
different intracellular regions. However, the best evidence that the ONs accessed the cell
was the demonstration of the biologic effect evidenced by Foxp3 silencing and depletion of
CD4 + CD25 + Foxp3 cells in vitro. In addition, under the experimental conditions used,
the ONs used in this study were not cytotoxic, as previously reported [25].

The experimental vaccine used in this study was designed for the prevention of
sporotrichosis, a worldwide emergent subcutaneous mycosis caused by pathogenic species
of the genus S. schenckii. The recombinant-Enolase vaccine tested in this study was recently
developed by our group and was suggested to be protective against experimental infection
in mice [27,29]. Administration of anti-Foxp3 ASO as part of the vaccine formulation
induced a considerable upregulation of the Th1-type cytokines IFN-γ and IL-12 in im-
munized mice. Moreover, it was also associated with enhanced production of specific
antibodies. Interestingly, when the Tregs were quantified in the splenocytes of vaccinated
mice, no differences between groups stimulated with enolase and those not stimulated
were observed. The lack of differences in the presence of Tregs between the vaccinated
groups may be because samples were taken 1 week after the second immunization. Thus,
Treg depletion by the vaccine formulations with ASOs may not have been detected due to
their being clonal and transitory. However, once again the stimulation of splenocytes with
Eno plus ASO reduced the presence of Tregs in all groups.

Most of the adverse effects associated with Treg depletion occur when using products
that are systematically administered [38–40]. Instead, the use of ASOs targeting Tregs as
part of vaccine formulations could reduce off-target effects and toxicity manifestations. In
this sense, the use of appropriate ASO delivery systems could help to optimize the adjuvant
effect in a safer way [41]. More studies are necessary to consider the use of different
delivery systems with vaccine models, including tissue distribution, pharmacokinetics,
and stability analysis.

4. Materials and Methods
4.1. Oligonucleotides (ONs)

To study the Foxp3 interfering activity, ON sequences were as follows: ASO Foxp3:
5′-GGGGGAAGCACGGAAGGG′ (18 bp); scrambled: 5′-AGGAGGACAGGAGAGAGA-
3′ (18 bp). The sequence of Foxp3 ASO is complementary to a region located in intron
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1 preserved regions of the Foxp3 gene of Mus musculus, strain C57BL/6J chromosome
X, GRCm38.p4 C57BL/6J (Accession NC_000086 Region: 7579676.7595243 VERSION
NC_000086.7) in the US National Center for Biotechnology Information (NCBI) Nucleotide
Database). Herein, we used the anti-Foxp3 2′-OMe-PS-ASO (ASO) and the control (Scram-
bled), as previously reported [25]. All these nucleic acids were purchased from Integrated
DNA Technologies (Coralville, IA USA).

4.2. ON Uptake Kinetics in Murine Splenocytes

Spleens from 12-week-old male C57BL6 mice were aseptically removed and a suspen-
sion of splenocytes was prepared as previously described [42]. Two oligonucleotides (ONs)
of 13- and 20-mer sizes with phosphorothioated, backbone labeled with either cyanine-5
(Cy-5) or fluorescein-5-isothiocyanate (FITC), and were used to evaluate the ON uptake
kinetics in murine splenocytes. Labeled ONs of either 13 or 20 mer were incubated inde-
pendently at concentrations of 0.5, 1, 2, and 4 µM at 37 ◦C for 0, 10, 30, 60, and 120 min
with a of 1 × 107 cells/mL suspension of splenocytes in RPMI 1640 medium (Merck KGaA,
Darmstadt, Germany), supplemented with 10% Fetal Bovine Serum. At each time and
for each cell concentration, 50 µL of cell suspension were taken, properly dissolved in
phosphate buffer saline (PBS pH 7.4), and analyzed by means of flow cytometry to measure
the relative fluorescence (as RFU). A Gallios cytometer (Beckman Coulter, Brea, CA, USA)
was used in all analyses.

Several samples of splenocytes treated with Cy5-labeled ONs and incubated for 1 h at
4 µM, from the experiment above, were also marked with anti-mouse CD4 FITC antibody
(RM4–5) (Thermofisher Scientific, Waltham, MA, USA) and fixed with 4% formalin. Im-
ages of labeled cells were acquired by the high-content screening (HCS) InCell analyzer
2200 system (Cytiva, UK) to observe the uptake of ONs in CD4+ lymphocytes.

4.3. Biological Activity of the ASO Foxp3

The silencing effect of the anti-foxp3 ASO was confirmed in the murine melanoma
cell line B16, which expresses high concentrations of this transcription factor. These cells
are syngeneic with the C57BL/6 mice (Charles River Laboratories, Wilmington, MA, USA)
employed. Cells were incubated with 2 µM ASO for 48 h. To quantify the Foxp3 mRNA,
RNA was extracted from cultured cells using a commercial kit (NuceloSpin® RNA-Blood,
(Machery-Nagel, Bethlehem, PA, USA) according to the manufacturer’s instructions. RNA
was retrotranscribed into complementary DNA (cDNA) using random hexamers and the
enzyme reverse transcriptase High capacity cDNA reverse transcription kit, (Applied
Biosystems, Foster City, CA, USA). The mRNA copy number of the gene was quantified by
means of quantitative real time PCR using the 7900HT Fast Real-Time PCR System (Applied
Biosystems, Foster City, CA, USA). TaqMan probes to amplify Foxp3 were obtained from
Applied Biosystems (Foster City, CA, USA). The silencing efficiency was obtained by
comparing the number of mRNA copies of these genes in the treated groups with cells
treated with a respective control (scrambled), plotting the results on a standard curve
prepared with a known amount of Foxp3 copy number.

The activity on Treg depletion was evaluated in splenocytes cultured with 2 µM of anti-
Foxp3 ASO or a respective control scrambled ON for 48 h. The presence of CD4+ CD25+
Foxp3+ lymphocytes was quantified by means of flow cytometry using the eBioscience™
Mouse Regulatory T Cell Staining Kit #3 (Thermo Fisher Scientific, Waltham, MA, USA).

4.4. Recombinant Sporothrix schenckii Enolase

Recombinant S. schenckii enolase (Eno) used as the antigen in this study was obtained
and characterized as previously described [27].

4.5. Cytotoxicity of ASO Foxp3 and Eno

The cytotoxicity of Eno (10 µg/mL) alone or in combination with the anti-Foxp3 or the
scrambled control ASO (2 µM) was evaluated after 48 h incubation. These concentrations
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were the same as those used in the following studies. Cell viability was analyzed by
flow cytometry using the combination of PI/Annexin V-FITC (Thermo Fisher Scientific,
Waltham, MA, USA) to determine the presence of necrosis (PI+ Annexin V−), late apoptosis
(PI+ Annexin V+), early apoptosis (PI− Annexin V+), and living cells (PI− Annexin V−).

4.6. Adjuvants and Vaccine Formulation

The vaccine formulations were prepared as follows (Table 1):

Table 1. Vaccines composition.

Vaccine Formulations/100 µL/Mouse

PBS (Control)
100 µg of Eno in PBS

100 µg of Eno in PBS + 5% Montanide Gel 01 adjuvant (Gel 01) kindly provided by Seppic
(Paris, France).

100 µg of Eno in PBS + 5% Gel 01 + ASO anti-Foxp3, 1 µg
100 µg of Eno in PBS + 5% Gel 01 + ASO anti-Foxp3, 8 µg.

4.7. Immunization Schedule

Male C57BL6 mice (n = 7) between 6 and 8 weeks of age received the subcutaneous
(sc) administration of the vaccine (on days 0 for priming and 14 for boosting) on the
back of the neck, with one of the vaccine formulations described above. One week after
boosting, mice were sacrificed under anesthesia and bled by cardiac puncture to obtain
serum, which was aliquoted and stored at −20 ◦C until use. The experimental procedure
(Code: 2019/VSC/PEA/0279, 15 January 2020) was approved by the Biological Research
Committee of the University of Valencia, Spain) and followed the European and Spanish
directives for animal care 63/2010 and RD 53/2013, respectively.

4.8. Quantification of Anti-Eno Antibody Response by ELISA

The titration of IgG, IgG1, and IgG2A types of anti-Eno antibodies was carried out
as described previously [27]. Briefly, a 96-well ELISA plate (CostarTM, Thermo Fisher
Scientific, Waltham, MA, USA) was coated with 5 µg Eno/mL in PBS at 4 ◦C (overnight).
The plate was washed with washing buffer (0.1% Tween 20) and then blocked with 1%
PBS-BSA for 1 h at room temperature and washed again. Specific IgG antibodies (total and
1 and 2A subclasses) against S. schenckii Eno, induced by the vaccine, were made in the
serum of the vaccinated animals and controls. Serum samples were diluted in PBS-BSA
1% -Tween 20 (0.1%), at a 1/1000 ratio to determine total IgG and the IgG1 subclass and
1/100 for the IgG2a subclass, and were added to the ELISA plate. These samples were
incubated at room temperature for 3 h. Antibodies were detected with total goat anti-IgG
(Biocheck, South San Francisco, CA, USA) at 1/10,000 dilution and with anti-mouse IgG
subclasses at 1/1000 dilution (Mouse monoclonal isotyping reagents; Sigma-Aldrich, St.
Louis. MO, USA), followed by a 1/5000 dilution of biotinylated rabbit anti-goat IgG (Sigma,
Sigma-Aldrich, St. Louis. MO, USA) and streptavidin coupled to horseradish peroxidase
(Merck KGaA, Darmstadt, Germany). The plates were finally developed with a mixture
of 30 mg/mL orthophenylenediamine (OPD) (Merck KGaA, Darmstadt, Germany) and
hydrogen peroxide. The reaction was stopped with 1 N HCl to read the absorbance at
492 nm.

4.9. Quantification of IFN-γ and IL-12 in Splenocyte Culture Supernatant

Splenocytes from immunized and non-immunized mice were cultured as described
above and stimulated with 10 µg/mL Eno or 10 µg/mL Eno+ 2 µM of ASO for 24 h.
The levels of both IFN-γ and IL-12 were measured by means of ELISA in the culture
supernatant, after stimulation, according to the manufacturer’s instructions (Pharmingen,
BD Biosciences, Diego, CA, USA).
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4.10. Statistical Analysis

Statistical analysis was performed with Prism software ver. 6.01 (GraphPad, San Diego,
CA, USA). One-way analysis of variance (ANOVA) with Tukey’s test of comparisons was
used. The confidence interval was established at 95% for all tests. The level of significance
and the p values are shown as * (p < 0.05); ** (p < 0.01); *** (p < 0.001); **** (p < 0.0001).

5. Conclusions

In summary, the Foxp3 ASO used in this study is a safe and stable molecule that is
suitable for improving the immunogenicity of adjuvanted vaccines as part of the vaccine
formulation. Treg depletion seems to be the main mechanism of immunostimulation.
Future studies will contribute to unraveling other mechanisms of ASO anti-Foxp3-induced
immunostimulation and its safety profile. Another issue that is being evaluated is whether
ASO can act alone as a vaccine adjuvant in different formulations and by different routes
of administration.
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