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Abstract

Background: The process of neurite outgrowth is the initial step in producing the neuronal processes that wire the brain.
Current models about neurite outgrowth have been derived from classic two-dimensional (2D) cell culture systems, which
do not recapitulate the topographical cues that are present in the extracellular matrix (ECM) in vivo. Here, we explore how
ECM nanotopography influences neurite outgrowth.

Methodology/Principal Findings: We show that, when the ECM protein laminin is presented on a line pattern with
nanometric size features, it leads to orientation of neurite outgrowth along the line pattern. This is also coupled with a
robust increase in neurite length. The sensing mechanism that allows neurite orientation occurs through a highly
stereotypical growth cone behavior involving two filopodia populations. Non-aligned filopodia on the distal part of the
growth cone scan the pattern in a lateral back and forth motion and are highly unstable. Filopodia at the growth cone tip
align with the line substrate, are stabilized by an F-actin rich cytoskeleton and enable steady neurite extension. This
stabilization event most likely occurs by integration of signals emanating from non-aligned and aligned filopodia which
sense different extent of adhesion surface on the line pattern. In contrast, on the 2D substrate only unstable filopodia are
observed at the growth cone, leading to frequent neurite collapse events and less efficient outgrowth.

Conclusions/Significance: We propose that a constant crosstalk between both filopodia populations allows stochastic
sensing of nanotopographical ECM cues, leading to oriented and steady neurite outgrowth. Our work provides insight in
how neuronal growth cones can sense geometric ECM cues. This has not been accessible previously using routine 2D
culture systems.
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Introduction

Proper functioning of the nervous system requires functional

connections between neurons. This requires undifferentiated

neurons to extend neurites that will subsequently differentiate in

axons and dendrites to wire the adult brain. Studying the complex

morphogenetic event of neurite outgrowth is not only important

for understanding the development of the nervous system, but also

tissue regeneration after nerve injury and the treatment of

neuropathological conditions. Until now most of the work on

neurite outgrowth at the cell biology level has been done using

routine 2-dimensional (2D) culture systems. However, in vivo, cells

interact with complex 3-dimensional anisotropic environments

that display a different topology from the isotropic 2D environ-

ment. In this context, multiple ECM proteins are capable of

forming large structures with different geometrical and size

features ranging from tens of nanometers to micrometers. The

highly organized structure of the ECM is essential for cell and

tissue morphogenesis and remodeling [1]. By example, parallel

bundles of collagen fibrils are found in connective tissues [2] and

laminins assemble basement membrane structures [3]. Laminin

tracks on the surface of Schwann cells are also important for

neurite outgrowth and neuronal regeneration after a lesion [4]. In

this case, laminin most likely assembles fibrillar structures [5].

Furthermore, in the developing nervous system, axons often

follow ECM tracks that are oriented along structures such a

blood vessels [6]. It is therefore reasonable to assume that precise

topological features of the ECM are important for the cell’s ability

to interact with and perceive its environment. However, the

importance of the ECM organization and topography at the

micro- and nano-meter scale is still poorly understood. With recent

technological advances in microfabrication, this now becomes

accessible [7,8]. Multiple reports document that the processes

of cell migration or of the extension of neuronal processes
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from neurons are highly dependent on the geometrical topology of

the surrounding ECM.

Neurons have been reported to respond to different ECM

topologies in terms of morphology. When laminin is presented on

aligned nanofiber scaffolds, neuronal processes can orient along

these fibers compared to randomly oriented scaffolds [9]. Similar

alignment behavior has also been observed when neurons are

plated on micrometric laminin lines [10]. When human

embryonic stem cells are plated on specific nanopatterns, they

can effectively and rapidly differentiate into a neuronal lineage

without the use of differentiation-inducing agents [11,12,13].

Thus, ECM nanoscale topography not only regulates cell

morphology but also cell fate. While the combination of such

nanotopographic cues with biochemical cues such as retinoic acid

further enhances neuronal differentiation, nanotopography

showed a stronger effect compared to retinoic acid alone on an

unpatterned surface [13]. The mechanisms by which nanotopo-

graphic ECM cues influence differentiation appear to involve

changes in cytoskeletal organization and structure, potentially in

response to the geometry and size of the underlying features of the

ECM. This might influence the clustering of integrins in focal

adhesions and the formation of actin stress fibers, and thus the

adhesion and spreading of cells. Secondary effects, such as

alterations in the effective stiffness perceived by the cell or

differences in protein adsorption due to the structural features of

the substrate are also possible [14]. However, the cellular

mechanisms of cell fate control by ECM nanotopography remain

largely unexplored.

One of the best characterized example of control of cell

behavior by ECM topology has been observed during fibroblast

cell migration [15]. It is well described that fibroblasts migrate

about 1.5 times faster on ECM fibrils in 3D cell-derived matrices

compared to the same ECM presented in a classic 2D

environment. In this study, 1D micro-patterned ECM lines with

precise size features (1–2 mm width) have been shown to

recapitulate the cell migration behavior observed in cell-derived

3D ECM environments. This most likely occurs because these

ECM lines are able to mimic the fibrillar nature of the ECM in a

3D environment. Importantly, such a pseudo 3D environment has

provided a convenient platform to analyze cell migration using

microscopy techniques that do not require confocality. This has

given novel insight about the molecular mechanisms of how cells

perceive and migrate in 3D versus 2D environments. Comparable

results have also been observed during cell migration on similar

patterns at the nanometer scale [16].

In this study, we sought to understand the molecular

mechanisms of how neurons respond to matrix nanotopography

during the process of neurite outgrowth. For that purpose, we

explored in detail neuronal morphology and morphodynamics on

nanopatterns. We find that when cells are challenged with a highly

defined anisotropic, nanotopographic laminin substrate, distinct

neurite outgrowth responses occur in comparison with the classic,

isotropic 2D environment. Our data suggest that growth cone

filopodia are the organelles that allow to sense these nanotopo-

graphic ECM cues to orient neurite outgrowth. Importantly, we

find that oriented outgrowth is also coupled with steady neurite

outgrowth. This allows for more robust neurite outgrowth on the

nanotopographical versus the 2D ECM.

Results

To explore how ECM nanotopology can regulate neurite

outgrowth, we used ultraviolet-assisted capillary force lithography

to construct ridge/groove pattern arrays on glass coverslips

[17,18]. Here, liquid polyurethane acrylate (PUA) is coated on a

plasma-treated glass coverslip to which a PUA mold is applied

(Fig. 1A). The cavities of this mold are filled by PUA through

capillary force which is then cured by exposure to UV light. We

fabricated different topographic patterns that were composed of

arrays of parallel ridges that are 350 nm wide and 350 nm high,

separated by grooves of 1, 2, 3, 5 times 350 nm width increments

(1:1, 1:2, 1:3, 1:5 patterns). The fidelity with which we are able to

produce such line patterns is illustrated by scanning electron

micrographs (SEM) (Fig. 1B). We then used differentiated N1E-

115 cells as a model system to compare the neurite outgrowth

responses on classic 2D, laminin-coated coverslip (plain substrate)

versus laminin that is presented on these line patterns (line

substrate). Using fluorescently-labeled laminin, we found that this

protein homogeneously coated the topographical patterns (Fig.

S1A).

To evaluate the neurite outgrowth responses, we stained the

microtubule cytoskeleton and the nuclei of the cells at different

time points after plating and used automated image analysis to

measure neurite length and orientation on the plain and line

substrates (Fig. S1B). We observed that neurites align in the

direction of the line pattern, whereas they extend randomly on the

plain substrate (Fig. 1C and D). This orientation was not

dependent on the spacing of the lines. Second, we found that

the line pattern led to an increase in neurite length (Fig. 1C and E)

which increases with groove width and peaks on the 1:3 and 1:5

patterns. As a control, we also evaluate a 1:40 pattern, and found

that neurite outgrowth was still oriented, was less robust than on

the 1:3 and 1:5 patterns, but still more robust than on plain

substrate (data not shown). Laminin coating of normal coverslips

or coverslips that have been covered with a homogeneous PUA

layer yielded similar results, showing that these different cell

responses were not dependent on PUA (data not shown).

Importantly, the size features of the ridges on the line substrate

are smaller than a growth cone. Furthermore, we observed that

the neurite is slightly deflected compared to the ridge direction.

Orientation of neurite outgrowth does therefore not happen by

physical trapping of the neurite in the grooves. Thus, the simple

fact of altering the topographical state of which an ECM is

presented to the cell drastically alters neurite orientation and

outgrowth. Neurite orientation not only occurred with our

neuronal-like neuroblastoma cell line, but similar results were also

observed with freshly isolated primary cortical neurons that were

plated on a 1:5 line substrate coated with poly-L-ornithine and

laminin (Fig. S2).

We next thought to understand the cellular mechanisms that

allow the specific neuronal cell responses on the line substrate. For

that purpose, we used the 1:5 line substrate throughout this study

since it leads to the most robust phenotype in terms of neurite

length. We first immunostained the cells on plain and 1:5 line

substrates to visualize the F-actin and tubulin cytoskeletons 2 and

24 hours after plating (Fig. 2A). Surprisingly, we found that a

higher amount of filopodia was typically observed on the soma,

neurite shaft and growth cone of cells on plain versus line

substrate. Quantitation revealed a two fold increase of filopodia

number on the neurite shaft on plain versus line substrate (Fig. 2B

and C). These filopodia were also longer (Fig. 2B and D). While

growth cones were highly spread and displayed a high density of

randomly oriented filopodia on plain substrate, less spread,

streamlined growth cones with fewer filopodia occurred on line

substrate. These growth cones exhibited thick filopodia that

aligned in the direction of the pattern ridges and displayed a high

F-actin content as observed by phalloidin staining (Fig. 2A and E).

This was especially evident with high resolution images of growth
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cones on the line substrate, and, in addition to the thick, F-actin

rich aligned filopodia revealed a second population of thin, F-actin

poor filopodia that were not aligned with the lines (Fig. 2F).

Similar results were also observed in SEM experiments and

revealed that thick filopodia align and intimately adhere along the

top of the line ridges (Fig. 2G, red arrows), whereas thin, unaligned

filopodia only interact with the line ridges at discrete points

(Fig. 2G, black arrows).

We then used phase contrast time-lapse microscopy to study the

morphodynamics of neurite outgrowth on plain and line

substrates. We observed that neurites exhibited a highly unstable

behavior that consisted of multiple cycles of neurite protrusion and

retraction events on the plain substrate (Fig. 3A, Movies S1 and

S2). In the early phases of the process, this often resulted in re-

absorption of the neurite by the cell soma which was followed by

the creation of a new initiation site and the outgrowth of a new

neurite. In contrast, on the line pattern, neurites almost never

retracted and thus outgrowth was steady (Fig. 3A). We tracked

neurite tip trajectories and found that neurite outgrowth on plain

substrate typically occurred for a period of 30 min before a

retraction event occurred (Fig. 3B and C). This neurite extension

lifetime was extended to 180 minutes on the line substrate with

retraction events typically occurring at neurite branch points

(Fig. 3C). This allowed for the elimination of the branch points

and led the cell to adopt two unbranched neuronal processes that

align in the direction of the line pattern. We found that neurite tip

velocity was only modestly increased on the line versus plain

substrate (Fig. 3D). Soma motility was also affected. On plain

substrate, the soma displayed a highly motile behavior (average

speed = 60 mm/hour) consisting of random bursts of migratory

behavior. On the line substrate, cells were much less motile

(average speed = 20 mm/hour) (Fig. S3, Movie S2). Thus, the line

substrate not only allows neurite orientation, but also switches off

the dynamic unstable behavior of neurites and the motile behavior

of cells observed on plain substrate.

The most marked differences in morphological responses of

neuronal like cells in response to the plain versus the line pattern

are observed at the level of the filopodia which have been

proposed to work as sensors to guide neuronal growth cones [19].

Thus, we performed high resolution time-lapse microscopy

experiments in which we visualized F-actin dynamics using the

Lifeact-GFP probe [20], which allows for a high contrast on

filopodia (Fig. 4A). On plain substrate, filopodia directly at the

growth cone or the neurite shaft extend randomly in multiple

directions, perform a typical lateral back and forth motion and

then retract. This is accompanied with dynamic neurite protru-

sion/retraction cycles in multiple directions as described above

(Fig. 4A, Movie S3). On the line substrate, we found that the two

growth cone filopodia populations displayed different dynamic

behaviors (Fig. 4A,B,C, Movies S3 and S4). Filopodia located at

the growth cone tip that aligned on the ridges were stable and

contained high amounts of F-actin reflected by elevated Lifeact-

GFP signal, compared to the non-aligned filopodia (Fig. 4C). Non-

aligned filopodia situated on the distal part of the growth cone and

throughout the neurite shaft displayed a highly unstable behavior

and contained less F-actin (Fig. 4D, Movie S4). To quantitate the

dynamics of these different filopodia populations, we tracked their

angular evolution. We found that filopodia that are oriented along

the lines remained so for hours. In contrast, non-aligned filopodia

extend from the neurite shaft with an angle relative to the lines,

scan the pattern using a lateral back and forth motion relative to

the neurite shaft and then retract, the whole cycle being on the

order of five to ten minutes (Fig. 4D, filopodia outlines by red and

blue lines, angular motion quantified in Fig. 4E). We also observed

that the stochastic search and capture motion performed by these

non-aligned filopodia eventually led to their alignement on a ridge

of the line substrate. This then subsequently led to the assembly of

a robust F-actin cytoskeleton in the newly aligned filopodium

(Fig. 4D, filopodia outlined by the blue line). The highly stable

extension of aligned filopodia was also apparent with kymograph

analyses (Fig. 4F). Occasionally, we also observed some neurites

that were not oriented in the direction of the line substrate (Movie

S5). These only exhibited unstable filopodia that stochastically

scan the pattern through continuous protrusion/retraction cycles

coupled with lateral motion, until they finally aligned along a

pattern ridge and produced stable, F-actin rich filopodia at the

growth cone. These results suggest that filopodia are the organelles

that allow sensing of the line substrate through a stochastic

filopodia-mediated search and capture mechanism.

Because neuronal guidance in response to immobilized laminin

has been reported to require mechanosensing through myosin

activation [21], we also explored if contractility is important for

neurite orientation in our system through inhibition of Rho kinase

or of myosin II ATPase activity (using the Y-27632 and

blebbistatin drugs). We observed an increase in neurite length at

24 hours in response to any of the two inhibitors, on both plain

and line substrates (Fig. 5A and B). Both drug treatments did not,

however, lead to a loss of the ability of the neurite to orient itself on

the line substrate (Fig. 5A and C). These drug treatments led to

morphological changes of the neurites on the plain substrate in

that many neurite tips displayed highly spread, fan-shaped growth

cones (Fig. 5D, compare growth cones with those of Fig. 2F), as

reported earlier [22,23]. This was however not observed on the

line pattern on which streamlined growth cones with F-actin rich

filopodia were still observed. To get insight into the signaling

mechanisms that allow the orientation and the steady neurite

outgrowth response of the neuronal like cells on the line pattern,

we explored if there are global differences in signaling activities in

response to ECM topography. For that purpose, we probed lysates

of differentiated cells plated on plain or line substrate using

western blot analysis for different signaling activities. We

performed this experiment at 2 hours when robust initiation of

neurite outgrowth is observed, and at 24 hours, when very long

but less dynamic neurites occur. We examined post-translational

modifications that impact on microtubule stability (microtubule

detyrosination and acetylation), MAP kinase signaling (ERK

phosphorylation) and adhesion signals (phospho myosin light

chain, phospho-FAK and tyrosine-phosphorylated proteins). We

could not find any obvious differences in signal intensity between

plain and line substrates (Fig. S4). Thus the differences in neurite

morphodynamics are most likely dependent on highly localized

signaling events involving minute pools of signaling molecules in

Figure 1. Neurite outgrowth response on nanotopographic pattern. (A) Schematics of nanopattern fabrication. (B) SEM images of PUA
nanopattern with different ridge/groove ratios. (C) Representative images of tubulin-stained N1E-115 cells allowed to extend neurites on different
plain and line patterns for 24 hours. (D) Quantification of neurite orientation at 24 hours. Angle measurements of neurite orientation compared to an
arbitrary (plain substrate) or to the line direction (line substrate) are shown. Data is based on more than 100 cells for experiment. (E) Cumulative
graph of the 20 percentile highest total neurite lengths on a per cell basis. Mean (red) and standard deviations (green) are shown. Data is based on
140 cells of 700 cells for each group. P values (Anova) between plain and line substrates ,,0.0001 except 2 hours of line 1:1 (no significance). Bars:
(B) 1 mm; (C) 200 mm.
doi:10.1371/journal.pone.0015966.g001
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Figure 2. Neuronal morphology responses. (A) Fluorescence micrographs of N1E-115 cells immunostained for a-tubulin (red), F-actin (green),
and nucleus (blue). Cells were allowed to extend neurites for 2 or 24 hours on the plain or line substrates. The magnified view of the white dotted
box in each panel shows growth cone (right, top) and cell body (right, bottom). (B) Fluorescence micrographs of neurite shaft on plain and line
substrates (Scale bar, 20 mm). Cells were immunostained as in (A). (C) Filopodia number on neurite shaft on plain versus line substrates. (D) Filopodia
length on neurite shaft on plain versus line substrates. (E) Normalized F-actin intensity of growth cone and cell body on plain and line substrates. (F)
High resolution pictures of neurite growth cones on plain and line substrates. Top two panels, F-actin phalloidin fluorescence micrographs of growth
cones on plain and line substrates. Bottom panel, overlay of F-actin staining (green) and PUA autofluorescence (grey). (G) SEM images of N1E-115
cells plated on plain and line substrates. Black arrows represent robust filopodia latching on and aligned on the line pattern ridges. White arrows
represent thin filopodia not aligned on the pattern ridges. (C), (D) and (E) P values (T-test) between plain and line ,,0.0001. Means are shown in red.
Bars: (A) 50 mm; (B) 20 mm; (G, F) 10 mm.
doi:10.1371/journal.pone.0015966.g002
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the growth cone, and therefore might not be resolved with whole

cell, global measurements.

Discussion

The traditional systems to study neuronal differentiation and the

outgrowth of neuronal processes have taken advantage of classic

cell culture systems in which ECM proteins are coated

homogeneously over 2D surfaces. This is unlikely to recapitulate

the neuronal responses occurring in vivo in which the ECM is

assembled into precise structures which have size features on the

nano-meter scale. We find that providing neurons with an

anisotropic ECM line substrate, which most likely mimics some

topological features of in vivo ECM structures, is sufficient to orient

neurite outgrowth. Importantly, this is also coupled with a robust

increase in neurite outgrowth. Similar responses have already been

observed with a variety of different nanometric patterns [9,24,25],

but a cellular mechanism remained unclear. In vivo, similar fibrillar

laminin tracks are observed on the surface of Schwann cells, and

have been showed to be important for neurite outgrowth and

neuronal regeneration after a lesion [4,5]. Our results that show

different neuronal morphologies and morphodynamics in response

to the line versus the plain substrate, suggest that oriented neurite

outgrowth on the line substrate is the result of a sensing

mechanism performed by filopodia. Filopodia are excellent devices

to sense the line substrate since they are rigid, rod-like structures

that cannot bend and adhere to the grooves of the pattern, and

have similar size features than the pattern ridges (filopodia width

= 200–500 nm [26]). They might thus discern if they are aligned

or not on the pattern ridges, by evaluating the contact area

between the filopodia and the pattern ridges (Fig. 5). Our SEM

experiments suggest that non-aligned filopodia only form discrete

contacts with ECM molecules on the top of ridges, whereas

aligned filopodia can form a more intimate interaction zone with

the ridges (Fig. 2G, depicted in Fig. 6A and B). Our time-lapse

datasets (Fig. 4) suggest that non-aligned filopodia stochastically

scan the line substrate through a process that occurs on a timescale

of a couple of minutes, and consists of cycles of protrusion–

retraction events that are coupled with a back and forth lateral

motion. This is repeated until a filopodium aligns on the pattern

ridge which subsequently leads to the assembly of a robust F-actin

network and an extensive contact zone with the ridge (Movies S4

and S5, Fig. 6A and B). This then enables to switch off the

dynamic unstable behavior observed in non-aligned filopodia,

allowing to filopodium stabilization for hours, and ultimately

leading to steady neurite outgrowth.

The two distinct filopodial behaviors we observe most likely

depend on different levels of coupling between the substrate and

the cytoskeleton as proposed in the ‘‘molecular clutch model’’

[27]. Extensive interaction of aligned filopodia with the substrate,

might allow a much more efficient cytoskeletal coupling than in

non-aligned filopodia, leading to constant filopodial protrusion

(e.g. the clutch is continually engaged). In this case, the formation

of a robust F-actin network might allow to counteract the actin

retrograde flow in the aligned filopodium, leading to its

stabilization. In unaligned filopodia, less stable substrate-cytoskel-

etal coupling might occur, due to the limited interaction with the

ECM. In this case, filopodia retraction might occur because strong

retrograde flow exceeds actin assembly at the filopodium tip [28]

(e.g. the clutch engages and then rapidly disengages). Obviously, in

our purely ECM driven system, integrins are the sensors that allow

to interprete the line pattern. Consistently, conformationally

activated, but unligated integrins have been observed in filopodia

of neuronal growth cones [29] and might allow to sense the extent

of filopodium contact. One important question is then which

signaling events downstream of the integrins allow the formation

and maintenance of the robust F-actin network observed in

aligned filopodia that allows stabilization of the molecular clutch.

Figure 3. Neurite morphodynamics. (A) Phase contrast timelapse series of cells on plain and line substrates. (B) Representative neurite tip tracks
on plain and line substrates. (C) Quantification of neurite outgrowth life time. (D) Quantification of neurite velocity on plain and line substrates. P
values (T-test) ,,0.0001 in both (C) and (D). Bars: (A,B) 25 mm.
doi:10.1371/journal.pone.0015966.g003
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A first hint is that this does not occur on the plain substrate, on

which each filopodium senses an identical amount of laminin. This

suggests that on the line pattern, formation of the robust F-actin

network requires integration of spatially regulated adhesive signals

from the aligned filopodia at the growth cone tip and from the

non-aligned filopodia that are continuously operating on the distal

part of the growth cone. However, the signaling events occurring

downstream of these receptors remain elusive and our whole-cell

measurements of signaling activities certainly could not resolve the

precise spatio-temporal regulation of minute pools of signaling

molecules in the growth cone that is relevant to this system (Fig.

S4). Understanding the signal amplification events that allow the

Figure 4. Growth cone filopodial dynamics. (A) Time-lapse series of growth cone filopodial dynamics on plain and line substrates. Cells were
transfected with Lifeact-GFP and imaged using fluorescence microscopy. Time is in minutes:seconds. (B) Cellular outlines were captured and overlaid
to show movement of neurite tip. (C) Analysis of correlation of filopodia alignment (angle compared to line direction) and normalized F-actin
intensity on plain and line substrates. (D) Blowup of growth cone in (A), line substrate. Red and blue lines mark the locations of two filopodia. Notice
back and forth movement of the filopodia and how blue labeled filopodia assembles a robust F-actin cytoskeleton when it aligns. (E) Angular
trajectories of filopodia that are aligned or not aligned on the ridge patterns. (F) Kymograph analysis of filopodial dynamics of aligned filopodia. Bars:
(A,D,F) 10 mm.
doi:10.1371/journal.pone.0015966.g004
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formation of this F-actin rich network will therefore requires

advanced live cell imaging techniques that allow to resolve their

spatio-temporal dynamics in the growth cone. At the structural

level, one can also wonder about the actin binding proteins that

allow F-actin stabilization in aligned filopodia? Prime candidates

are proteins such as Fascin and Ena/Vasp that enable to crosslink

actin filaments into bundles, or myosin-X, a motor protein which

seems to be important in localization of filopodial components to

the filopodium tip [30].

The specific neuronal guidance mode that we observe on ECM

nanotopographic cues is distinct from directional sensing in

response to soluble chemo-attractants and –repellants. Rather

than the search and capture mechanism, chemotactic growth cone

guidance occurs through local stabilization of filopodia most

proximal to the attractant source and collapse of those that are

distant of the source, leading to net turning in the direction of the

chemoattractant [31]. To our knowledge, this has not been shown

to involve a robust F-actin network, and illustrates differences

between chemotactic and ECM sensing. In vivo, our filopodial

search and capture mechanism might therefore allow a basal

orientation mechanism along ECM tracks. Additional superposi-

tion of gradients of soluble cues might allow to fine tune axonal

guidance by inducing growth cone turning at regions such as the

midline [32]. Importantly, the filopodia search and capture

mechanism that we describe is highly reminiscent of growth cone

behavior observed in vivo. Live imaging of growth cone dynamics in

vivo shows similar morphodynamics as for our cells on the line

substrate. By example, Xenopus retinal axons display a stream-

lined growth cone with lateral filopodia that display identical

protrusion-retraction behavior coupled with lateral motion than

we observe with the non-aligned filopodia on the line pattern [33].

This is accompanied with steady growth without retractions

events. Similar growth cone morphologies have also been observed

in vivo in retinal axons in the mouse [34] or in zebrafish [35]. These

different lines of evidence suggest that the precise ECM

nanotopology on our line substrate recapitulates geometric

features of the in vivo ECM.

This raises the issue that the classic 2D substrate does not

faithfully reflect the ECM cues that are experienced in vivo, as well

as the intracellular signaling events that are triggered by the ECM.

On classic 2D substrates, unrestricted access to adhesion sites leads

to an increase in filopodia length and number on growth cones,

neurite shafts and somata. An immediate consequence is that

filopodia, owing to their high density and their high adhesive state,

cannot perform the highly dynamic behavior of protrusion-

retraction coupled with lateral scanning (Fig. 6C). Furthermore

they cannot assemble stable, F-actin rich filopodia, most likely

because the lack of anisotropy in the ECM that is needed for cell

polarization and the production of both filopodia populations.

This inability to produce F-actin rich filopodia will then lead to the

growth cone collapse events that induce the characteristic

protrusion/retraction cycles occurring during neurite outgrowth

on the plain substrate. Such protrusion retraction cycles have been

documented in multiple neuronal systems, such as by example

Figure 5. Effect of contractility inhibitors on neurite outgrowth on plain and line substrates. (A) Representative images of tubulin-stained
N1E-115 cells incubated with 10 mm Y-27632 or 10 mm blebbistatin for 24 h on plain and line substrates. (B) Cumulative graph of neurite lengths on a
cell basis of the two different treatment and substrate. Mean (red) and standard deviations (green) are shown. Data is based on control of 104 cells for
plain and 105 cells for line, Y-27632 treatment of 101 cells for plain, 101 cells for line, blebbistatin of 67 cells for plain and 100 cells for line. P values (T-
test) between plain and line substrates ,,0.0001. (C) Quantification of neurite orientation at 24 hours. Angle measurements of neurite orientation
compared to an arbitrary (plain substrate) or to the line direction (line substrate) are shown. (D) Growth cone morphologies on plain and line
substrates in presence of Y-27632 and blebbistatin drugs. High resolution F-actin pictures are shown. Bars: (A) 100 mm; (D) 5 mm.
doi:10.1371/journal.pone.0015966.g005
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with stage 2 immature neurites in the classic E18 embryonal

hippocampal neurons culture system, just before axonal specifica-

tion [36]. ECM nanotopology also impacts on the motile behavior

of the cell with reduced motility being observed on the line

substrate, which also correlates with a low amount of filopodia on

the soma. The high degree of motility of neurons observed in

classic 2D environments might therefore be a result of the aberrant

filopodia formation on the cell soma in response to unrestricted

access to adhesion sites that might lead to excessive formation of

lamellipodia.

The finding that the sensing mechanism on the line pattern does

not require myosin-based contractility highlights different neuro-

nal guidance mechanisms depending on the dimensionality of the

laminin ECM. The previously described role of myosin contrac-

tility in neuronal guidance stems from experiments in which

growth cone turning is evaluated at borders of laminin and poly-

ornithine stripes. In such experiments, growth cone turning is

inhibited by pharmacological inhibition of myosin [37]. Most

likely on such stripes, which have micrometric size features,

growth cone filopodia experience the ECM as a 2D environment

and use myosin II-based mechanosensing to test rigidity of the

surrounding ECM. This might allow them to sense if they are

positioned on laminin or not. Interestingly, this mode of neuronal

guidance involves exploration of the substrate through neurite

extension and retraction cycles [21] as is observed with our cells on

the plain substrate. This is in marked contrast with our nanometric

line pattern, on which a myosin-independent, filopodia-mediated

stochastic search and capture mechanism allows orientation. This

allows orientation of neurite outgrowth coupled with steady

neurite outgrowth. In this mode of neuronal guidance, growth

cone filopodia most likely do not test rigidity by integrin-mediated

mechanosensing. Probably, they only measure the differential

extent of adhesion surface of aligned and non-aligned filopodia

and integrate it in a signaling response that allows the stabilization

of aligned filopodia.

To our knowledge, this is the first report that gives insight in

how neurons interpret topological cues in the ECM. A clear

advantage in our system is that the dynamics of the filopodia

mediated search and capture mechanism and of neurite outgrowth

are highly stereotypical. This should make it easy to quantify

phenotypes in response to perturbation experiments, and thus

provides a tractable model system to study neuronal guidance in

response to ECM topology. Using the N1E-115 neurite proteome

as a template [38], a combination of genetic perturbations and

high resolution live cell imaging methods is under investigation to

further explore the signaling events that allow to understand how

filopodia sense ECM topology and produce steady neurite

outgrowth.

Materials and Methods

Nanopattern fabrication
The PUA mold was composed of a functionalized prepolymer

with acrylate groups for crosslinking, a monomeric modulator, a

photoinitiator and a radiation-curable releasing agent for surface

activity. The liquid precursor was dropped onto a silicon master

that had been prepared by photolithography and a polyethylene

terephthalate film was placed on the liquid mixture. For the UV

curing, the mold was exposed to UV (l= 250–400 nm) light for 25

seconds and peeled off from the master. The 18-mm-diameter

glass cover slip was treated by oxygen plasma for 1 minute and

then coated with glass primer by spin coating at 4000 rpm for 30

seconds. After rinsing with isopropyl alcohol for 3 min, glass

coverslip was dried using N2 gas. For the nanopattern fabrication,

PUA liquid was dropped onto a prepared glass substrate and the

PUA mold was attached on the PUA droplet. The PUA droplet

Figure 6. Model of neurite guidance in response to nanotopographical cues. (A) Line substrate, unaligned growth cone. Filopodia scan the
line substrate through lateral scanning and protrusion/retraction events. Only few filopodia align on the lines and thus almost all filopodia sense only
discrete adhesion points to the ECM. (B) Line substrate, aligned growth cone. Through stochastic sensing, multiple filopodia have aligned on the line
substrate and have assembled an F-actin rich cytoskeleton that stabilizes them. On the distal part of the growth cone, non-aligned, unstable filopodia
continue to operate, suggesting a crosstalk between both filopodia populations. This stabilizes the growth cone leading to steady neurite outgrowth.
(C) Plain substrate. Unrestricted access to ECM leads to a large amount of long filopodia, none of which can be stabilized by a robust F-actin
cytoskeleton. This is accompanied with a high frequency of neurite collapse events.
doi:10.1371/journal.pone.0015966.g006
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was cured by UV exposure for 25 seconds and the mold was

peeled off from the glass substrate.

Cell culture
N1E-115 neuroblastoma cells (American Tissue Culture Collec-

tion) were cultured in Dulbecco’s modified Eagle’s medium

(DMEM) (Invitrogen) supplemented with 10% FBS, 1% Glutamin,

and 1% penicillin/streptomycin. For differentiation, N1E-115 cells

were starved for 24 h in serum-free neurobasal medium (Invitrogen)

supplemented with 1% Glutamin, and 1% penicillin/streptomycin.

Cells were then detached with PUCK’s saline, and an adequate

number of cells were replated on coverslips (plain substrate) or

coverslips with the PUA pattern (line substrate). These coverslips

were previously coated with 10 ug/ml laminin for 2 h at 37uC. For

experiments with primary cells, cortical neurons were isolated.

Immunofluorescence, transfection and time-lapse
imaging

For immunofluorescence, cells were quickly washed in PBS,

fixed in BRB80 (80 mM PIPES, 1 mM MgCl2, 1 mM EGTA, pH

6.8) containing 0.25% glutaraldehyde for 30 seconds and

permeabilized in BRB containing 0.1% Triton X-100, 0.25%

glutaraldehyde in BRB80 for 10 minutes. Coverslips were then

washed with PBS, incubated in freshly prepared 0.2% sodium

borohydride in PBS for 20 min, followed by two additional PBS

washes. Coverslips were then blocked in antibody solution (2%

BSA, 0.1% Triton-X100 in PBS) for 10 min. For staining, cells

were incubated with alexa-fluor 488 labeled phalloidin (Invitro-

gen), an anti a-tubulin antibody (Sigma), an Alexa-fluor 546

conjugated secondary antibody, and DAPI for 30 min. After 3

PBS washes, cells were mounted on a coverslip using Prolong gold

(Invitrogen) as mounting medium. All microscopy was performed

using an Eclipse Ti microscope (Nikon) steered by Metamorph

software (Molecular Devices) and using a LED-based light source

(Coolled). Low resolution images of neurons on coverslips, used to

measure neurite length were acquired using Nikon fluorescence

microscope using a 10x air objective. For neurite outgrowth

analysis, about 25 fields of view were automatically captured using

a motorized stage. Different measurements of fluorescence

intensities were performed using metamorph. High resolution

actin and tubulin images were acquired using an oil-immersion

60x high NA objective. For transfection, 36105 N1E-115 cells

were plated in one dish of a 6-well plate. The next day cells were

transfected with 2 mg of plenti Lifeact-GFP using 4 ml of FuGENE

transfection reagent (Roche) per well in presence of serum.

24 hours post-transfection cells were starved in neurobasal

medium, and 48 hours post-transfection cells were replated on

coverslips. For time-lapse imaging, 26104/well were replated in

12-well plate previously coated with 10 mg/ml laminin and

allowed to attach for three hours. The glass coverslip was

transferred to a Ludin Chamber (Life imaging services) and filled

with neurobasal medium supplemented with 20 mM Hepes.

Multi-stage time-lapse imaging was then performed.

Image and statistical analysis
All image analysis was performed using metamorph software

(Universal Imaging). For neurite outgrowth analysis (Fig. 1E),

average cell neurite length was measured on the multiple images

using the neurite outgrowth plugin. To measure F-actin intensities

in filopodia (Fig. 2E and 4C), mean fluorescence intensity of

a region of interest was computed and normalized to surface.

This was then further normalized to the lower F-actin intensities.

Cell alignment (Fig. 1D) and filopodium angle measurements

(Fig. 4C and E) were performed manually using the line scan tool.

Tracking of neurite tip (Fig. 3B) was performed manually using the

track points plugin. Statistical analysis was performed using two-

tailed t-test except for total neurite outgrowth analysis, for which

one-way ANOVA test was used to determine statistical differences

between plain and the line substrates with different spacings. A

value of p,0.05 is considered statistically significant.

Supporting Information

Figure S1 Laminin coating efficiency and neurite out-
growth analysis. (A) Confocal microscope image of PUA

pattern autofluorescence (405 nm laser) and Alexa 561-labeled

laminin (563 nm laser). Scheme shows at which Z positions

confocal images were focused. (B) Examples of tubulin and DAPI

images used for Metamorph neurite outgrowth analysis. Red

signal in Metamorph image analysis panels show fidelity of image

segmentation. In the segmentation image, each cell with its

neurites are color-coded specifically. Bars: (A) 200 nm, (B)

200 mm.

(TIF)

Figure S2 Behavior of primary cortex neurons on plain
and line substrates. Freshly isolated cells were plated on glass

coverslips coated with 100 ug/ml poly-D-ornithine and 10 ug/ml

laminin and allowed to extend neurites for 5 days. Coverslips were

then fixed and stained for DAPI and Tuj-1 b3-tubulin antibodies.

Right panels show blowups from the inset in the line substrate

images. Fluorescence intensities in these images have been rescaled

to show the line pattern.

(TIF)

Figure S3 Cell soma motility. (A) Phase contrast time-lapse

series of cells on plain and line substrates. Colored circles indicate

cell soma positions. (B) Overlay of cell soma positions from time-

lapse series on plain and line substrate. Quantification of cell body

instantaneous speed on plain and line substrate. P values (T-test)

,, 0.0001 in both cases. Bars: (A,B,C) 25 mm.

(TIF)

Figure S4 Signaling activities of N1E-115 cell popula-
tions on plain and line substrates. (A) Relative protein

enrichment in plain (P) and line (L) for 2 h and 24 h was analyzed

by western blot. (B) Phase contrast micrographs of N1E-115 cells

used for western blot analysis. Bar: (A) 100 mm.

(TIF)

Movie S1 Phase contrast timelapse series of N1E-115 on the

plain and line substrates as shown in Fig. 4. Movie started 2 hours

post-plating. Note the processive neurite outgrowth behavior of

cells on the line substrate. Time is in hours:minutes. Bar: 50 mm.

(MP4)

Movie S2 Phase contrast timelapse series of N1E-115 on the

plain and line substrates as shown in Fig.S2. Note the highly motile

behavior of the cell on the plain substrate. Time is in

hours:minutes. Bar: 50 mm.

(MP4)

Movie S3 Fluorescence timelapse serie of lifeact-GFP transfected

N1E-115 growth cones on the plain and line substrates. Note the

highly processive neurite outgrowth behavior on the line pattern,

as well as the F-actin rich filopodia at the growth cone. Time is in

minutes:seconds. Bar: 10 mm.

(MP4)
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Movie S4 Fluorescence timelapse serie of lifeact-GFP transfected

N1E-115 growth cones on the line substrate. Note the distinct

morphodynamic behaviors of the two different filopodia popula-

tions. Time is in minutes:seconds. Bar: 10 mm.

(MP4)

Movie S5 Fluorescence timelapse serie of lifeact-GFP transfected

N1E-115 cell on the line substrate. Time is in minutes:seconds.

Note how F-actin rich filopodia can form when the neurite aligns

along the lines at the end of the movies. Bar: 10 mm.

(MP4)
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