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Abstract: The widespread electro–optical applications of polymer dispersed liquid crystals (PDLCs)
are hampered by their high-driving voltage. Attempts to fabricate PDLC devices with low driving
voltage sacrifice other desirable features of PDLCs. There is thus a clear need to develop a method
to reduce the driving voltage without diminishing other revolutionary features of PDLCs. Herein,
we report a low-voltage driven PDLC system achieved through an elegantly simple and uniquely
designed acrylate monomer (A3DA) featuring a benzene moiety with a dodecyl terminal chain.
The PDLC films were fabricated by the photopolymerization of mono- and di-functional acrylate
monomers (19.2 wt%) mixed in a nematic liquid crystal E7 (80 wt%). The PDLC film with A3DA
exhibited an abrupt decline of driving voltage by 75% (0.55 V/µm) with a high contrast ratio (16.82)
while maintaining other electro–optical properties almost the same as the reference cell. The response
time was adjusted to satisfactory by tuning the monomer concentration while maintaining the voltage
significantly low (3 ms for a voltage of 0.98 V/µm). Confocal laser scanning microscopy confirmed the
polyhedral foam texture morphology with an average mesh size of approximately 2.6 µm, which is
less in comparison with the mesh size of reference PDLC (3.4 µm), yet the A3DA-PDLC showed low
switching voltage. Thus, the promoted electro–optical properties are believed to be originated from
the unique polymer networks formed by A3DA and its weak anchoring behavior on LCs. The present
system with such a huge reduction in driving voltage and enhanced electro–optical performance
opens up an excellent way for abundant perspective applications of PDLCs.
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1. Introduction

Polymer dispersed liquid crystals (PDLCs) have attracted considerable attention for a large
range of electro–optical applications, including flat panel displays, smart windows, light shutters,
and holographic films [1–13]. Employing PDLCs in technologies is a highly promising approach due to
their easy processability, large area coverage, and low cost. The micrometer-sized liquid crystal droplets
dispersed in a polymer matrix are referred to as PDLC, which can be switched from a translucent (OFF)
state to a transparent (ON) state by the application of an electric field [14–19]. The electric field induces
the re-orientation of randomly distributed liquid crystal directors in domains in the opaque state to a
preferential direction parallel to the applied field and opto-electric switching occurs if the refractive
index of liquid crystal matches with that of polymer matrix [20,21]. The electro–optical properties of
PDLCs therefore mainly depend on liquid crystalline material, chemical nature of polymer as well as
the polymerization conditions [22,23].
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The principal strategy to prepare PDLC is a phase separation process between mixtures of LCs
and polymers [24–26]. The major methodologies are thermally induced phase separation (TIPS),
polymerization-induced phase separation (PIPS) and solvent-induced phase separation (SIPS) [27–32].
Among these, photopolymerization based PIPS is far more favorable in terms of convenience, simplicity,
and the offered control over the morphology of PDLC [33].

The PDLCs have several advantages, which include no requirement of polarizers, flexibility, high
transmittance, short open time, [14,16,34,35] however, they typically suffer from high voltage, poor
contrast ratio, off-axis haze, etc. Tremendous efforts were progressed previously on optimization of
PDLC materials and structure of devices to fabricate low voltage PDLCs with enhanced electro–optical
properties and were sufficiently impressive [20,21,36–41]. Despite promising results, attempts at
constructing low-voltage driven PDLCs have involved either cumbersome fabrication procedures or
compromised on other salient features of PDLCs [36–48]. There is therefore high interest in developing
an efficient method to reduce the driving voltage of PDLCs without sacrificing other desirable features.

Herein, we report an elegantly simple and efficient strategy to achieve remarkable driving voltage
reduction in PDLCs based on a simple and uniquely designed mono-functional acrylate monomer,
A3DA. This monomer features a dodecyl group at the para position of phenyl ring attached to a
polymerizable acrylate part with a propyl spacer. The PDLC system built on A3DA showed an abrupt
decline of driving voltage for about 75% while preserving the other electro–optical properties of PDLCs
more or less the same. Such a huge reduction in driving voltage, coupled with the revolutionary
features of PDLCs, makes them more viable as smart materials from an application point of view.

2. Experimental Section

2.1. Materials

All chemicals were obtained from commercial sources and used without further purification,
unless otherwise stated. Liquid crystal cells with a cell gap of 10 µm were purchased from E.H.C. Co.,
Ltd (Tokyo, Japan).

2.2. Synthesis of A0DA and A3DA

See reference [49].

2.3. Sample Preparation

Molecular structures of monomers used to prepare PDLC films are shown in Figure 1. The PDLC
precursor mixture contains liquid crystals E7 (80 wt%), a mono-functional monomer benzoic
acid, 4-[3-[(1-oxo-2-propen-1-yl)oxy]propoxy]-,dodecyl ester (A3DA) or 3,5,5-trimethylhexylacrylate
(TMHA) or benzoic acid, 4-[(1-oxo-2-propen-1-yl)oxy]-,dodecyl ester (A0DA) or dodecyl acrylate
(DA) (9.6 wt%), a cross-linker 1,6-hexanediol diacrylate (HDDA) (9.6 wt%), and a photoinitiator
2,2-imethoxy-2-phenylacetophenone (DMAP) (0.8 wt%) were stirred at 30 ◦C for 30 min, then injected
into a 10-µm-thick ITO coated liquid crystal cells (E. H. C. Co., Ltd.) by capillary action. Subsequently,
the mixture was irradiated with UV light at 365 nm with an intensity of 1.5–2 mW cm−2 for 30 min at
30 ◦C and the electro–optical properties were measured. Liquid crystal cells made of glass plate and
cover slip with a cell thickness of 10-µm were used for confocal laser scanning microscopy. Samples
with dye concentration of 0.05% and 0.1% by weight were prepared and polymerized under the
identical conditions to corroborate the consistency.
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Figure 1. Chemical structure of monomers used to prepare polymer dispersed liquid crystals (PDLCs).

2.4. Measurements

The samples were observed using a Nikon Eclipse LV 100 POL optical microscope equipped
with a Nikon DS-Ri1 CCD camera and a Linkam hot stage (10013L). The electro–optical properties
were measured on an experimental set up shown in Figure S1 (see Supplementary Materials). For the
transmittance calculation, the transmittance of air was normalized as 100%. The transmittance of
sample cells was determined by applying a square-wave AC voltage of 1 kHz. All the electro–optical
measurements were carried out at 303 K. The voltages corresponding to 10% and 90% of transmittance
between the minimum and maximum transmittances were defined as threshold voltage (Vth) and the
saturation voltage (Vmax), respectively. The morphology of the polymer network in PDLC films was
determined using a fluorescent confocal microscope (Nikon A1).

3. Results and Discussion

The PDLC films were made according to the procedure outlined in the experimental section.
A variety of mixing ratios of monomers (Table 1) while modulating the total concentration of monomers
to 19.2 wt% was employed to optimize the overall PDLCs performances. A reference device was also
fabricated for comparison. The weight fractions of liquid crystal (E7) and photoinitiator (DMPAP)
were invariable for all the experiments. The voltage-dependent-transmittance (V-T) characteristics
of PDLC films were measured by applying a square wave AC voltage of 1 kHz frequency and the
typical V-T characteristics obtained for these samples are shown in Figures 2 and 3. The PDLC films
were milky when no electric-field was applied. The transmittance increased with increasing applied
voltage and reached maximum value at the saturation field and reverted to the scattering state when
the voltage is removed. Interestingly, the PDLC film that contains A3DA showed a huge reduction in
driving voltages, regardless of the percentage composition of the monomer present, compared to the
reference cell (Figure 2).
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Table 1. Chemical compositions of the PDLC precursors.

Sample Name
E7 (80 wt%), DMPAP (0.8 wt%)

A3DA (wt%) HDDA (wt%) TMHA

R (Std.) - 9.6 9.6
A 11.2 8 -
B 9.6 9.6 -
C 8.8 10.4 -
D 8.0 11.2 -

Polymers 2020, 12, x FOR PEER REVIEW 4 of 11 

 

A 11.2 8 ‐ 

B 9.6 9.6 ‐ 

C 8.8 10.4 ‐ 

D 8.0 11.2 ‐ 

 

Figure 2. Transmittance dependence on the applied electric field for A3DA‐PDLC (sample B) and 

reference cell (sample R) measured at 303 K, λ = 633 nm. 

The reference cell exhibited a Vmax of 22.8 V (Vth = 11.2 V). Pleasingly, the V‐T curves of PDLC 

containing A3DA presented an unexpected voltage reduction for about 75%, from 22.8 to 5.5 V (Vth 

= 2.7) at an analogous blending ratio to that of reference cell (Figure S2, Supplementary Materials). 

Decreasing A3DA content resulted in an increase of Vmax slightly to 7.6 and 9.8 V for 8.8 wt% and 

8.0 wt% A3DA blends, respectively (Figure S3 and Table S1, Supplementary Materials). Whilst the 

impact of increasing A3DA concentration on voltage reduction was negligible, the decreased amount 

of cross‐linker resulted in memory effect—a situation supported by the appearance of increased 

transparency even after the film was fully switched to OFF state (Figure S3, Supplementary Materials) 

[50]. 

 

Figure 3. Voltage‐transmittance (V‐T) curves for PDLCs prepared with A3DA at different 

concentrations at 303 K, λ = 633 nm. 

We then studied the effect of A3DA on response times. Figure 4 shows the comparison of 

response time between the samples containing A3DA and reference device with an applied square 

wave electric filed (f = 1 kHz). The decay time of the reference cell was 1 ms, whereas a slower 

Figure 2. Transmittance dependence on the applied electric field for A3DA-PDLC (sample B) and
reference cell (sample R) measured at 303 K, λ = 633 nm.

Polymers 2020, 12, x FOR PEER REVIEW 4 of 11 

 

A 11.2 8 ‐ 

B 9.6 9.6 ‐ 

C 8.8 10.4 ‐ 

D 8.0 11.2 ‐ 

 

Figure 2. Transmittance dependence on the applied electric field for A3DA‐PDLC (sample B) and 

reference cell (sample R) measured at 303 K, λ = 633 nm. 

The reference cell exhibited a Vmax of 22.8 V (Vth = 11.2 V). Pleasingly, the V‐T curves of PDLC 

containing A3DA presented an unexpected voltage reduction for about 75%, from 22.8 to 5.5 V (Vth 

= 2.7) at an analogous blending ratio to that of reference cell (Figure S2, Supplementary Materials). 

Decreasing A3DA content resulted in an increase of Vmax slightly to 7.6 and 9.8 V for 8.8 wt% and 

8.0 wt% A3DA blends, respectively (Figure S3 and Table S1, Supplementary Materials). Whilst the 

impact of increasing A3DA concentration on voltage reduction was negligible, the decreased amount 

of cross‐linker resulted in memory effect—a situation supported by the appearance of increased 

transparency even after the film was fully switched to OFF state (Figure S3, Supplementary Materials) 

[50]. 

 

Figure 3. Voltage‐transmittance (V‐T) curves for PDLCs prepared with A3DA at different 

concentrations at 303 K, λ = 633 nm. 

We then studied the effect of A3DA on response times. Figure 4 shows the comparison of 

response time between the samples containing A3DA and reference device with an applied square 

wave electric filed (f = 1 kHz). The decay time of the reference cell was 1 ms, whereas a slower 

Figure 3. Voltage-transmittance (V-T) curves for PDLCs prepared with A3DA at different concentrations
at 303 K, λ = 633 nm.

The reference cell exhibited a Vmax of 22.8 V (Vth = 11.2 V). Pleasingly, the V-T curves of PDLC
containing A3DA presented an unexpected voltage reduction for about 75%, from 22.8 to 5.5 V (Vth = 2.7)
at an analogous blending ratio to that of reference cell (Figure S2, Supplementary Materials). Decreasing
A3DA content resulted in an increase of Vmax slightly to 7.6 and 9.8 V for 8.8 wt% and 8.0 wt% A3DA
blends, respectively (Figure S3 and Table S1, Supplementary Materials). Whilst the impact of increasing
A3DA concentration on voltage reduction was negligible, the decreased amount of cross-linker resulted
in memory effect—a situation supported by the appearance of increased transparency even after the
film was fully switched to OFF state (Figure S3, Supplementary Materials) [50].

We then studied the effect of A3DA on response times. Figure 4 shows the comparison of response
time between the samples containing A3DA and reference device with an applied square wave electric
filed (f = 1 kHz). The decay time of the reference cell was 1 ms, whereas a slower response was
observed for PDLC prepared with 9.6 wt% A3DA (sample B) with a decay time of 14 ms. When the
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A3DA concentration was 8.8 wt% (sample C), the decay time drops off to 6.7 ms with a slight increase
in driving voltage (7.6 V). Such decreasing in the decay time was improved to 3 ms with a further
reduction in the A3DA mixing ratio to 8 wt% (sample D). The rise times were a few to 7 ms and
followed a decreasing tendency with decreasing amounts of A3DA (see Supplementary Materials,
Table S1). Further optimization studies, at concentrations lower than 8.0 wt% were not carried out
due to the increase of Vmax with low A3DA fraction. These ratios could be further optimized to have
ultra-fast low voltage driven PDLC devices and such studies are currently underway.
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Figure 4. Response times for PDLC films with varied content of A3DA and reference cell.

Contrast ratio (CR) is a measure of transmittance between the transparent state and opaque state
and is of great importance to the performance of the PDLC system [20]. The PDLC film containing
9.6 wt% A3DA by weight was characterized by a high contrast ratio (16.82), which was better than that
shown by reference cell (11.30). The contrast ratio of other samples was more or less similar compared
to sample R (Table S1, Supplementary Materials). The scattering of light in the OFF state depends
on the LC droplet size, whereas ON state transmittance reflects the good match of the refractive
index between the LC and polymer matrix. Thus, a high contrast ratio could be a consequence of the
formation of appropriate polymer networks enabled by our unique monomer A3DA.

The driving voltage reduction of polymer network liquid crystal containing 1–2% of DA has
been reported to originate from the weakening of interface anchoring strength [51]. The PDLC film
containing DA was therefore fabricated to investigate the effect of the terminal chain on the observed
excellent electro–optical (EO) performances of A3DA-PDLCs. Interestingly, a huge voltage reduction
with a Vmax value of 10.5 V was observed for DA-PDLC also (Figure 5, see Figure S4 and Table S2
in Supplementary Materials for more information). This result confirms that the dodecyl end group
contributes significantly to the lowering of driving voltage in A3DA-PDLC. However, the presence of
the dodecyl group in A3DA cannot solely justify the observed remarkable voltage reduction in PDLCs
constructed with A3DA.
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We then fabricated PDLC devices with monomer A0DA (Figure 5), while keeping the mixing
ratio constant (9.6 wt%) to elucidate the impact of a spacer on V-T characteristics of PDLCs. A0DA is
structurally similar to A3DA but does not possess a spacer unit. The dependence of transmittance on
voltage was similar (Vmax = 6.2 V) for PDLC containing A0DA to that of obtained for A3DA-PDLC
(Figure 5), which negates the effect of a spacer on lowering of driving voltage in A3DA-PDLC. Based
on the above results, it is clear that some other factors also need to be considered for the adequate
understanding of the promoted electro–optical properties of A3DA based PDLCs.

There are many factors that could affect the electro–optical performances of PDLC systems that
include size and shape of the LC domains, nature of the polymer matrix, anchoring energy of liquid
crystal domains, characteristics of LC, and thickness of the film [14]. In this study, we prepared
PDLC cells of the same thickness under similar experimental conditions and E7 was chosen as the LC
component for all the experiments. Thus, the elements determining the EO efficiencies of PDLC with
A3DA were limited to the morphology of LC droplets and interaction between the LC molecules and
the polymer network.

To examine the morphology of PDLC films, confocal laser scanning microscopy (CLSM) was
carried out. For this inspection, PDLC precursor mixtures were added with a small amount of acridine
yellow (0.05–0.1 wt%) based mono-functional monomer dye to selectively concentrate in polymer
networks of resulting PDLC samples. All other conditions of preparation were kept identical as
detailed before. The structure of the monomer and the film morphology are a subject of another study
in our group and hence are not disclosed in detail in this paper.

CLSM images of A3DA and reference PDLC cells revealed a polyhedral foam texture morphology
(Figure 6, also see Figure S5 in Supplementary Materials) [52]. Whilst reference cell morphology was
non-uniform, the PDLC film made of A3DA resulted in a monodispersed droplets morphology with an
average mesh size of approximately 2.6 µm, which is less than that observed for reference cell, 3.4 µm.
The smaller droplet size in A3DA-PDLC may have originated from the enhanced chemical affinity
between A3DA bearing benzene ring and LC molecules owing to their chemical structure similarity.
An alternative reason for smaller LC domains could be the increase in viscosity of PDLC composites
attributed to the increase in chain rigidity of the A3DA monomer. When the viscosity of the system
increases, the molecular diffusion rate of monomer free radicals and coalescence rate of LC domains
decreases and results in the formation of smaller droplets. This result reveals a relatively higher OFF
state optical scattering of A3DA-PDLC.Polymers 2020, 12, x FOR PEER REVIEW 7 of 11 
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The polydispersity of droplet size and shape usually broadens the V-T curves as the droplets
of different size clear at different field strengths and the transmittance reaches a maximum value
gradually [52,53]. In contrast, the PDLCs with drop size uniformity are expected to follow a square jump
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in its electro–optical performance and show steep V-T curves [52,53]. The observed field-dependent
transmittance characteristics of A3DA and reference PDLC cells agree well with the aforesaid points.

Generally, a decrease in mesh size causes an increase in the surface anchoring energy of LC, which
in turn increases the driving voltage of the system [52,54]. However, the present system showed an
abrupt decline of operating voltage with a reduced average mesh size of LC droplets. This can be
possible only if the anchoring energy between the polymer and LC is weaker. When the anchoring
energy between the LC and polymer is weak, LC molecules respond to an applied electric field easily
and thereby reduce the voltage required to switch the system [55,56]. Under such a condition, however,
the LC molecules recover to its original state slowly after the removal of the applied field, resulting
in the increase of decay time. These interpretations are consistent with our experimental results.
The PDLCs prepared with A3DA and DA exhibited voltage reduction with an increase of decay time
in comparison with the reference cell. However, the driving voltage reduction and decay time increase
from DA- to A3DA-PDLCs, suggesting that LC molecules experience much weaker anchoring in
the polymer network formed by A3DA and HDDA than the polymer system formed by DA and
HDDA. Also, decreasing of A3DA concentration results in improvements of decay time. This provides
further evidence of the weak anchoring nature of A3DA. We have recently reported that the switching
voltages could be reduced for blue phase liquid crystals stabilized with A3DA because of the decrease
in the interface anchoring strength [49]. Taking into consideration all of the data mentioned above,
it is reasonable to consider that the driving voltage reduction in PDLC prepared with A3DA and
HDDA probably resulted from the reduction of anchoring energy between polymer networks and
LCs enabled by the uniquely designed A3DA monomer. However, it is unclear whether the observed
remarkable voltage reduction in A3DA-PDLC is specific to weak anchoring energy, or if some other
factors are involved.

The present system has advantages over the conventional PDLC system based on alkyl acrylate
mixtures. The benzene ring in A3DA enhances the solubility of starting mixture due to the increased
compatibility with LC molecules, whereas the dodecyl moiety maintains the miscibility gap between
LCs and growing polymer matrix to generate a two-phase structure that can strongly scatter the light.
The feature of the monomer controls the morphology of the system and at the same time decreases the
interface anchoring energy of the interwoven polymer network on LCs, which thus results in enhanced
electro–optical performance of the PDLC films. We expect that such a unique and simple design will
be a promising candidate for various applications based on polymer–liquid crystal composites.

4. Conclusions

In conclusion, we present a highly efficient low-voltage driven PDLC system based on a simple
and uniquely designed acrylate monomer bearing a benzene ring, propyl spacer, and dodecyl tail.
The optimized material showed a remarkable decline of driving voltage with a high contrast ratio,
while preserving other electro–optical properties. The response time could be adjusted to a desirable
limit by tuning A3DA concentration. We believe that such a huge decrease in operating voltage for
PDLCs constructed with A3DA possibly resulted from the weakening of anchoring energy between LC
molecules and polymer networks containing A3DA. We anticipate that the development of a highly
efficient and low-voltage driven polymer/LC dispersed system, as presented here, could have a broad
impact on applications, such as smart windows, displays, holographic PDLCs, etc.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4360/12/8/1625/s1.
Figure S1: Experimental set up for electro-optical properties measurements of PDLCs; Figure S2: V-T curves for
forward (blue circles) and backward (red circles) processes of A3DA-PDLC and reference cell; Figure S3: V-T
curves for forward (blue circles) and backward (red circles) processes of A3DA-PDLC at various concentrations.
a) 8.0 wt%, b) 8.8 wt%, c) 9.6 wt%, d) 11.2 wt%; Figure S4: V-T curves for forward (blue circles) and backward (red
circles) processes of A0DA-PDLC (a) and DA-PDLC (b); Figure S5: Confocal microscopy images of reference cell (a)
and A3DA-PDLC (b) with 0.05 wt% of dye. The images were collected near the film-cover glass interface (UV light
exposed area); Table S1: EO properties of PDLCs prepared with A3DA and reference cell at 303 K, λ = 633 nm;
Table S2: EO properties of PDLCs prepared with A3DA, A0DA and DA at 303 K, λ = 633 nm. The monomer
mixing ratio was 9.6 wt%.
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