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Abstract

The genomic signature of speciation with gene flow is often attributed to the strength of divergent selection and recombination rate

in regions harboring targets for selection. In contrast, allopatric speciation provides a different geographic context and evolutionary

scenario, whereby introgression is limited by isolation rather than selection against gene flow. Lacking shared divergent selection or

selection against hybridization, wewould predict the genomic signatureof allopatric speciationwould largely be shaped by genomic

architecture—thenonrandomdistributionof functionalelementsandchromosomal characteristics—through its role inaffecting the

processes of selection and drift. Here, we built and annotated a chromosome-scale genome assembly for a songbird (Passeriformes:

Certhia americana). We show that the genomic signature of allopatric speciation between its two primary lineages is largely shaped

bygenomicarchitecture.Regionally, genedensity and recombination rate variationexplaina largeproportionof variance ingenomic

diversity,differentiation,anddivergence.We identifiedaheterogeneous landscapeof selectionandneutrality,witha largeportionof

the genome under the effects of indirect selection. We found higher proportions of small chromosomes under the effects of indirect

selection, likely because they have relatively higher gene density. At the chromosome scale, differential genomic architecture of

macro- and microchromosomes shapes the genomic signatures of speciation: chromosome size has: 1) a positive relationship with

genetic differentiation, genetic divergence, rate of lineage sorting in the contact zone, and proportion neutral evolution and 2) a

negative relationship with genetic diversity and recombination rate.
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Introduction

Geographic isolation plays a vital role in the generation of

reproductive isolation between populations. Consequently,

allopatric speciation has generally been at the forefront of

speciation research since the role of isolation was emphasized

by evolutionary biologists during the modern synthesis

(Dobzhansky 1937; Mayr 1942). Over the past couple
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decades, there has been an increasing appreciation for speci-

ation with gene flow, whereby allopatry is not strictly neces-

sary during the speciation process (Feder et al. 2012).

Regardless, speciation’s geographic aspect needs consider-

ation because the amount of geographic contact between

diverging populations will directly impact when and how

much gene flow occurs during the speciation process (Nosil

and Feder 2012).

The genomic signature of speciation with gene flow is

shaped by variation in strength of divergent selection, pat-

terns of linked selection, and rates of gene flow and recom-

bination (Feder et al. 2012; Nosil and Feder 2012). These

patterns naturally vary with the geographic context of speci-

ation. For instance, diverging populations in early stages of

speciation will have little reproductive isolation, and if they

have extensive geographic contact—for example, sympatric

populations or brief isolation followed by secondary contact—

their genomes will show contrasting peaks and valleys of ge-

netic differentiation (Ellegren et al. 2012). Peaks (a.k.a.

islands) of differentiation form due to the effects and inter-

actions of divergent selection, linked selection, reduced gene

flow between populations, and reduced recombination rate

in genomic regions that harbor targets for selection (Feder et

al. 2012; Cruickshank and Hahn 2014). In contrast, valleys of

low background genetic differentiation are caused by a lack

of barriers to gene flow between diverging species’ genomes.

The majority of recent empirical speciation genomics research

has involved species in geographic contexts allowing gene

flow during early and intermediate stages of reproductive iso-

lation (Ellegren et al. 2012; Gagnaire et al. 2013; Carneiro et

al. 2014; Janou�sek et al. 2015; Toews et al. 2016; Riesch et al.

2017; Westram et al. 2018). These studies have generally

found peaks of differentiation scattered across the genome

with an apparently higher abundance in genomic regions

with relatively low recombination (Nachman and Payseur

2012; Payseur and Rieseberg 2016).

Despite the recent plethora of studies investigating the ge-

nomics of speciation with gene flow, allopatric speciation is

widely regarded as the most common mode of speciation

(Mayr 1942; Futuyma and Mayer 1980). In contrast to specia-

tion with gene flow, in geographic contexts where population

divergence occurs in allopatry, genomic divergence is free to

proceed via genetic drift or within-population selection without

the homogenizing effects of gene flow. Under these circum-

stances, some have hypothesized to expect a slow accumula-

tion of background differentiation between lineages without

clear extremes of differentiation across the genome (Feder et

al. 2012). As such, we might predict that the majority of ge-

nomic differentiation is linked to within-lineage background

selection and indirect selection in regions with relatively low

recombination rates (Renaut et al. 2013; Cruickshank and

Hahn 2014; Burri et al. 2015), as opposed to divergent selec-

tion or genomic regions with strong selection against gene

flow in contact zones. If this is the case, we hypothesize the

heterogeneity of genomic architecture—the nonrandom distri-

bution of functional elements (e.g., genes, repetitive elements)

(Koonin 2009) and chromosomal characteristics (e.g., variable

recombination rates)—largely shapes patterns of genomic var-

iation in species that undergo allopatric speciation.

Vertebrate genomes are highly heterogeneous in structure

and content (i.e., genomic architecture), including: 1) chro-

mosome size, 2) gene density, 3) repetitive element density,

and 4) local recombination rate. For example, bird genomes

have chromosomes that span two orders of magnitude in size

(Ellegren 2010). Their smaller microchromosomes are denser

in gene content (Dutoit, Burri, et al. 2017), bird sex chromo-

somes tend to be enriched in repetitive elements (Kapusta

and Suh 2017), and local recombination rates can vary within

and among chromosomes by an order of magnitude or more

(Kawakami et al. 2014). Given this genomic architecture, we

expect macro- and microchromosomes to show significantly

different patterns of genomic variation in birds that have un-

dergone allopatric speciation without prominent gene flow or

strong divergent selection (Dutoit, Burri, et al. 2017).

Here, we use a wild songbird to investigate how genomic

architecture shapes the genomic signature of allopatric speci-

ation. The Brown Creeper (Certhia americana) is widely distrib-

uted in most forested habitats from Alaska to Nicaragua. Its

two main lineages largely evolved in allopatry (Manthey et al.

2011a, 2011b, 2014) and meet in a microallopatric contact

zone in the sky islands—montane forest habitat islands—of

Arizona (Marshall 1956; Manthey et al. 2016). We assembled

and annotated a chromosome-scale genome for C. americana

and resequenced individuals from allopatric and contact zone

populations. We estimated patterns of genetic diversity, ge-

netic differentiation and divergence, recombination rate, in-

trogression, lineage sorting, and natural selection across the

genome, and linked population genetic patterns with genomic

architecture. The sampling of both allopatric populations and

populations in secondary contact allows us to better under-

stand how genomic architecture affects genomic divergence

under the most common geographic mode of speciation as

well as how this architecture can affect evolutionary processes

in secondary contact.

Results

Chromosome-Level Assembly

We used three sequencing methods to assemble a C. amer-

icana genome: 1) Pacific Biosciences long reads (�29� cov-

erage), 2) 10x Chromium sequencing (�51� coverage), and

3) Hi-C sequencing (>1,000� physical coverage). The result-

ing genome had a scaffold L50 of 64.36 Mb, with 91.2%

assembled into the 30 largest scaffolds that were highly syn-

tenous with Taeniopygia guttata chromosomes (fig. 1). The

assembly consisted of �10.1% repetitive elements, and con-

tained�98% of BUSCO (Sim~ao et al. 2015) conserved single-
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copy vertebrate genes (fig. 1). Microchromosomes had denser

gene content than macrochromosomes, the Z chromosome

showed relatively higher mean repetitive content, and auto-

somal chromosomes exhibited higher repetitive content on

their ends (fig. 1).

Evolutionary Relationships

We resequenced three individuals each for parental popula-

tions of both lineages and six populations in the putative con-

tact zone (fig. 2 and supplementary fig. S1 and table S1,

Supplementary Material online). To estimate evolutionary

relationships and genetic structure, we used a subset of

single-nucleotide polymorphisms (SNPs) with no missing data

and separated by a minimum of 10 kbp to reduce effects of

linkage (supplementary table S2, Supplementary Material on-

line). We estimated a species tree in TreeMix (Pickrell and

Pritchard 2012) to infer the proportion of variance in SNP

data explained by: 1) independent evolutionary history across

lineages and 2) putative gene flow. The base species tree

explained �99.86% of variance in the SNP data, with two

putative gene flow events explaining an additional �0.08%

and�0.06% (fig. 2D). With the same SNPs, we used discrim-

inant analysis of principal component (DAPC) (Jombart et al.
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FIG. 1.—Genomic characteristics of the Certhia americana de novo assembly. (A) Synteny mapping C. americana scaffolds (right) to Taeniopygia guttatta

chromosomes (left). (B) Hi-C contact map, a heatmap of paired-end Hi-C reads. The blue lines indicate bounding areas for scaffolds. (C) Results of BUSCO

search for single-copy vertebrate conserved genes in the de novo assembly. (D) Proportions of coding sequence (CDS) and repetitive elements in the assembly

across 100 kb sliding nonoverlapping windows. The lines indicate mean values across ten sliding windows (i.e., 1 Mb).
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2010) and STRUCTURE (Pritchard et al. 2000) to infer genetic

structure; individuals were clearly assigned to one of two lin-

eages (fig. 2C). In the STRUCTURE analysis, individuals from

two populations (Santa Catalina and Chiricahua Mountains)

showed small probabilities of admixture (Q-coefficients<10%

for introgressed lineage; fig. 2C). Taken together, TreeMix and

STRUCTURE analyses showed a small but nonzero signal of

introgression, but notably only in two populations and not

spread across the entire sampling region.

Population Genomics Summary Statistics

We estimated population genetic summary statistics in 100

kbp sliding windows and mean values per chromosome. At

the chromosome level, we found strong negative relation-

ships between chromosome size and within-lineage genetic

diversity and recombination rate estimates (fig. 3). These rela-

tionships correspond with a strong positive association be-

tween chromosome size and both between-lineage genetic

differentiation (FST; r¼ 0.885) and genetic divergence (DXY;

r¼ 0.839; fig. 3).

Across sliding windows, estimates of genetic differentia-

tion, genetic divergence, genetic diversity, and recombination

rate were highly heterogeneous (fig. 4A). Although there

were general patterns exhibited based on mean estimates

across differently sized chromosomes (fig. 3), these statistics

varied greatly within chromosomes (fig. 4A). Generally, re-

combination rate was highly correlated between lineages

Pinal

Pinaleño
Santa

Catalina

Huachuca

Santa
Rita Chiricahua

A

25 km

B

C. familiaris

S. Catalina

S. Rita

Huachuca

Mexico

Pinal

Chiricahua

Utah

Pinaleño

10 s.e.

0.00 0.05 0.10 0.15
Drift Parameter

D

15
17

13
5

6
7

8
9

10
1

12
22

24
20

2
3

4

S. Catalina

S. Rita

Huachuca

Mexico

Pinal

Chiricahua

Utah

Pinaleño

C

DAPC
STRUCTURE

E
time

(mya)

2NmN->S = 0.996

2NmS->N = 0.963

NS = 229 NN = 89

NANC = 13

0.18

0.71

GT = 2

0.26

1.06

GT = 3

(0.77 - 1.12) (0.52 - 0.75)

Secondary
Contact

Divergence

(219 - 249) (82 - 95)

(3 - 94)

(0.865 - 1.200)

(0.780 - 1.144)

(0.14 - 0.20)(0.21 - 0.30)

FIG. 2.—Sampling, genetic structure, and demography. (A) Map of two main Certhia americana lineages. The star indicates locality of individuals used

for genome assembly. The inset zooms in on sampling localities in the Arizona sky islands in (B) where darker shades of green indicate increased vegetative

cover. (C) Genetic structure across all individuals inferred in the programs DAPC and STRUCTURE. (D) TreeMix species tree of the sampling localities, with two

inferred migration edges between lineages. The first is from ancestral Santa Rita Mountains population to the Santa Catalina Mountains, and the second

connects migration from the Pinale~no Mountains to the Chiricahua Mountains. Both migration edges explain <0.1% of the variance in the SNP data. (E)

Demographic history estimated with fastsimcoal2. The best fitting model was identified as a secondary contact model. The times are scaled based on the

assumption of 2- or 3-year generation times (GT). Effective population sizes are in thousands. Confidence intervals estimated from 100 bootstrapped data

sets are indicated in parentheses. Photo of Brown Creeper from Chiricahua Mountains taken by J.D.M.

Manthey et al. GBE

4 Genome Biol. Evol. 13(8) doi:10.1093/gbe/evab120 Advance Access publication 27 May 2021



(r¼ 0.829–0.861 across multiple correlation metrics; supple-

mentary table S3, Supplementary Material online) and was

positively associated with gene content (r¼ 0.241–0.455).

Additionally, regions with high recombination rates—usually

chromosome ends and smaller chromosomes—exhibited rel-

atively higher genetic diversity (r¼ 0.680–0.839), lower ge-

netic differentiation (r¼�0.879 to �0.670), and lower

genetic divergence (r¼�0.422 to�0.162). Notably, the cor-

relation between genomic divergence and 1) genetic differ-

entiation, 2) genetic diversity, and 3) recombination rate all

showed a strong relationship with chromosome size (fig. 4B),

suggestive of different dominant evolutionary forces on dif-

ferent sized chromosomes.

Because we identified correlations between population ge-

nomic statistics and chromosomal characteristics at both the

chromosomal (fig. 3) and sliding windows (fig. 4A) levels, we

wanted to parse out if there were any chromosomal effects

not accounted for by the gene content, transposable element

(TE) content, and local recombination rate in sliding windows.

Using partial regression to account for the local window char-

acteristics (e.g., gene content), we found: 1) a positive

relationship between chromosomal size and genetic differen-

tiation (r¼ 0.496) and 2) genetic divergence (r¼ 0.715), but

also (3) a lack of a relationship between chromosomal size

and genetic diversity for either lineage (northern r¼�0.110,

southern r¼ 0.170; supplementary fig. S2, Supplementary

Material online). These results indicate that local genomic ar-

chitecture (e.g., gene and TE content, recombination rate)

drives the entire signal between chromosome size and geno-

mic diversity. In contrast, part of the variance in genetic dif-

ferentiation and divergence is explained by chromosome size

even when local genomic architecture is accounted for (sup-

plementary fig. S2, Supplementary Material online). We ad-

ditionally used partial regression to assess the direct

association between recombination rate and population ge-

nomic summary statistics at the chromosome scale while ac-

counting for gene content, TE content, and chromosome size.

We found strong correlations between recombination rate

and genomic diversity (northern r¼ 0.673, southern

r¼ 0.636) and between genetic differentiation (FST) and re-

combination rate (r¼�0.520; supplementary fig. S2,

Supplementary Material online). In contrast, genetic
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divergence (DXY) and recombination rate were weakly corre-

lated (r¼ 0.290; supplementary fig. S2, Supplementary

Material online).

Segregating Sites and Introgression

Because of the potential for some gene flow between line-

ages (fig. 2), we investigated patterns of: 1) differential fixa-

tion across the genome, 2) proportions of sites segregating

between allopatric populations found in sky island popula-

tions, and 3) introgression using ABBA–BABA tests (both D

and fd statistics; Green et al. 2010; Martin et al. 2015). The

proportion of variants fixed in 100 kbp windows (both SNPs

and indels) was heterogeneous with some windows having

no fixed differences and others showing >50% of polymor-

phisms fixed between lineages (supplementary fig. S3,

Supplementary Material online). Generally, larger chromo-

somes had higher proportions of fixed differences than

smaller chromosomes (supplementary fig. S3,

Supplementary Material online). We looked at sites represent-

ing fixed differences between the allopatric populations as

candidate segregating sites between the lineages, and mea-

sured proportions of these sites that were sorting to the

northern or southern lineages’ alleles in the sky island popu-

lations. Here, the sky islands largely exhibited the expected

alleles based on their lineage, with relatively higher evidence

of allele sharing between lineages in the Santa Catalina and

Chiricahua Mountain Ranges (fig. 5A). Of these segregating

sites, sky island populations showed higher affinity to lineage-

specific alleles on larger chromosomes, with smaller chromo-

somes exhibiting relatively higher segregating-site allele shar-

ing between lineages (fig. 5B). These patterns could indicate

faster lineage sorting on larger chromosomes, reduced gene

flow on larger chromosomes, or both.

For each of the sky island populations, we performed

ABBA–BABA tests in 100 kbp sliding windows to identify: 1)

whether there was gene flow between lineages in the contact

zone, and if so, 2) whether gene flow occurred across the

whole genome. Here, we found little evidence of gene flow

into most sky island populations, with the exception of the

Santa Catalina and the Chiricahua Mountain Ranges (fig. 6).

Approximately 6.6% and 3.8% of �9,800 sliding windows

showed significant evidence for gene flow in the Chiricahua

and Santa Catalina populations, respectively. In contrast, the

other four sky island populations showed evidence for intro-

gression in 0.4–1.5% of windows (fig. 6).

Demography and Selection

We estimated each lineage’s demographic history and diver-

gence timing using fastSimCoal2 (Excoffier et al. 2013). Of

four alternative models tested in fastSimcoal2, a model of

isolation during divergence followed by secondary contact

best fit the data (fig. 2E and supplementary figs. S4 and S5,

Supplementary Material online). Depending on our assump-

tions about generation times (GT) in C. americana, the two

lineages diverged approximately 0.71 Ma (GT¼ 2 years) or

1.06 Ma (GT¼ 3 years). They likely came into contact in the

last quarter million years, with small amounts of gene flow

(2Nm < 1) since secondary contact (fig. 2E). Consistent with

its higher genetic diversity, the southern lineage is estimated

to have higher estimates of effective population size relative

to the northern lineage (fig. 2E).
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We also estimated demographic histories in smcþþ
(Terhorst et al. 2017), although this method is likely biased

in this case as it does not account for gene flow. Here, we

largely wanted to use smcþþ to obtain potential fluctuations

in effective population sizes through time that could be used

as a starting point to account for demographic histories in tests

for selection using diploS/HIC (Kern and Schrider 2018). The

model estimated in smcþþ showed oscillating effective pop-

ulation sizes for both lineages, a divergence time generally

consistent with fastSimcoal2 results (�0.87 Ma with

GT¼ 2years), and harmonic mean effective population sizes

larger in the southern lineage relative to the northern lineage

(supplementary fig. S6, Supplementary Material online).

We used a machine-learning algorithm implemented in

diploS/HIC (Kern and Schrider 2018) to predict patterns of

neutrality, selection, and linked selection in 20- and 50 kbp

windows. We initially trained the diploS/HIC model using de-

mographically informed coalescent simulations produced with

discoal (Kern and Schrider 2016). In both lineages, we found a

majority of the genome not evolving neutrally (fig. 7 and

supplementary fig. S7, Supplementary Material online).

Large portions of the genome were predicted to have under-

gone soft selective sweeps or be in linkage with soft sweeps

(�49–71% of genome), with little evidence of hard sweeps

(�1.1–1.4% of genome). Only 14.6% (50 kbp windows) or

13.3% (20 kbp windows) of windows were classified as evolv-

ing neutrally in both lineages. A larger proportion of the ge-

nome (23–25%) was classified as linked to selection in both

lineages. Because of the heterogeneous sizes of chromosomes

and their different patterns of coding sequence content and

recombination rate, we measured the proportion of windows

classified neutral in each chromosome. We found a marginally

significant positive relationship between chromosome size and

proportion of windows classified neutral (fig. 7; northern

r¼ 0.419, southern r¼ 0.363).

Putative Inversion Regions

We identified three regions of the genome greater than 1

Mbp that showed a strong signature of introgression as
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well as reduced recombination rates. We hypothesized that

these may be ancestrally segregating inversions and aimed to

use multiple lines of evidence to assess this hypothesis. First,

we extracted SNPs from these regions with no missing data to

estimate genetic structure using the program STRUCTURE.

We found that all individuals exhibited either complete ances-

try to their respective lineage or approximately half their an-

cestry to each lineage (i.e., heterozygous for the putative

inversion; fig. 8A). Individuals with mixed ancestry in these

putative inversion regions exhibit nearly 100% heterozygosity

of polymorphic sites in these regions (fig. 8E). Relative to the

chromosomes they are located on, these putative inversion

regions exhibit highly reduced recombination rate (fig. 8B),

decreased heterozygosity (fig. 8C), and greatly increased link-

age disequilibrium (LD; fig. 8D and supplementary fig. S8,

Supplementary Material online). Overall, the observed pat-

terns in these three regions are indicative—but not conclu-

sive—of inversions whereby two to three individuals in the

contact zone are heterozygous for each of the inversions,

but only one individual is heterozygous with all three (fig. 8A).

Discussion

Genomic Architecture Shapes the Genomic Signature of

Allopatric Speciation in the Brown Creeper

We built and annotated a de novo chromosome-scale ge-

nome assembly for C. americana to investigate how genomic

architecture shapes the genomic landscape of allopatric spe-

ciation. The genome’s characteristics were highly heteroge-

neous both within and across chromosomes. We found that

smaller chromosomes tended to have higher effective recom-

bination rates (figs. 3 and 4A). This trend of relatively higher

recombination rates on smaller chromosomes is consistent

with patterns identified in other organisms—such as yeasts,

birds, butterflies, mammals, and fishes—and is thought to

occur due to meiotic crossover requirements (Kaback et al.

1992; Jensen-Seaman et al. 2004; Lynch and Walsh 2007;

Roesti et al. 2013; Kawakami et al. 2014; Davey et al.

2017; Martin et al. 2019). Additionally, most chromosomes

showed relatively higher recombination rates on chromosome

ends (fig. 4A), consistent with trends in both plants and ani-

mals (Haenel et al. 2018). Recombination rate variation across

the genome was generally consistent between the two

Certhia lineages we examined (r¼ 0.829–0.861 across multi-

ple correlation measures; supplementary table S3,

Supplementary Material online).

We found that smaller chromosomes tended to have

denser gene content, and in sliding windows gene content

was positively correlated with recombination rate (figs. 3 and

4A; supplementary table S3, Supplementary Material online),

consistent with patterns seen in other songbirds (Kawakami

et al. 2014; Dutoit, Burri, et al. 2017). In eukaryotes, recom-

bination rates are generally positively correlated with coding

sequence density, but also with notable exceptions demon-

strating a negative correlation between local recombination
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rate and gene content (Stapley et al. 2017; Martin et al. 2019;

Stankowski et al. 2019).

The highly heterogeneous genomic landscape of gene con-

tent and recombination rates is strongly associated with pat-

terns of genomic diversity, differentiation, and divergence at

the chromosome level (fig. 3). Because of the differential ge-

nomic characteristics of macro- and microchromosomes,

chromosome size explains between 58% and 77% of varia-

tion in genetic diversity, differentiation, and divergence at the

chromosome scale (fig. 3). When accounting for variation in

gene content, TE content, and recombination rate variation

across chromosomes using partial regression, chromosome

effects no longer explain variation in genomic diversity (sup-

plementary fig. S2, Supplementary Material online), but still

explain part of the variation among chromosomes in genetic

differentiation (21%) and genetic divergence (49%) (supple-

mentary fig. S2, Supplementary Material online). In contrast

to patterns at the chromosome scale identified here: 1) chro-

mosome size and genomic diversity are either decoupled or

show a positive relationship in other songbird species (Dutoit,

Burri, et al. 2017; Dutoit, Vijay, et al. 2017), and 2) chromo-

some size and genomic divergence exhibit a negative relation-

ship in some mammals (Tigano et al. 2021), although one

study in hummingbirds found a relationship between geno-

mic differentiation and chromosome size (Henderson and

Brelsford 2020).

At the regional scale, measured in 100 kbp sliding win-

dows, we found strong correlations of relative recombination

rate and genomic architecture—such as gene content—with

population genomic statistics including genetic diversity, dif-

ferentiation, and divergence.

Diversity

Window-based analyses showed a strong positive correlation

in genomic diversity between the northern and southern

lineages (r¼ 0.781–0.806; supplementary table S3,

Supplementary Material online). We also identified strong

positive correlations of genomic diversity with both gene con-

tent and effective recombination rates in sliding window anal-

yses (fig. 4A and supplementary table S3, Supplementary

Material online). This pattern is similar to that found in other

animals at regional genomic scales (i.e., not chromosomal

scale and not very small genomic resolutions) (Kraft et al.

1998; Cutter and Payseur 2003, 2013; Takahashi et al.

2004; Kulathinal et al. 2008; Branca et al. 2011; Roesti et

al. 2013; Vijay et al. 2016; Dutoit, Burri, et al. 2017; Dutoit,

Vijay, et al. 2017). Additionally, a study in humans showed

that the diversity–recombination relationship may be scale

dependent, with variable patterns on the scale from one to

hundreds of kbp (Spencer et al. 2006).

Differentiation and Divergence

We found strong negative correlations of both genetic differ-

entiation and divergence with gene content and recombina-

tion rate in sliding window analyses (fig. 4A and

supplementary table S3, Supplementary Material online). In

other species, window-based analyses have identified a neg-

ative relationship between recombination rates and genetic

differentiation (Kulathinal et al. 2008; Roesti et al. 2013; Vijay

et al. 2016; Stankowski et al. 2019). These results may be

attributed to the faster accumulation of genetic differences

in low recombination regions due to both the effects of ge-

netic drift and linked selection. In contrast to genetic differ-

entiation, we may not expect a consistent relationship

between genetic divergence and recombination rate depend-

ing on the speciation scenario. For example, in a speciation

model without gene flow, we would expect differentiation

(FST) and divergence (DXY) to be positively correlated and scale

with time in isolation. In contrast, during speciation with gene

flow, differentiation and divergence may be uncorrelated or
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negatively correlated due to the complex interactions be-

tween gene flow and selection against gene flow between

lineages in different parts of the genome (e.g., Stankowski et

al. 2019). Here, our observed positive relationship between

genomic divergence and recombination rates is consistent

with the isolation model of speciation and also with patterns

observed in stonechats (Van Doren et al. 2017).

Multiple Lines of Evidence for an Isolation with Secondary
Contact Speciation Model

In songbirds, speciation genomics has focused on speciation

with gene flow across many genera: Ficedula (Burri et al.

2015), Corvus (Poelstra et al. 2014), Phylloscopus (Irwin et

al. 2016; Lundberg et al. 2017), Catharus (Delmore et al.

2015), Saxicola (Van Doren et al. 2017), Vermivora (Toews

et al. 2016), and Sylvia (Delmore et al. 2018). In all cases,

there is no clear relationship between chromosome size and

genetic differentiation, and only �3% of the variation in ge-

netic differentiation (FST) is shared across species, whereas

�26% of variation in genomic divergence (DXY) is shared

across taxa (Delmore et al. 2018). These patterns suggest

the majority of genomic differentiation and divergence is

shaped by lineage-specific evolutionary forces during specia-

tion with gene flow, but also that some patterns are driven by

shared selective pressures across taxa.

In contrast to speciation with gene flow, here we showed

that without the homogenizing effects of gene flow between

sister lineages during evolutionary divergence, a large propor-

tion of the variation in genomic differentiation and divergence

is shaped by recombination rate variation and genomic archi-

tecture. Several lines of evidence support a model of isolation

with recent secondary contact between C. americana lineages

versus a speciation with gene flow model. First, site-frequency

spectrum (SFS)-based simulations strongly support the isola-

tion with secondary contact model over a speciation with

gene flow model (supplementary figs. S4 and S5,

Supplementary Material online). Second, the sky island con-

tact zone populations do not show shared patterns of intro-

gression (fig. 6), as would be expected if gene flow were

ongoing during the speciation process, rather than sporadic

and low frequency during secondary contact. Lastly, during

lineage divergence without gene flow, genomic regions with

relatively low recombination rates should accumulate fixed

differences faster than genomic regions with high recombi-

nation rates. In agreement with this expectation, we find in-

creased proportions of fixed differences—both SNPs and

indels—on larger chromosomes relative to smaller chromo-

somes (fig. 5 and supplementary fig. S3, Supplementary

Material online). The accumulation of fixed differences will

remove shared standing ancestral variation between lineages

and reduce within lineage diversity; as such, regions accumu-

lating more fixed differences (e.g., larger chromosomes) will

increase between-lineage values of both genetic

differentiation and genetic divergence in the absence of

gene flow, leading to a positive correlation between genomic

differentiation and divergence (figs. 3 and 4A; supplementary

table S3, Supplementary Material online). Notably, the posi-

tive correlation between DXY and FST only exists for the largest

chromosomes (fig. 4B), suggesting smaller chromosomes are

relatively more susceptible to a combination of background

selection and gene flow. In contrast, under a speciation model

with gene flow, we may expect differentiation and diver-

gence to not correlate with one another or to have a negative

association, especially when selection—direct or indirect—is

involved (Ellegren et al. 2012; Ravinet et al. 2017; Stankowski

et al. 2019).

Heterogeneous Genomic Landscape of Neutrality and
Selection

In the absence of gene flow, we would expect differentiation

and divergence between lineages to occur largely due to

lineage-specific selection, background selection, and genetic

drift. This is in contrast to speciation with gene flow, where

we expect to find the signal of divergent selection or selection

against hybridization in contact zones. Here, in both lineages

we found a majority of the genome under the influence of

direct or background selection (fig. 7). Both lineages showed

about 13–14% of the genome under direct selection (signa-

tures of either soft or hard selective sweeps; fig. 7). In

Drosophila, a study using the diploS/HIC method classified

25–30% of the genome with recent signatures of either

hard or soft selective sweeps (Adrion et al. 2020). Only

�3% of the C. americana genome showed shared signals

of direct selection in both lineages (fig. 7). Even without

shared signatures of selection in both lineages, most of the

predicted direct selection was on standing variation (i.e., soft

sweeps). As such, if this selection was polygenic, it has been

argued that selection on standing variation could impact

much of the genome and cause correlations of genetic differ-

entiation and genomic architecture (Rockman 2012;

Stankowski et al. 2019). We also found between 37% and

58% of the C. americana genome under the influence of

background selection (fig. 7). Similarly, a recent study using

diploS/HIC in chimpanzees and bonobos (genus: Pan) found

60–85% of the genome linked to soft selection (Brand et al.

2021). One consideration with our selection results is that our

per lineage sample sizes are somewhat low, but also in the

same range of haploid genomes as a previous study using

diploS/HIC (Brand et al. 2021). The relatively small sample

sizes could reduce the effectiveness in confidently classifying

regions, particularly differentiating between neutral regions

and regions linked with weak soft selection.

Because we found variation in population genomic sum-

mary statistics related to chromosome size, we measured the

proportion of windows classified as neutrally evolving in each

chromosome. We found a marginally significant positive
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relationship between chromosome size and proportion of

windows classified neutral (fig. 7; northern r¼ 0.419, south-

ern r¼ 0.363). As such, at the chromosomal scale, the pro-

portion of the chromosome under the impacts of soft sweeps

or linked to soft sweeps has a negative relationship with ge-

netic differentiation and a positive relationship with both gene

density and recombination rates (supplementary fig. S9,

Supplementary Material online). Clearly, all of the chromo-

somes have been impacted by a combination of lineage-

specific soft selection (direct selection), indirect selection due

to linkage with regions under selection, and genetic drift of

neutral variation. However, our data indicate that smaller

chromosomes tend to exhibit more signals of selection than

larger chromosomes (fig. 7). In general, we may expect

greater impacts of linked selection in genomic regions with

high genic density as well as longer stretches of linked selec-

tion in regions with low recombination rates (Nachman and

Payseur 2012; Haenel et al. 2018). The positive correlation

between gene density and recombination rate in the

Certhia genome (supplementary table S3, Supplementary

Material online) complicates any simple pattern of linked se-

lection across the genome (fig. 7).

Interestingly, larger chromosomes evolving more neutrally

have a positive relationship between genetic differentiation

(FST) and genetic divergence (DXY; fig. 4B). The positive corre-

lation between FST and DXY is consistent with both isolation

(e.g., resistance to gene flow) and lineage sorting and fixation

of ancestral polymorphisms (Guerrero and Hahn 2017; Han et

al. 2017). These results suggest that the combined effects of

selection and drift on larger chromosomes have greatly re-

duced their diversity—especially ancestral diversity—and the

continued lack of gene flow on these chromosomes leads to

high values of both FST and DXY.

In contrast, the smallest chromosomes are relatively more

under the effects of continued indirect selection (fig. 7) and

exhibit a negative correlation between genetic divergence

and genetic differentiation (fig. 4B). The negative correlation

between DXY and FST is consistent with long-term linked se-

lection acting prior to and during speciation (Nachman and

Payseur 2012; Vijay et al. 2017). Additionally, the varying

relationships between DXY and other summary statistics

across differently sized chromosomes (fig. 4B) are consistent

with simulations showing that DXY is negatively correlated

with the intensity of background selection (Phung et al.

2016; Matthey-Doret and Whitlock 2019). Overall, the geno-

mic architecture and variable recombination rates between

large and small chromosomes have driven a highly heteroge-

neous landscape of lineage divergence via both selection and

neutrality in the Brown Creeper. This is generally consistent

with the idea that at moderate to late stages in speciation, the

genomic landscape of differentiation will largely be shaped by

regional variation in recombination rates interacting through

time with linked selection (Roesti et al. 2013; Burri 2017).

Three Putative Inversions Exhibit Reduced Recombination
and Diversity

We identified three genomic regions greater than 1 Mbp that

exhibited the characteristics of an inversion structural variant

(fig. 8): 1) high LD, 2) very low inferred recombination rates, 3)

reduced heterozygosity, and 4) near 100% heterozygosity in

individuals we inferred to be heterozygous for the putative

inversions. Notably, these regions showed strong signatures

of gene flow in introgression tests (fig. 6). Given the moderate

coverage, short-read nature of the data we collected for this

study, it is difficult to infer direct breakpoints of putative

inversions or definitively claim these are true structural var-

iants. Regardless, based on the genomic signatures in these

regions, we hypothesize these regions truly are inversions (fig.

8). In passerine birds, large inversions are common between

species, present but less common within species, and are as-

sociated with reproductive isolation (Hooper and Price 2017;

Hooper et al. 2019).

Two alternative scenarios could lead to the patterns iden-

tified in the putative inversions: 1) introgression of the inver-

sions resulting from gene flow in secondary contact, or 2)

segregating ancestral polymorphism that gives the signal of

introgression due to heterozygous individuals exhibiting the

signature of an F1 hybrid in these regions that strongly differs

from the rest of those individuals’ genomic background. We

believe the latter scenario of a segregating ancestral polymor-

phism to be more plausible; the pattern is consistent with

simulations of an inversion with divergent selection across

an environmental gradient (Faria et al. 2019). In this context,

we would expect the inversion to be quickly fixed away from

the environmental gradient, with only populations within or

adjacent to the environmental transition to exhibit inversion

polymorphism (Faria et al. 2019). The C. americana contact

zone occurs in southern Arizona, USA, in the environmental

transition between temperate and subtropical forests (Wade

et al. 2003); C. americana inhabits pine, fir, and spruce forests

in the Rocky Mountains (northern lineage) that transition to

the mixed pine-oak woodlands of the Sierra Madre mountain

ranges in Mexico (southern lineage). This environmental tran-

sition between forest types coincides with biogeographic

transition zones in both mammal and plant communities be-

tween the Rocky Mountains and the Sierra Madres (Lomolino

and Davis 1997; Wade et al. 2003; Lomolino et al. 2006).

Notably, 16 genomic windows showed evidence of hard

selective sweeps in both lineages (fig. 7), with all but one of

these windows associated with the putative inversions. These

tests help support the hypothesis that these regions are asso-

ciated with divergent selection, but are also confounded be-

cause there is a potential bias in neutral inversions or low

recombination regions to identify false positives indicative of

natural selection (Lotterhos 2019). To definitively confirm that

these genomic regions are putative inversions under the

effects of divergent selection, we would need to: 1) confirm

Manthey et al. GBE

12 Genome Biol. Evol. 13(8) doi:10.1093/gbe/evab120 Advance Access publication 27 May 2021

https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evab120#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evab120#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evab120#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evab120#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evab120#supplementary-data


these regions are inversions and 2) sample a transect north to

south across the contact zone region to identify whether the

polymorphisms have strong clinal patterns associated with the

environmental gradient.

Conclusions

We investigated the genomic signature of speciation when

lineages diverged largely in allopatry. We showed that with-

out the homogenizing effects of gene flow between sister

lineages during divergence, a large proportion of the variation

in genetic diversity, differentiation, and divergence is shaped

by genomic variation in gene density and recombination rates.

Variation of gene density and recombination rates on differ-

ently sized chromosomes leads to chromosome-size associa-

tions with genetic variation. Comparative genomic studies in

additional taxa that speciated allopatrically would provide

context as to shared speciation patterns when speciation

largely lacks gene flow.

Materials and Methods

Genome Assembly

We used two C. americana individuals from New Mexico for

genome assembly (supplementary table S1, Supplementary

Material online), with one individual used for 10x

Chromium sequencing and the other for PacBio and Hi-C

sequencing because of limitations on tissue sampling from

this small songbird.

We obtained 10x Chromium library sequencing (�51�
raw coverage following quality control) using services from

HudsonAlpha Institute for Biotechnology (Huntsville, AL).

They performed high-molecular weight DNA isolation, quality

control, 10x Chromium library preparation, and shotgun se-

quencing on one lane of an Illumina HiSeqX.

We used services from RTL Genomics (Lubbock, TX) to

obtain long-read sequencing data. They performed high-

molecular weight DNA isolation using Qiagen (Hilden,

Germany) high-molecular weight DNA extraction kits,

PacBio SMRTbell library preparation, size selection using a

Blue Pippin (Sage Science), and sequencing on four Pacific

Biosciences Sequel SMRTcells 1M v2 with Sequencing 2.1

reagents, resulting in �29� coverage.

To obtain long-range contact information of genome

structure, we performed Hi-C sequencing (Dudchenko et al.

2017). We used the Phase Genomics Proximo (Seattle, WA)

Hi-C Animal Kit and the manufacturer protocol to create a Hi-

C library suitable for sequencing on an Illumina sequencer.

We then sequenced the library on a partial Illumina

NovaSeq6000 S1 flow cell lane at the Texas Tech University

Center for Biotechnology and Genomics. We obtained

>1,000� physical distance coverage of the Hi-C data after

deduplication.

We assembled the C. americana genome in six stages. First,

we used the supernova assembler v2.0.1 (10� Genomics,

Pleasanton, CA) to create a de novo assembly of the 10x

Chromium sequencing reads. Second, we used Canu v1.7.1

(Koren et al. 2017) to de novo assemble the Pacific

Biosciences long sequencing reads. Third, we used LINKS

v1.8.6 (Warren et al. 2015) to merge the 10x Chromium

and long-read assemblies using the strategy of Warren et al.

(2015) for rescaffolding a spruce (Picea glauca) genome. Here,

we performed 15 iterations of LINKS using various settings.

Fourth, we used the long read Pacific Biosciences data to

further scaffold the assemblies using SSPACE LongRead v1-

1 (Boetzer and Pirovano 2014). Fifth, we used LR_Gapcloser

(Xu et al. 2019) with the long-read data and the de novo

assembly to fill assembly gaps. Lastly, we used the Hi-C se-

quence data to further scaffold the de novo assembly and

correct mis-assemblies using the 3D-DNA pipeline (Durand

et al. 2016; Dudchenko et al. 2017). All commands and inputs

during the various stages of assembly are documented on

GitHub (github.com/jdmanthey/certhia_genomes1). The final

assembly had an N50 of six scaffolds with L50 of 64.36 Mbp,

with a total number of scaffolds¼ 8,651 (supplementary ta-

ble S4, Supplementary Material online; contig N50¼ 2,091,

contig L50¼ 143.07 kbp).

Genome Annotation

To annotate TEs and repetitive elements in the C. americana

genome, we used a multistep process to identify de novo

repeats and overrepresented sequences, manually curate re-

petitive elements, and mask the genome with these elements

to create a TE and repetitive element summary file. First, we

used RepeatModeler v1.0.11 (Smit and Hubley 2008) to iden-

tify repeats based on homology, structure, and repetitiveness

in the de novo assembly. RepeatModeler utilizes multiple pro-

grams in its pipeline: RECON (Bao and Eddy 2002),

RepeatScout (Price et al. 2005), and Tandem Repeats Finder

(Benson 1999). We refined the RepeatModeler output by fil-

tering matches to closely related sequences in the RepBase

vertebrate database v. 24.03 (Jurka et al. 2005) and creating

consensus sequences of novel repetitive elements.

First, we removed any RepeatModeler output sequences

that were �98% identical to RepBase sequences as any

matches in the de novo assembly would be of sufficient sim-

ilarity to mask from the RepBase sequences. Next, we used

BLAST and bedtools (Quinlan and Hall 2010) to extract puta-

tive matches to novel repeats from the de novo assembly. We

used these extracted sequences to create consensus sequen-

ces for novel repetitive elements using the following steps: 1)

MAFFT(Katoh and Standley 2013) alignment using Geneious

(BioMatters Ltd), 2) 50% majority consensus sequences in

Geneious, 3) trimming any ambiguous nucleotides on the

ends of newly created consensus sequences. For any incom-

plete novel repetitive elements, where the ends of the
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elements were not recovered in the new consensus sequen-

ces, we repeated the prior procedure to extract sequences

from the reference genome with 1,000 bp flanks on each

side of each BLAST match. We then repeated alignment

and consensus sequence creation from these extracted

sequences. This process was repeated up to three times as

necessary.

We BLASTed all novel repeats against the RepBase data-

base to assess any similarity via homology of our new sequen-

ces to previously characterized elements. Any similarity with

previously characterized elements was used for naming pur-

poses. Lastly, using the RepBase vertebrate database and all

novel repeat elements, we used RepeatMasker v4.08 (Smit et

al. 2015) to mask and summarize repetitive and TEs in the de

novo C. americana genome.

We used the MAKER v2.31.10 pipeline (Cantarel et al.

2008) to annotate putative genes in the C. americana ge-

nome. First, we used MAKER to predict genes using proteins

from other Passeriformes species: Parus major

(GCF_001522545.3_Parus_major1.1_protein.faa), Ficedula

albicolis (GCF_000247815.1_FicAlb1.5_protein.faa), and T.

guttata (GCF_000151805.1_Taeniopygia_guttata-3.2.4_pro-

tein.faa) (Warren et al. 2010; Ellegren et al. 2012; Laine et al.

2016). After this first round of MAKER, we used the initial

MAKER predictions to train SNAP (Korf 2004) and Augustus

(Stanke and Waack 2003). Finally, using the SNAP- and

Augustus-trained models, we ran a second iteration of

MAKER to predict gene models in the C. americana genome.

We then used BUSCO v3 (Sim~ao et al. 2015) with the tetra-

pod single orthologous gene set (set: odb9) to assess genome

assembly completeness.

Creeper-Specific Mutation Rate

We extracted the putative C. americana coding sequence

(CDS) from the de novo assembly using the MAKER output

and bedtools. We downloaded the CDS sequences for Parus

major, Fidecula albicola, and T. guttata (same versions as pro-

teins) for homology-based comparisons. We performed a re-

ciprocal BLAST of all species versus C. americana using BlastN

(Camacho et al. 2009) to identify putative homologues across

data sets.

To put the evolution of all the CDS regions in a timed

evolutionary context, we downloaded a Passeriformes

family-scale phylogenetic tree (Oliveros et al. 2019) and

pruned the tree to the four representative families covered

by our CDS downloads and novel assembly using the R pack-

age ape (Paradis et al. 2004): Certhiidae, Estrildidae,

Muscicapidae, and Paridae.

We used T-Coffee (Notredame et al. 2000) to align the

putative homologues between the four passerine species. T-

Coffee translates nucleotide sequences, aligns them using

several alignment algorithms, takes the averaged best align-

ment of all alignments, and back translates the protein

alignments to provide a nucleotide alignment for each

gene. Prior to back-translating, we removed any gaps in the

protein alignments using trimAl (Capella-Guti�errez et al.

2009).

With the alignments for all genes, we tested for selection

using the gene-wide and branch-specific tests for selection

utilized in CODEML (Yang 1997). Any alignments with

gene-wide or branch-specific evidence for selection were re-

moved for mutation-rate analyses, after correcting for multi-

ple tests using the Benjamini and Hochberg (1995) method to

control false discovery rate. From each gene alignment, we

used the R packages rphast, Biostrings, and seqinr (Charif and

Lobry 2007; Hubisz et al. 2011; Pagès et al. 2017) to extract 4-

fold degenerate sites from each alignment. We concatenated

the 4-fold degenerate sites (N� 1.4 million) and used

jModelTest (Darriba et al. 2012) to determine an appropriate

model of sequence evolution. Lastly, we used the GTR þ I

model of sequence evolution in PhyML and a user-specified

tree (from Oliveros et al. [2019]) to estimate branch lengths

based on the 4-fold degenerate sites. Lastly, we used the

Certhia-specific branch length of this tree along with diver-

gence time estimates (also from Oliveros et al. [2019]) to es-

timate a mean and 95% HPD distribution of potential Certhia-

lineage-specific mutation rates (2.506� 10�9 substitutions/

site/year; 95% HPD¼ 2.243� 10�9 to 2.839� 10�9). This

rate is generally in line with other Passeriformes species

such as Taeniopygia guttatta (2.21� 10�9 substitutions/site/

year) (Nam et al. 2010), but slower than the relatively fast

mutation rate of Zosterops lateralis (3.16� 10�9 substitu-

tions/site/year) (Cornetti et al. 2015).

Population Genomic Resequencing and Initial Data
Processing and Filtering

For population genomic resequencing, we used 24 C. amer-

icana and one C. familiaris (outgroup), including C. americana

from regions far from the putative contact zones as well as

neighboring populations (fig. 2 and supplementary table S1,

Supplementary Material online). We extracted genomic DNA

using QIAGEN (Hilden, Germany) DNeasy blood and tissue kits

following manufacturer guidelines. From genomic extrac-

tions, DNA was used to create Illumina sequencing libraries

and sequenced on either an Illumina HiSeq3500 or

NovaSeq6000 at the Oklahoma Medical Research

Foundation (OMRF) Clinical Genomics Center. We aimed to

sequence each individual at 10–25� genomic coverage, but

several individuals failed to reach this expectation (supplemen-

tary fig. S1, Supplementary Material online).

We used bbduk, part of the bbmap package (Bushnell

2014), to trim adapters and quality filter raw sequencing

data. We used the BWA-MEM implementation of the

Burrows–Wheeler algorithm in BWA (Li and Durbin 2009)

to align filtered reads to the de novo C. americana genome.

We used samtools v1.4.1 (Li et al. 2009) to convert the BWA
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output SAM file to BAM format, and lastly cleaned, sorted,

added read groups to, and removed duplicates from each

BAM file using the Genome Analysis Toolkit (GATK)

v4.1.0.0 (McKenna et al. 2010). With the bam alignment files,

we estimated depth of sequencing using the samtools

“depth” command. Lastly, we used GATK’s

HaplotypeCaller to call initial genotypes for each individual

and then used the GATK function GenotypeGVCFs to group

genotype all individuals together, for both variant and invari-

ant sites. We used VCFtools v0.1.14 (Danecek et al. 2011) to

initially filter all variant and invariant site calls using the fol-

lowing restrictions: 1) minimum site quality of 20, 2) minimum

genotype quality of 20, 3) minimum depth of coverage of 5,

and 4) maximum mean depth of coverage of 50. Some anal-

yses used additional restrictions on data quality and are de-

tailed in the appropriate sections of the methods

(supplementary table S2, Supplementary Material online).

Population Genomics

Recombination and LD

We used the LDhat software (McVean and Auton 2007) to

estimate effective rates of recombination across the C. amer-

icana genome for both the northern and southern Certhia

lineages. For use in LDhat, we filtered variants to only include

biallelic SNPs with a maximum 35% missing proportion of

individuals genotyped for a SNP to be included. We created

a modified likelihood lookup table from the LDhat precom-

puted tables using a sample size of 12 (sampling for each

lineage) and a population mutation rate parameter estimate

of 0.001, that is, the closest value to the empirical Certhia

value. We used the LDhat “interval” module to implement

a Bayesian MCMC sampling algorithm to estimate effective

recombination rates across each scaffold. We ran this module

for five million iterations sampling once per 5,000. We used

the LDhat module “stat” to summarize the output, discarding

the first 20% of samples as burn-in, and summarized the

LDhat output in 100 kbp windows for each of the two

Certhia lineages. A recent simulation study investigating sam-

ple size effects on LDhat recombination rate estimates

showed reliable recombination landscape inference with as

few as ten haploid genomes (Stukenbrock and Dutheil 2018),

suggesting our sample sizes are sufficient for reasonable re-

combination rate estimation.

We estimated LD in the R package “genetics” (Warnes et

al. 2019). Here, LD was calculated as the squared correlation

coefficient between markers. We calculated pairwise LD for

SNPs on chromosomes �10 Mbp, with a MAF �0.2, and

thinned to at least 50 kbp separation and a maximum of

1,000 SNPs per chromosome.

Diversity, Divergence, and Differentiation

For all estimates of genetic diversity and differentiation we

only used biallelic variants with a maximum 40% missing

individuals for a variant to be included. We used custom R

scripts to measure genetic diversity (observed heterozygosity)

within lineages and both relative and absolute genetic differ-

entiation between lineages, FST and DXY, respectively. We

used the Reich et al. (2009) estimator of FST because this

has been shown to be an unbiased FST estimator when using

low sample sizes and high numbers of genetic markers

(Willing et al. 2012). For estimates of HO, FST, and DXY, we

only used SNPs. We additionally estimated pairwise estimates

of FST and DXY between all sampling locations to obtain ge-

nomic mean values (supplementary table S5, Supplementary

Material online). Because of the small sample sizes per site, we

refrained from using window-based FST and DXY estimates in

these pairwise comparisons. Additionally, using both SNPs

and indels, we estimated the number of fixed differences

between lineages, and summarized these metrics in 100

kbp windows.

Because some samples had lower relative sequencing cov-

erage, we investigated the relationship between sequencing

coverage and genomic heterozygosity per individual. Overall,

we found no relationship between the two (supplementary

fig. S10, Supplementary Material online), suggesting our var-

iant filtering helps preclude diversity estimate biases from sites

with low coverage sequencing.

To assess whether a MAF filter impacted estimates of FST

(Linck and Battey 2019), we estimated FST in windows with a

MAF¼ 0.05 and compared estimates with the full data set

lacking a MAF filter. Here, FST results were largely unaffected

by the MAF filter, with a strong positive correlation between

data sets (r¼ 0.999, slope¼ 1.062; supplementary fig. S11,

Supplementary Material online).

To look at patterns of segregating sites in allopatric versus

sky island populations, we first found SNPs that were fixed

differences between the allopatric Utah and Mexico popula-

tions. Using these SNPs as putative segregating sites between

lineages, we calculated the proportion of northern and south-

ern alleles at these SNPs for each of the sky island populations.

Genomic Window Correlations

We used the R package Hmisc (Harrell and Dupont 2020) to

estimate sliding window correlations between genic content,

TE content, recombination rates, genetic diversity, and ge-

netic divergence and differentiation. Here, we used three

data sets to estimate correlations: 1) all windows, 2) windows

thinned to 5% (one every 20), and 3) windows thinned to 2%

(one every 50). We thinned windows to estimate correlations

to identify whether correlations persist when sampling num-

ber decreases and the effects of linkage are reduced. We

estimated correlation coefficients using both Spearman and

Pearson correlation coefficients, and assess significance with
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an a� 0.05 following a Bonferroni correction (Bonferroni

1936). All correlations are presented in supplementary table

S3, Supplementary Material online.

Because we identified correlations between population ge-

nomic statistics and chromosomal characteristics at both the

chromosomal (fig. 3) and sliding windows (fig. 4A) levels, we

wanted to parse out if there were any chromosomal effects

not accounted for by the gene content, TE content, and local

recombination rate in sliding windows. Here, we used partial

regression to extract the residuals when genomic differentia-

tion, divergence, or diversity are the response variables esti-

mated by the explanatory variables gene content, TE content,

and recombination rate (e.g., the R syntax: “resid(lm(fst �
genes þ repeats þ rho))”). Then we calculated the mean

residual per chromosome (mean across all windows) and

regressed that with log chromosome size.

Demography

We used fastSimcoal2 v2.6.0.3 (Excoffier et al. 2013) to assess

the fit of multiple demographic scenarios to our data set: 1)

pure isolation, 2) isolation with migration, 3) speciation with

gene flow, and 4) secondary contact (supplementary fig. S4,

Supplementary Material online). As input, fastSimcoal2 uses a

two-population SFS file, which we generated using the pro-

gram easysfs (github.com/isaacovercast/easySFS). Here, we

used sites genotyped in all individuals (i.e., no missing data;

supplementary table S2, Supplementary Material online). We

implemented 100 replicates of fastSimcoal2 to fit the SFS to

each demographic scenario. For each estimated parameter,

we used wide search ranges with uniform or log-uniform prior

distributions (available at: https://github.com/jdmanthey/cer-

thia_genomes1/tree/master/16_revisions/07_fastsimcoal). For

each replicate, we used 200,000 coalescent simulations and

20 expectation–maximization cycles. For each demographic

model, we extracted the estimated parameters from the rep-

licate that maximized the likelihood. We then ran

fastSimcoal2 100 times with the parameters that maximize

the likelihood for each model to obtain simulated SFS and

associated likelihood distributions for each scenario, thereby

informing us about variance in likelihood estimations for each

model in fastSimcoal2 (Meier et al. 2017). For the best model

(isolation with secondary contact), the estimated likelihood

from the empirical SFS (�951,722) was both: 1) slightly higher

than the range of best likelihoods from the simulated SFS runs

(range¼�951,977 to �951,738; supplementary fig. S5,

Supplementary Material online) and 2) close to the estimated

maximum observable likelihood given the empirical SFS

(�942,330). We used the approach of Meier et al. (2017)

to estimates confidence intervals for the best fitting model

with a nonparametric block-bootstrap approach. Here, we

created 100 data sets by sampling (with replacement) 500

SNP blocks, converting these data sets to the SFS, and running

20 replicates of fastSimcoal2 for each of the 100 data sets

using the same settings as with the original data set. We took

the parameter estimates from the best model for each of the

100 data sets to estimate confidence intervals for each pa-

rameter estimate. We included our empirical estimate of mu-

tation rate in fastSimcoal2 to allow us to estimate timing in

absolute numbers. Because of limited information about

Certhia generation times, we used two possible generation

times: 1) double and 2) triple the age of sexual maturity (i.e., 2

or 3 years with sexual maturity at 1 year).

We also used the program smcþþ v1.15.2 (Terhorst et al.

2017) to estimate effective population size changes through

time for each of the Certhia lineages, including the lineage

splitting time. Because the best demographic model identified

with fastSimcoal2 included gene flow after secondary con-

tact, the smcþþ model will be somewhat biased because it

does not account for gene flow between lineages. However,

our main goal with using smcþþ was to obtain potential

fluctuations in effective population sizes through time that

could be used as a starting point to account for demographic

histories in diploS/HIC (Kern and Schrider 2018) tests for se-

lection. smcþþ uses information about the spatial arrange-

ment of unphased SNPs along chromosomes to infer variation

in NE through time, utilizing information from variants’ SFS

and LD patterns. We limited analyses to individuals with

greater than 10�mean genomic coverage to reduce inclusion

of individuals with large portions of the genome ungenotyped

(northern lineage N¼ 12 individuals; southern lineage N¼ 7

individuals).

Introgression

We used D and fd statistics to identify signatures of introgres-

sion between the two Certhia lineages (Green et al. 2010;

Durand et al. 2011; Martin et al. 2015). Both the D and fd
test statistics use “ABBA–BABA” relationships between three

ingroup populations plus an outgroup with the assumed evo-

lutionary relationship: (((P1, P2), P3), O). In the ABBA–BABA

tests, the “A” and “B” represent the ancestral and derived

alleles, respectively. With neutral lineage sorting, we would

expect equal frequencies of ABBA and BABA patterns among

taxa, with significant deviations indicative of introgression.

Here, we tested introgression into any of the Arizona sky is-

land populations from parental populations using six phylo-

genetic topologies (fig. 6). We calculated the introgression

statistics for each of the comparisons in 100 kbp sliding win-

dows, limited to windows with �500 SNPs. We decided to

calculate both of these introgression statistics because D has

been shown to have some biases in genomic regions with low

genetic diversity (Martin et al. 2015), for which the fd statistic

is not particularly biased. Indeed, some genomic regions that

indicate introgression with the D statistic do not match trends

with the fd statistic (supplementary fig. S12, Supplementary

Material online) and may have been misinterpreted if only the

D statistic was used.
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Population Genetic Structure

We used a subset of our SNPs that were genotyped in each

individual and were a minimum of 10 kbp apart along scaf-

folds to assess population genetic structure. First, we used the

program STRUCTURE (Pritchard et al. 2000) to determine an-

cestry of each individual to either the northern or southern

lineage. We initially ran STRUCTURE to infer the lambda pa-

rameter while estimating the likelihood of one population

(k¼ 1) (Pritchard et al. 2000). We then used the inferred value

of lambda for subsequent analyses, where we performed ten

replicates of likelihood estimation for two genetic clusters. We

assumed correlated allele frequencies, an admixture model,

and performed analyses for a burn-in of 50,000 steps and a

subsequent 50,000 MCMC iterations. We also estimated ge-

netic structure between the lineages using DAPC (Jombart et

al. 2010), implemented in the adegenet R package (Jombart

and Ahmed 2011). DAPC implements principal components

analysis of all genetic variants followed by discriminant anal-

ysis to determine appropriate genetic clusters of individuals.

We ran the “dapc” function for 100,000 iterations to deter-

mine groupings, chose the appropriate number of genetic

clusters with BIC (supplementary fig. S13, Supplementary

Material online), and visualized results with the “compoplot”

function.

We also assessed whether STRUCTURE results were con-

sistent with different thinning of SNPs. To do this, we used a

subset of our SNPs that were genotyped in each individual

and were a minimum of 50 kbp apart along scaffolds. Results

were consistent between this 50 kbp thinned data set (sup-

plementary fig. S14, Supplementary Material online) and the

10 kbp thinned data set (fig. 2).

Evolutionary Relationships

We inferred population relationships using TreeMix v1.13

(Pickrell and Pritchard 2012). TreeMix uses SNPs to infer a

maximum likelihood population or species tree, and subse-

quently adds migration edges to populations that are more

closely related than can be explained by the bifurcating topol-

ogy alone. We ran TreeMix with biallelic SNPs present in all

individuals, and a minimum of 10 kbp separation between

SNPs to help reduce effects of linkage. We added migration

edges to the phylogeny until they explained less than 0.02%

of the variance in the SNP data (Pickrell and Pritchard 2012).

Lastly, we assessed support for this population tree by per-

forming 100 bootstraps of the analysis, using 200 SNP sam-

pling blocks for bootstraps.

We also estimated “gene trees” for nonoverlapping 50

kbp sliding windows using RAxML v8.2.12 (Stamatakis

2014) with the GTRGAMMA model of sequence evolution.

For a site (i.e., single bp) to be included, we required it to be

genotyped in at least 60% (n¼ 15) of individuals. For a win-

dow to be included, we required: 1) a minimum of 50% of

sites in the alignment (i.e., 25 kbp) and 2) no individuals with

less than 10% (5 kbp) of the alignment genotyped. We used

100 rapid bootstraps to estimate support for each tree and

determine a “best-supported” tree for each window. We

summarized the best-supported phylogenies (n¼ 18,470) us-

ing the sumtrees.py script, part of the DendroPy Python pack-

age (Sukumaran and Holder 2010) (supplementary fig. S15,

Supplementary Material online). Additionally, we used

ASTRAL III v 5.6.3 (Zhang et al. 2018) to calculate a species

tree from all of the sliding windows’ phylogenies (supplemen-

tary fig. S16, Supplementary Material online). For the ASTRAL

analysis, we used the quartet frequencies as a measure of

local support (Sayyari and Mirarab 2016).

Natural Selection

We used the machine-learning program diploS/HIC (Kern and

Schrider 2018) to predict hard and soft selective sweeps and

variation linked to selective sweeps. diploS/HIC uses a deep

convolutional neural network to identify sweeps in sliding

windows along the genome with population genomic data

(Kern and Schrider 2018). First, we performed 2,000 coales-

cent simulations using discoal (Kern and Schrider 2016) to

simulate multiple scenarios for each lineage: hard selective

sweeps, soft selective sweeps, variation linked to those two

categories of selective sweeps, and neutral evolution. We

used 220 kbp windows divided into 11 subwindows. The

simulations were performed using the smcþþ estimated de-

mographic histories.

Demographic and mutation rate uncertainty were incorpo-

rated into the theta prior, allowing the contemporary effective

population size to vary between 1/3 to 3� the smcþþ esti-

mates. We used a truncated exponential prior on recombina-

tion rate per bp that encompassed a majority of values

estimated from our data (fig. 4A): (0.0033, 0.0754). We

used a uniform prior on selection coefficients � (0.00025,

0.025), and conditioned sweep completion occurring be-

tween 10,000 generations ago and the present. We used

uniform priors on adaptive variant initial frequencies for soft

sweeps as � (0, 0.2).

We used these simulations as input for training a super-

vised machine-learning algorithm to differentiate between

neutral evolution, sweeps, and windows linked to selection.

The training incorporated a genome-wide sequence mask to

incorporate the empirical missing data features with the sim-

ulation data. After training, we classified genomic regions for

each of the Certhia lineages using two scales: 20- and 50 kbp

windows.

Investigation of Putative Inversions

We identified three regions of the genome greater than 1

Mbp that showed a strong signature of introgression as

well as reduced recombination rates. We hypothesized that

these may be ancestrally segregating inversions and aimed to

Genomic Signature of Allopatric Speciation GBE

Genome Biol. Evol. 13(8) doi:10.1093/gbe/evab120 Advance Access publication 27 May 2021 17

https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evab120#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evab120#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evab120#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evab120#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evab120#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evab120#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evab120#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evab120#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evab120#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evab120#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evab120#supplementary-data


use multiple lines of evidence to assess this hypothesis. First,

we extracted SNPs from these regions with no missing data to

estimate genetic structure using the program STRUCTURE.

Second, we compared the patterns of recombination rate

and LD in these regions relative to the overall recombination

rates and LD for the chromosomes these regions are located

in. Third, we estimated overall heterozygosity of these regions

relative to the chromosomal background. Lastly, we mea-

sured per individual heterozygosity in the putative inversions

in SNPs segregating between Certhia lineages (MAF �0.3).

Supplementary Material

Supplementary data are available at Genome Biology and

Evolution online.
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