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Abstract
In this paper, we investigate the dynamics of a neuron–glia cell system and the underlying mechanism for the occurrence
of seizures. For our mathematical and numerical investigation of the cell model we will use bifurcation analysis and some
computational methods. It turns out that an increase of the potassium concentration in the reservoir is one trigger for
seizures and is related to a torus bifurcation. In addition, we will study potassium dynamics of the model by considering
a reduced version and we will show how both mechanisms are linked to each other. Moreover, the reduction of the
potassium leak current will also induce seizures. Our study will show that an enhancement of the extracellular potassium
concentration, which influences the Nernst potential of the potassium current, may lead to seizures. Furthermore, we will
show that an external forcing term (e.g. electroshocks as unidirectional rectangular pulses also known as electroconvulsive
therapy) will establish seizures similar to the unforced system with the increased extracellular potassium concentration.
To this end, we describe the unidirectional rectangular pulses as an autonomous system of ordinary differential equations.
These approaches will explain the appearance of seizures in the cellular model. Moreover, seizures, as they are measured
by electroencephalography (EEG), spread on the macro–scale (cm). Therefore, we extend the cell model with a suitable
homogenised monodomain model, propose a set of (numerical) experiment to complement the bifurcation analysis
performed on the single–cell model. Based on these experiments, we introduce a bidomain model for a more realistic
modelling of white and grey matter of the brain. Performing similar (numerical) experiment as for the monodomain model
leads to a suitable comparison of both models. The individual cell model, with its seizures explained in terms of a torus
bifurcation, extends directly to corresponding results in both the monodomain and bidomain models where the neural firing
spreads almost synchronous through the domain as fast traveling waves, for physiologically relevant paramenters.

Keywords Nonlinear dynamics · Bifurcation theory · Neuron–glia cell system · Monodomain and bidomain model ·
Seizure · Electroconvulsive therapy (ECT)

1 Introduction

The aim of this paper is the mathematical and numerical
analysis of a neuron–glia cell system based on the models
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in Barreto and Cressman (2011) and Cressman et al. (2009),
consisting of a single conductance–based neuron together
with intra- and extracellular ion concentration dynamics.
Such conductance–based models are based on an equivalent
circuit representation of a cell membrane. In general,
action potentials (APs) of excitable biological cells such
as neurons and cardiac muscle cells are often modelled as
a system of ordinary differential equations (ODEs) using
a Hodgkin–Huxley (type) formalism Hodgkin and Huxley
(1952). In Cressman et al. (2009) the authors studied
a reduced model to find that the competition between
intrinsic neuronal currents, sodium–potassium pumps, glia
and diffusion can produce very slow and large amplitude
oscillations in ion concentrations similar to what is seen
physiologically in seizures, cf. also Barreto and Cressman
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(2011). Furthermore, the main focus in Cressman et al.
(2009) are the sodium and potassium dynamics of the
considered system. Moreover, as mentioned in Barreto and
Cressman (2011), the effects of extracellular potassium
concentration [K]o accumulation on neuronal excitability
have long been recognised, and deficiencies in [K]o
regulation have been implicated in various types of epilepsy
and spreading depression, e.g. in Somjen et al. (2008a).
More recently, computational studies have begun to clarify
the role of impaired [K]o regulation, cf. Kager et al. (2007)
and Somjen et al. (2008b), as well as other varying ion
concentrations, e.g. in Cressman et al. (2009) and Ullah
et al. (2009). Notice that for instance in Barreto and
Cressman (2011) the authors are simplifying their model
by the consideration of fixed ion concentrations of the
extracellular potassium concentration [K]o and intracellular
sodium concentration [Na]i , while our study is focused
on the dynamics of the full system and we want to avoid
simplifications to derive a general analysis of the considered
model.

Our main focus is threefold. First of all, we will inves-
tigate the potassium dynamics, e.g. the effect of the extra-
cellular potassium concentration [K]o. It is well known that
[K]o has an influence on the occurrence of seizures, cf.
(Fröhlich et al. 2006, 2008; Krishnan and Bazhenov 2011;
Krishnan et al. 2015; Du et al. 2016; González et al. 2019).
Additionally, our analysis of the cell model is not only
focused on an increase of the extracellular potassium con-
centration to gain seizures. We will show that seizures
appear in the neighbourhood of a torus bifurcation, which
entails also with an increase in the potassium concentration
in the reservoir and finally, also in the extracellular potas-
sium concentration. However, we will point out that the
”standard” approach — i.e. the reduction of the dimension
of the ODE system by removing one differential equa-
tion, e.g. for the extracellular potassium concentration and
using the extracellular potassium concentration as bifurca-
tion parameter — may exclude the torus bifurcation from
the bifurcation diagram. The second goal is focused on the
effect of an external stimulus, more specifically unidirec-
tional rectangular pulses (Peterchev et al. 2010). Therefore,
we will model a suitable unidirectional rectangular pulse
and we will derive an externally excited cell model. Finally,
we will use our results from the bifurcation analysis for the
cell model, i.e. the ion current interaction and the effect of
an external stimulus for an extension to the macro–scale
(cm), since seizures spread on the macro–scale (cm). A
more thorough understanding of the interaction of com-
plex cell models (ODEs) with the spatial models (PDEs)
is needed before looking at seizures on a macro–scale
(cm). Summarising, we will derive a suitable cell model
based on the models in Barreto and Cressman (2011) and
Cressman et al. (2009), including unidirectional rectangu-

lar pulses, and we will analyse the model regarding the
appearance of seizures. With these results in mind, we
will derive a monodomain model to extrapolate the cellular
behaviour to the macro–scale, i.e. a model of partial dif-
ferential equations (PDEs) coupled with the ODE system
and investigate whether the model is adequate to investigate
seizures. The coupled ODE–PDE system is solved using
cbcbeat, described in Rognes et al. (2017). Furthermore,
we will extend our study from the monodomain model to a
bidomain model to be able to model a more realistic struc-
ture (of parts) of the brain. The bidomain model is already
extensively used in the cardiac modelling, cf. Sundnes et al.
(2006), and one advantage is that it takes into account the
anisotropy of both the intracellular and extracellular spaces,
which potentially is important for the modelling of the brain.
In addition, it allows us to model the different regions of
the brain, i.e. the grey and white matter. The grey matter
is a major component of the central nervous system, con-
sisting of e.g. neuronal cell bodies and glial cells, while the
white matter contains relatively very few cell bodies. There-
fore, there is a significant difference between cardiac and
neuronal models and additionally, the cardiac spiking has
a lower frequency as the neuronal spiking. The neuronal
spiking is up to 10 times faster than the cardiac one compar-
ing normal action potentials in a single cell. Furthermore,
a neuron may has also long silent periods without spiking,
while the cardiac cell exhibits a continuous/periodic spik-
ing. Moreover, the electrical potential of the heart exhibits
a synchronous behaviour, while the neuronal firing in the
brain is usually not synchronous. Therefore, one can except
different behaviour from models of a heart or a brain. A
further step towards a more realistic modelling of the brain
will be done by introducing a more complex geometry for
the bidomain, which mimics the shape of the grey and white
matter. To what extents the cell model can be extended
to macro–scale models using the monodomain or bido-
main equations and to what extents these equations alters
the behaviour of the cell model has not been adequately
addressed yet and is hence one of the topics of this paper.

The paper is organised as follows: We will start
with brief subsections on the biological background and
the modelling of the considered system of ODEs in
Section 1.1 and Section 1.2. In Section 1.3 we show how to
model an external forcing (electroconvulsive therapy (ECT)
stimuli) as unidirectional rectangular pulses (Peterchev
et al. 2010), where one can model similarly bidirectional
rectangular pulses. Moreover, we will show the influence
of this external stimulus, which might have an effect
on the system. After the introduction, we will go on
with our main investigation in Section 2. For our study
we will use bifurcation theory and numerical bifurcation
analysis, since it provides a strategy for investigating
the behaviour of the considered system of ODEs. In
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general, a bifurcation of a dynamical system is a qualitative
change in its dynamics produced by varying parameters.
A very good introduction into this topic can be found
in Kuznetsov (1998), where the author does not only
explain and discuss the bifurcation theory, he also provides
the numerical background for the numerical bifurcation
analysis, cf. also Shilnikov et al. (1998,2001). Furthermore,
we will derive the suitable bifurcation diagram utilising
MATLAB together with the toolboxes MATCONT and
CL MATCONT (Dhooge et al. 2003, 2008; Govaerts et al.,
2005), which are numerical continuation packages for
the interactive bifurcation analysis of dynamical systems.
For our analysis we use MATLAB R2018a and the
MATCONT version matcont6p11. Here, we want to
highlight that numerical bifurcation analysis is already used
for the investigation of neurons, see e.g. (Izhikevich 2000;
Tsaneva-Atanasova et al. 2005) and (Atherton et al. 2016;
Krupa et al. 2014; Rotstein et al. 2006) to mention only a
few papers. The authors consider in many cases a reduced
subsystem of lower dimension, cf. for a general introduction
(Desroches et al. 2012; Kuehn 2015), which can be
derived by a time scale separation argument, cf. Rubin and
Wechselberger (2007), Rubin and Terman (2004), andWang
and Rubin (2016). These subsystems are easier to analyse
and give an insight into the behaviour of the system during
slow and fast epochs. A similar approach is also used for
the investigations of neuron and glia models, cf. Hübel
et al. (2016) and Østby et al. (2009). But this approach
does not necessarily explain the complete behaviour of the
system, cf. Erhardt (2019). However, our aim is to study the
full system and its behaviour using numerical bifurcation
analysis as in Erhardt (2018) and Tsaneva-Atanasova et al.
(2010). Therefore, we will study on the one hand the
full system, and on the other hand we will investigate
the potassium dynamics considering a reduced system to
be able to explain the mechanism behind seizures. In
Section 3, we will extend our results from the cellular level
to the macro–scale (cm). From electroencephalography it
is clear that a seizure involves the interaction between
cells on a macro–scale. To this end, we will consider a
homogenised monodomain model extending the single cell
model with a PDE describing the electrical conductance
in the brain on the macro–scale. We will perform a set
of numerical experiments to establish how the time–scales
from the bifurcation analysis are affected by this spatial
coupling. The key part of our experiments is the need for
an unstable spatial region in which seizures are initiated
and the time–scales involved. This instability can be for
instance a region of high bath Kbath concentration, or a
spatially focused external electrical stimulus. Furthermore,
we will extend our study from the monodomain model
to the bidomain model to derive a more realistic macro–
scale model, cf. Section 3.2. Finally, in Section 4 we will

discuss our results. The main novelty of our work is that we
study a neuron–glia cell system without a reduction of the
dimension of the system, except if we study the potassium
dynamics using [K]o as bifurcation parameter to compare
the different bifurcation diagrams to show that this approach
does not explain all details. Moreover, we do not use
any further simplifications and we additionally extend the
system to an external forced system. A last novelty is that we
develop, based on our cellular model in combination with
our analysis, two macro–scale models describing seizures
on the tissue level which enable the prediction of time–
scales and propagation velocities of seizure spreading on the
macro–scale.

1.1 Mathematical models of the electrophysiology

In this section we give a brief introduction to the biological
background, the mathematical modelling and the treatment
of an external stimulus. Basically, the intrinsic excitability
of neuronal networks depends on the reversal potentials
for various ion species as it is mentioned in Cressman
et al. (2009). The reversal potentials in turn depend on the
intra- and extracellular concentrations of the corresponding
ions. During neuronal activity, the extracellular potassium
concentration [K]o and intracellular sodium concentration
[Na]i increase. Glia help to reestablish the normal
ion concentrations. Consequently, neuronal excitability is
transiently modulated in a competing fashion: the local
increase in [K]o raises the potassium reversal potential,
increasing excitability, while the increase in [Na]i leads to
a lower sodium reversal potential and thus less ability to
drive sodium into the cell. The relatively small extracellular
space and weak sodium conductances at normal resting
potential can cause the transient changes in [K]o to have
a greater effect over neuronal behaviour than the changes
in [Na]i , and the overall increase in excitability can cause
spontaneous neuronal activity. For more details we refer to
Cressman et al. (2009). The full model in Cressman et al.
(2009) consists of one single–compartment conductance–
based neuron containing a sodium, potassium, calcium–
gated potassium, and leak currents, augmented with
dynamic variables representing the intracellular sodium and
extracellular potassium concentrations. This mechanism can
be mathematically modelled as described in Section 1.2.
Such a conductance–based model is based on an equivalent
circuit representation of a cell membrane and represents
the action potential of a neuron, which is a temporary,
characteristic variance of the membrane potential from its
resting potential. The molecular mechanism of APs is based
on the interaction of voltage–sensitive ion channels. The
reason for the formation and special properties of APs
is established in the properties of different groups of ion
channels in the plasma membrane. The electrophysiological
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behaviour of an excitable biological cell can be described
with the following differential equation/system

Cm

dV

dt
= −Iion + Istimulus,

where V denotes the voltage (in mV ) and t the time
(in ms), Cm is the membrane capacitance, and Iion is
the sum of all the membrane currents and the external
stimulus respectively. The different ion currents may depend
on gating variables, which are important for the opening
(activation) and closing (inactivation) of the different ion
currents, see Section 1.2 for more details.

Furthermore, the aim of this manuscript is the extension
of our results on the cellular level to the macro–scale level.
To achieve this goal we will also study the corresponding
monodomain model, i.e.

Cm

∂V

∂t
= −Iion + λ

1 + λ

1

χ
∇ · (Mi∇V ) ,

where Mi denotes the intracellular conductivity tensor, λ

the extra- to intracellular conductivity ratio and χ the
membrane surface area per unit volume. On the macro–
scale (cm) we assume that all neurons behaves similar
and are connected through a diffusion process involving
the transmembrane potential, thus we are considering
a homogenised model. Notice that without the spatial
dependency the monodomain model again is reduced to the
ODE model describing the cellular mechanism. For more
details, see e.g. Keener and Sneyd (1998) and Sundnes
et al. (2006) and Section 3. With this model it is interesting
to quantify the velocity and the extent to which a seizure
spreads from an unstable region into a stable region.
Moreover, the model can also decide whether the time–
scales involved in the seizures at the cellular level is
affected by the neighbouring cells under physiologically
reasonable conditions. Macro–scale simulations, even based
on patient–specific geometries have been performed, but to
the authors’ knowledge the only attempt at studying seizures
is through modelling the brain as a passive conductor,
linking the magnitude of the electrical potential to the
initiation of seizures, see Lee et al. (2016). In Dougherty
et al. (2014) the authors used the bidomain model – typically
used in cardiac modelling, see Sundnes et al. (2006) – to
study neural activation, but without looking at seizures.
Finally, we will extend our study also to the following
bidomain model to be able to capture more features during

a seizure on macro–scale:

Cm

∂V

∂t
= −Iion + 1

χ
(∇ · (Mi∇V ) + ∇ · (Mi∇Ue))

with

∇ · (MiV ) + ∇((Mi + Me)∇Ue) = 0,

where Mi and Me denote the intracellular and extracellular
conductivity tensor, respectively, while Ue is the extracel-
lular potential. At this stage, one can see that the bidomain
model takes into account the anisotropy of both the intra-
cellular and extracellular spaces. Furthermore, both models
are equipped with suitable Neumann boundary conditions,
which also reflect the different anisotropies, cf. Section 3.

1.2 Themathematical model

Here, we state a mathematical model based on the models
in Barreto and Cressman (2011); Cressman et al. (2009,
2011), which we will use for our investigations. As already
mentioned the system includes the sodium current

INa =
(
GNaL + GNam

3h
)

(V − ENa),

the chloride current ICl = GClL(V −ECl) and the potassium
current

IK =
(

GKn4 + GAHP
[Ca]i

1 + [Ca]i + GKL

)
(V − EK),

where the different conductances are stated in Table 1.
Moreover, the capacity of glial cells to remove excess
potassium from the extracellular space is modelled by

Iglia =
⎛
⎝ Gglia

1 + exp
(
18−[K]o

2.5

)
⎞
⎠ ,

while the potassium diffusion to the nearby reservoir is
represented by the current Idiff = ε([K]o − Kbath), ε =
1.2 Hz and Kbath = 4 mM , where Kbath denotes the
potassium concentration in the reservoir. Furthermore, the
membrane potential V has unitmV , while the time t has unit

Table 1 Further system parameters (default setting)

Gglia GNa GNaL GK GKL GClL GCa GAHP

66mM
s

100 mS

cm2 0.0175 mS

cm2 40 mS

cm2 0.05 mS

cm2 0.05 mS

cm2 0.1 mS

cm2 0.01 mS

cm2

These parameters we will always use for our simulations unless we specify a new setting for different parameters
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ms and the different ion concentrations are given in mM .
The full model reads as follows:

Cm

dV

dt
= −(ICl + INa + IK),

dy

dt
= 3

y∞ − y

τy

,

d[Ca]i
dt

= −[Ca]i
80

− GCa
0.002(V − ECa)

1 + exp
(
− 25+V

2.5

) ,

d[K]o
dt

= −1

τ
(Idiff + 14Ipump + Iglia − 7γ IK),

d[Na]i
dt

= −1

τ

(
γ INa + 3Ipump

)
, (1)

where y represents the gating variables h, m and n, Cm =
1 μF

cm2 is the membrane capacity, τ = 1000 is used to convert
s into ms, γ = 0.0445 is a unit conversion factor that
converts the membrane currents into mM

s
. The expression

Ipump denotes the sodium–potassium pump given by

Ipump = �

1 + exp (5.5 − [K]o)

⎛
⎝ 1

1 + exp
(
25−[Na]i

3

)
⎞
⎠

with � = 1.25 mM
s
, while the time relaxation constant of

the corresponding gating variable and its steady state are
denoted by

τy(V ) = 1

ay(V ) + by(V )
and y∞(V ) = ay(V )

ay(V ) + by(V )
,

respectively, where the functions ay and by for the gating
variables are given by

am = 0.1(V +30)
1−exp(− V +30

10 )
, bm = 4 exp

(
−V +55

18

)
,

ah = 0.07 exp
(
−V +44

20

)
, bh = 1

1−exp(− V +14
10 )

,

an = 0.01(V +34)
1−exp(− V +34

10 )
, bn = 1

8 exp
(
−V +44

80

)
.

Moreover, the Nernst potentials of the ion currents are given
by

ENa = 26.64 log

( [Na]o
[Na]i

)
, EK = 26.64 log

( [K]o
[K]i

)
,

ECl = 26.64 log

( [Cl]i
[Cl]o

)
,

ECa = 120 mV with [Cl]i = 6 mM , [Cl]o = 130 mM ,
[K]i = 158 mM − [Na]i and [Na]o = 270 mM − 7[Na]i ,
cf. Eqs. (2). Notice that system (1) is of dimension 7,
while the models from Barreto and Cressman (2011) and
Cressman et al. (2009) are 5 or 6 dimensional systems.

In Barreto and Cressman (2011) and Cressman et al.
(2009) the authors assume that the gating variable m is
equal to its steady state m∞, while we consider m as
additional state variable and thus, the dimension of our
system is at least one dimension higher as the one in Barreto
and Cressman (2011) and Cressman et al. (2009). The

intracellular potassium, extracellular sodium and chloride
concentrations are obtained in Cressman et al. (2009) by the
following expressions:

[K]i = 152 mM − ([Na]i − [Cl]i ),
[Na]o = 144 mM − β([Na]i − 18 mM),

[Cl]o = 130 mM − β([Cl]i − 6 mM), (2)

where β = 7 is the ratio of the intracellular to extracellular
volume, cf. also Wei et al. (2014a) and Wei et al. (2014b).
For more details we refer to Barreto and Cressman (2011)
and Cressman et al. (2009). The different APs of the full
system (1) and the reduced version with m = m∞, we
compare in Fig. 1. Here, we see that the general behaviour
is similar using the initial values from Table 2, but the
trajectory of both systems have a slightly different period
and the number of APs (spikes) is different. Furthermore,
at the default parameter values from Table 1 both systems
approach a stable resting state for which the membrane
voltage and the ion concentrations assume fixed values, cf.
Barreto and Cressman (2011). This behaviour changes for
instance by increasing the value of Kbath, see one example
in Fig. 2. Figure 2 shows an example for a seizure (i.e. 3
spike trains or bursts with 675 spikes in 100 ms) which was
expected for Kbath = 8 mM as stated in Wei et al. (2014b).

Furthermore, regarding system (1) we see that our model
is dependent on several parameters which might have a
big influence on the occurrence of seizures and the general
behaviour of the system. This behaviour we will analyse and
investigate systematically in Section 2 using (numerical)
bifurcation analysis.

Furthermore, the ion concentrations [Ca]i , [K]o and
[Na]i are also showing a different behaviour for Kbath =
4 mM (default setting) and Kbath = 8 mM , cf. Fig. 3.
In Fig. 3 we see that the different ion concentrations have
on the one hand a change in their time–scales and on the
other hand also a change in their concentration variation.
In Fig. 3a we see that the range of concentration variations
for [Cai], [K]o and [Na]i are very small compared to
Fig. 3b. Moreover, in Fig. 3a the concentrations tend to an
equilibrium similar to the membrane voltage V in Fig. 1,
while the concentrations for Kbath = 8 mM are oscillating
for a much longer period and a much larger amplitude, cf.
Fig. 3b.

This affects of course the membrane potential V , which
has again influence on the different ion concentrations.
Regarding Eqs. (2) also the ion concentrations [K]i and
[Na]o are affected by this. For a better understanding we
also compare the normalised ion concentrations in Fig. 4. In
Fig. 4(a) we see also that the ion concentrations are reaching
after a short firing of approximately 0.5 s, cf. Fig. 4c, more
or less a stable resting state, while for Kbath = 8 mM the
periodic behaviour goes on, cf. Fig. 4b and d.
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Fig. 1 Comparison of system (1)
(full system) with the simplified
model using m = m∞. In both
cases we are utilising the same
parameters and initial values,
see Tables 1 and 2
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1.3 Modelling of electroconvulsive therapy (ECT)
stimulus waveforms

The aim of this section is the implementation of a
periodic external forcing (unidirectional rectangular pulses)
of system (1), which might cause seizures, cf. Peterchev
et al. (2010). To achieve this goal we have to introduce an
external forcing term Iext, i.e. we will consider the following
differential equation:

Cm

dV

dt
= −(ICl + INa + IK) + Iext. (3)

First of all, we will explain the modelling of this periodic
forcing term with an easy example and then, we will use
this idea for our main aim. As a first remark we want to
highlight that a generic non-autonomous first order ODE
system which is given by

dx

dt
= f (x, t), (4)

where x = (x1, . . . , xn) ∈ R
n and f : Rn+1 → R

n, n ≥ 2,
can be rewritten as an autonomous system by introducing a
new variable s ∈ R as follows:

dx

dt
= f (x, s),

ds

dt
= 1. (5)

At this stage, we see that the stability and bifurcation
analysis of system (5) fail, since the system exhibits no

equilibrium. In our situation we need a periodic time–
dependent forcing term Iext in Eq. (3). The simple example
we have in mind is a one dimensional non–autonomous
ODE:

dx

dt
= f (x) + g(t) (6)

with x ∈ R and f, g : R → R, where g(t) denotes
a periodic forcing term, i.e. g(t) − g(t + T ) = 0 with
the period T > 0. Well known periodic functions (e.g.
sinusoidal forcing) are g(t) = cos(ωt) and g(t) = sin(ωt)

with a period T > 0, which is equal to 2π
ω
, and a frequency

ν = 1
T
. Moreover, we can rewrite Eq. (6) with a periodic

forcing g(t) = A cos(ωt − ϕ), where A > 0 denotes the
amplitude and ϕ is a phase change, into an autonomous
system using the following observations. First of all, we
consider the system of differential equations:
{ du

dt = u(1 − u2 − w2) − ωw,
dw
dt = w(1 − u2 − w2) + ωu.

(7)

System (7) has the solution

(u, w) = (cos(ωt + ϕ), sin(ωt + ϕ))

for any phase change ϕ. For initial values u(0) = 1
and w(0) = 0 the solution of system (7) is (u, w) =
(cos(ωt), sin(ωt)). Using this we can rewrite Eq. (6) with a
periodic forcing term g(t) = A cos(ωt −ϕ) as the following

Table 2 Initial values (default setting)

Vinit minit hinit ninit [Ca]i init [K]o init [Na]i init
−50 mV 0.0936 0.96859 0.08553 0.0 mM 7.8 mM 15.5 mM

These initial values we will always utilise for our simulations unless we specify them differently
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Fig. 2 Simulation of system (1) with Kbath = 8 mM showing a
seizure.

autonomous system:

dx

dt
= f (x) + A cos(ϕ)u + A sin(ϕ)w,

where u and w are the solutions of system (7) with initial
values x(0) = x0 ∈ R, u(0) = 1 and w(0) = 0 and
we utilised the equality cos(ωt − ϕ) = cos(ϕ) cos(ωt) +
sin(ϕ) sin(ωt). Our next aim is to rewrite Iext of Eq. (3) as an
autonomous differential system to arrive at an autonomous
version of (3). To this end, we assume that Iext is a periodic
forcing function with frequency of 1 Hz and period T =
1000 ms, a suitable amplitude A and duration d . Therefore,
we choose

Iext = A

1 + exp(102 · (cos(ϕ) − cos(ωt − ϕ)))

with a phase change ϕ = dπ
T

and using the previous
discussion in combination with Eq. (7), we derive at

Iext = A

1 + exp(102((1 − u) · cos(ϕ) − w · sin(ϕ)))
, (8)

where u and w denote the solution of Eq. (7) with initial
value (u(0), w(0)) = (1, 0). Please notice that the stimulus
Iext is zero for almost every time, except for t ∈ {k ·

T ; k · T + d} with k = 0, 1, 2, ..., since the expression
e10

2·(cos(ϕ)−cos(ωt−ϕ)) tends immediately to infinity for all
t /∈ {k · T ; k · T + d}. This is the reason for the choice in
Eq. (8). Choosing d = 600 ms and A = 3 mA

cm2 we get the
graph for Iext shown in Fig. 5. This external periodic forcing
changes the behaviour as stated in Fig. 6.

Here, we see that the external forcing might have
obviously an influence on the behaviour of the system – in
this setting the occurrence of seizures. Notice that one can
control the frequency and the duration of the occurrence of
the oscillatory pattern with suitable choices of the period
T and the duration d , cf. Fig. 6. Furthermore, we see that
system (7) exhibits an equilibrium (u0, w0) = (0, 0), which
influences Iext, i.e.

Iext0 = A

1 + exp(102 cos(ϕ))
,

where ϕ = dπ
T

and cos(ϕ) > 0 for 0 < d
T

< 1
2 ,

while cos(ϕ) < 0 for 1
2 < d

T
< 1. Hence, Iext0 ≈ 0

for 0 < d
T

< 1
2 , while Iext0 ≈ A

2 for 1
2 < d

T
< 1.

This we will also study and analyse in the next section
using the bifurcation theory together with the investigation
of the influence of the different system parameters. Finally,

Fig. 3 Comparison of the ion concentrations of model (1) for Kbath =
4 mM and Kbath = 8 mM
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Fig. 4 Comparison of the normalised ion concentrations of Fig. 3

we want to remark that we can use this approach also to
model further ECT stimulus waveforms as sine wave and
bidirectional rectangular pluses, cf. Peterchev et al. (2010).

2 Bifurcation analysis

In the following, we will study the dynamics of system (1)
regarding different system parameters. We will start with the
dynamics of system (1) with respect to Kbath. Moreover, we
are interested in other system parameters, e.g. GKL and we
will study the influence of the external forcing Iext (8) on
the trajectory of system (1) to have a better understanding of
the complex dynamics of (1). To this end we use bifurcation
analysis.

First, we are going to explain our approach and then,
we are investigating the specific cases. Notice that system
(1) is a nonlinear system and therefore, it is difficult or
impossible to derive an explicit expression of the equilibria
of the system. It is quite easy to calculate the equilibria of
the gating variables h, m and n and for the intracellular
calcium concentration [Ca]i , i.e.

h ≡ h∞(V ), m ≡ m∞(V ), n ≡ n∞(V )

and

[Ca]i∞ ≡ −GCa
0.16(V − ECa)

1 + exp
(
− 25+V

2.5

) .

Fig. 5 Simulation of Iext
(unidirectional pulse train):
d = 0.6 s, T = 1 s and
A = 3 mA

cm2
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Fig. 6 Simulation of (1) (default setting) extended with Iext (8), cf.
Fig. 5

For the intracellular sodium concentration [Na]i it is still
possible to determine the equilibrium but it yields a horrible
expression. At least for the membrane voltage V and the
extracellular potassium concentration [K]o one gets only an
implicit term, i.e. the equilibrium of the membrane voltage
V is determined by(

GNaL + GNam
3∞h∞

)
(V − ENa) + GClL(V − ECl)

+
(

GKn4∞ + GAHP
[Ca]i∞

1 + [Ca]i∞ + GKL

)
(V − EK) = 0.

Therefore, we need a numerical approach to determine the
equilibria of the system, mainly as we will consider different
values of Kbath. Furthermore, the Jacobian J of the right
hand side of system (1) evaluated at the equilibrium is given
by

J =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂F
∂V

∂F
∂m

∂F
∂h

∂F
∂n

∂F
∂[Ca]i

∂F
∂[K]o

∂F
∂[Na]i

1
τm

∂m∞
∂V

− 1
τm

0 0 0 0 0

1
τh

∂h∞
∂V

0 − 1
τh

0 0 0 0

1
τn

∂n∞
∂V

0 0 − 1
τn

0 0 0

H
∂V

0 0 0 − 1
80 0 0

− 7γ
τ

∂IK
∂V

0 0 − 7γ
τ

∂IK
∂n

− 7γ
τ

∂IK
∂[Ca]i

∂G
∂[K]o

∂G
∂[Na]i

− γ
τ

∂INa
∂V

− γ
τ

∂INa
∂m

− γ
τ

∂INa
∂h

0 0 ∂L
∂[K]o

∂L
∂[Na]i

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where F := −(ICl + INa + IK)/Cm, G := −(Idiff +
14Ipump + Iglia − 7γ IK)/τ ,

H := −[Ca]i
80

− GCa
0.002(V − ECa)

1 + exp
(
− 25+V

2.5

) ,

L := − (
γ INa + 3Ipump

)
/τ and we used the fact that

∂

∂V

(
y∞ − y

τy

)
=

∂y∞
∂V

τy − (y∞ − y)
∂τy

∂V

τ 2y
= 1

τy

∂y∞
∂V

,

provided y ≡ y∞. Notice that varying of Kbath directly
affects the extracellular potassium concentration [K]o,
which influencesEK and therefore, indirectly the membrane
voltage V . Finally, this affects the complete system.
Moreover, varying of Kbath has also an influence on
the stability of the system, which is obviously regarding
the Jacobian J . Therefore, it is of interest to study
systematically the behaviour of system (1) with respect to
different system parameter values, e.g. for different values
ofKbath. Furthermore, varying other system parameters, e.g.
GKL might have also an influence on the behaviour of the
system. Some system parameters will have a big influence,
e.g. Kbath, and other parameters may have less influence.
Furthermore, combinations of different setting will also
yield different behaviours. Therefore, it is quite difficult and
challenging to investigate all facets of the system behaviour.
The bifurcation theory provides a very systematic approach
to study the occurrence of seizures. Finally, notice that when
we investigate, e.g. the potassium dynamics, i.e. we remove
the corresponding ODE for [K]o, also the Jacobian will be
reduced by the corresponding row and column, and we will
use [K]o as bifurcation parameter.

2.1 Bifurcation analysis with respect
to the potassium concentration
in the reservoir

Our first aim is a complete (numerical) bifurcation analysis
of system (1) with respect to the potassium concentration in
the reservoir Kbath. The resulting bifurcation diagram will
explain the behaviour of the model (1) regarding a deficit
or an enhancement in Kbath and the possible occurrence
of seizures. To this end, we choose Kbath as bifurcation
parameter and we are determining the equilibrium curve and
its stability of system (1) using the continuation algorithm
from (Dhooge et al. 2003, 2008; Govaerts et al. 2005).
This yields the bifurcation diagram in Fig. 7, i.e. its
projection onto the (Kbath, V )-plane. The black line shows
the equilibrium curve, which is divided into two stable parts
(black solid line) and one unstable part (black dashed line).
Moreover, it exhibits two Andronov–Hopf bifurcation, one
subcritical (red dot) and one supercritical (blue dot).
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Fig. 7 Bifurcation diagram
(projection onto the
(Kbath, V )-plane) with Kbath as
bifurcation parameter
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From the supercritical Andronov–Hopf bifurcation at
Kbath ≈ 70.7524 mM a stable limit cycle branch bifurcates,
which becomes unstable via a Neimark–Sacker bifurcation
or torus bifurcation at Kbath ≈ 9.2027 mM before it
disappears at Kbath ≈ 7.6814 mM . From the subcritical
Andronov–Hopf bifurcation at Kbath ≈ 7.6814 mM there is
an unstable limit cycle branch bifurcating which terminates
at a homoclinic bifurcation, cf. Fig. 8. A Neimark–Sacker
or torus bifurcation generically corresponds to a bifurcation
of an invariant torus, on which the flow contains periodic or
quasi-periodic motion, cf. Ju et al. (2018). In addition, we
included in Fig. 7 a red dashed line to indicate the default
Kbath value which is equal to 4 mM . For this value we
know from Fig. 1 that system (1) approaches a stable resting
state. This happens for all Kbath ∈ [0; 7.6814) (depending
on the initial values) since only for values of Kbath

between the subcritical and supercritical Andronov–Hopf
bifurcation we have no stable equilibria. Furthermore, after
the system loses stability the system shows several pattern
of oscillations, e.g. seizures. Here, we want to highlight

that varying Kbath has only a direct influence on Idiff
and therefore, on the extracellular potassium concentration
[K]o.

This obviously affects indirectly also Ipump and IK
and thus, the voltage V and the intracellular sodium ion
concentration [Na]i , cf. system (1). Therefore, we will
see that varying Kbath will also fit in certain ranges the
potassium dynamics we investigate in Section 2.2. As we
already mentioned system (1) shows seizures for increased
values of Kbath.

More precisely, for Kbath values greater than the value
of the subcritical Andronov–Hopf bifurcation and in the
neighbourhood of the Neimark–Sacker or torus bifurcation
yield seizures. Depending on the initial value the first
firing will have a slightly different pattern, e.g. smaller or
bigger amplitudes, before it converges into a stable periodic
pattern as in Fig. 2 or Fig. 6. For Kbath values not close
enough to the Neimark–Sacker or torus bifurcation and
smaller than the value of the supercritical Andronov–Hopf
bifurcation the system shows different oscillatory pattern.

Fig. 8 Zoom of Fig. 7 around
the subcritical Andronov–Hopf
bifurcation
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Here, the trajectory will converge to the stable limit cycle
corresponding to the Kbath value after certain amount of
time depending on the initial values, cf. Fig. 9. For instance
the trajectory turns into a wave of death Wei et al. (2014b)
for the Kbath value very close to the first supercritical
Andronov–Hopf bifurcation. For comparison reason we will
study the potassium dynamics of system (1), which is a very
common approach. Nevertheless, our approach will be more
general than in previous works, since we do not assume
that m ≡ m∞. Furthermore, we will point out the relation
between the potassium dynamics and the influence of the
potassium concentration in the reservoir Kbath.

2.2 Potassium dynamics

After the investigation of the Kbath dynamics we will go
on studying the potassium dynamics of system (1), i.e. we
will consider a reduced version of this system by removing
the differential equation of the extracellular potassium ion
concentration [K]o and then, using [K]o as bifurcation
parameter. Notice that all other system parameters are
in the default setting. Since only Idiff is dependent on
Kbath and we removed the differential equation, which is
dependent on Idiff, the reduced system is independent of
Kbath. Nevertheless, we will see that varying Kbath in the
full system (1) correlates with the potassium dynamics.

In Fig. 10 we state the bifurcation diagram of the
reduced system using [K]o as bifurcation parameter to
investigate the potassium dynamics of the system. Similar
to Fig. 7 we have an equilibrium curve divided into two
stable parts (black solid line) and one unstable part (black
dashed line). The equilibrium curve loses stability via a
subcritical Andronov–Hopf bifurcation (red dot, [K]o ≈
6.9616 mM), turns via a limit point bifurcation (black
dot, [K]o ≈ 4.5449 mM) and becomes stable again
after the supercritical Andronov–Hopf bifurcation (blue dot,

[K]o ≈ 24.9893 mM). From the subcritical Andronov–
Hopf bifurcation an unstable limit cycle branch bifurcates,
which terminates at a homoclinic bifurcation, while from
the supercritical Andronov–Hopf bifurcation a stable limit
cycle branch bifurcates, which terminates at the subcritical
Andronov–Hopf bifurcation. Here, we have to remark that
trajectories of the reduced system will converge after certain
amount of time (depending on the initial values) into either
a stable equilibrium or a stable limit cycle depending on
the value of [K]o. Furthermore, we know that [K]o in the
full system (1) depends on Kbath which is also reflected by
comparing the trajectory of system (1) and the potassium
dynamics of the reduced system.

In Fig. 11, we have two examples of seizures produced by
changing the value of Kbath (left and right ends of the Kbath

interval – [7.6814; 9.5285] – where seizures in system (1)
appear). Here, we see that while seizures occur in system (1)
the trajectories do not fit perfectly with the stable limit cycle
branch of the reduced system, cf. Cymbalyuk and Shilnikov
(2005) and Shilnikov (2012). Nevertheless, the trajectory is
still attracted. Notice that the period T of the limit cycle
corresponding to Kbath = 7.6814 mM is T ≈ 1026 ms,
while the period of the limit cycle corresponding to Kbath =
9.5285 mM is T ≈ 42 ms. However, the trajectory
corresponding to Kbath = 7.6814 mM has a spike train
which lasts for approximately 600 ms and repeats every
(approximately) 9.4 s, while the trajectory corresponding
to Kbath = 9.5285 mM has a spike train which lasts for
approximately 11.7 s and repeats every (approximately)
14.3 s. In addition, from Fig. 11 it is obvious that the
maximal amplitude is decreasing for increasing values of
Kbath.

Furthermore, we already saw in Fig. 9 that the trajectory
converges into a stable limit cycle for Kbath large enough.
The same effect we also have in Fig. 12, which means that
the potassium dynamics of the reduced system coincides

Fig. 9 3D bifurcation diagram:
Fig. 7 projection onto the
(Kbath, n, V )-space
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Fig. 10 Potassium dynamics:
Bifurcation diagram of the
reduced system using [K]o as
bifurcation parameter
(projection on the
([K]o, V )-plane)
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Fig. 11 Bifurcation diagram of the reduced system using [K]o as bifurcation parameter including seizures occurring in the full system (1)
(projection on the ([K]o, V )-plane).

Fig. 12 3D bifurcation diagram: Fig. 7 projection onto the ([K]o, n, V )-space including the trajectory for Kbath = 9.5286 mM after it converged
into a stable limit cycle
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with the full system (1) provided Kbath is large enough.
Notice that for values greater than Kbath = 9.529 mM

the trajectory basically converges immediately into a stable
limit cycle. Here, we saw the interplay between the
potassium dynamics and the influence of the Kbath. This
indicates that on the one hand it makes sense to study
a reduced system, on the other hand we saw also the
loss of information, i.e. the torus bifurcation, does not
appear in the reduced system. Beside this we will see in
the next subsection that there are also other reasons for
the occurrences of seizures, but the existences of a torus
bifurcation indicates a region where seizures may appear.
Notice also that using MATCONT, we can also show that
the system, which is used for the bifurcation analysis in Wei
et al. (2014b) exhibits also a torus bifurcation. Nevertheless,
it is clear that the appearance of seizures is related to the
extracellular potassium concentration [K]o reflected in the
potassium dynamics of system (1). But to derive more
detailed results it is important to study the full system.

2.3 Bifurcation analysis with respect
to the amplitude of the ECT stimulus

Finally, on the cellular level, we investigate the effect of an
ECT stimulus. To this end, we choose the amplitude A of
Eq. (8) as bifurcation parameter.

The bifurcation diagram in Fig. 13 shows that the
equilibrium curve is divided into two stable parts (black
solid lines) and one unstable part (black dashed line). The
equilibrium curve turns for a negatives amplitude A, which
we did not include, since it is physiologically irrelevant.
We have two Andronov–Hopf bifurcations, i.e. a subcritical
one (red dot) and a supercritical one (blue dot). From
the subcritical Andronov–Hopf bifurcation an unstable
limit cycle branch bifurcates, which collides with the
unstable equilibrium curve and disappears via a homoclinic
bifurcation. While from the supercritical Andronov–Hopf
bifurcation a stable limit cycle branch bifurcates, which
becomes unstable via a torus bifurcation.

Notice that the situation here is different from the
previous observations, since even if the system reaches a
stable state the next external pulse will excite the system.
Nevertheless, the bifurcation diagram will give an insight
into the behaviour of the excited system. In Fig. 14 three
stimuli with different amplitudes are simulated over 10
seconds. In general, the system needs (using the default
initial values) certain amount of time to reach its ’stable’
behaviour. For A = 1 mA

cm2 the system stops spiking
after approximately 6 s – after this time only the stimulus
is visible. Furthermore, one can see that the maximal
amplitude of the spike trains is decreasing if the amplitude
increases. Notice that the frequencies and the duration are
always equal, since we have chosen the period T = 1000ms

Fig. 13 Bifurcation diagram of system (3) with respect to the
amplitude A: a 2D bifurcation diagram of system (3): projection onto
the (A, V )-plane. b 3D bifurcation diagram of system (3): Fig. 13
projection onto the (A, n, V )-space

and the duration d = 600 ms, but the number of spikes
per spike train might be varying for different values of the
amplitude A.

3 Seizures on themacro–scale (cm)

The discussion has so far focused exclusively on the
behaviour of a single cell. An extended model can carry
the analysis over to the macro–scale, where many cells
are connected together. The macro–scale is introduced to
examine whether the potassium dynamics are still apparent
when cells are coupled together. To this end, we introduce
the monodomain model:

λ

1 + λ

1

χ
∇ · (Mi∇V ) = Cm

∂V

∂t
+ Iion,

n · (Mi∇V ) = 0, (9)

where Mi denotes the intracellular conductivity tensor, λ

the extra- to intracellular conductivity ratio and χ is the
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Fig. 14 Simulation of the excited model for different amplitudes A

membrane surface area per unit volume, which is commonly
used to model myocardial tissue Sundnes et al. (2006).
Following Dougherty et al. (2014), we use Cm = 1 μF

cm2 ,

χ = 1260 cm2

cm3 , an extracellular conductivity of Me =
2.76 mS

cm
and an intracellular conductivity of Mi = 1 mS

cm
.

These conductivities give λ = Me

Mi
= 2.76. Notice that we

have Iion = (ICl+INa+IK), where the different ion currents
are modelled by the system (1), i.e. we consider an ODE–
PDE system coupling between system (1) and system (9).
The system (9) is discretised in time with a second order
Strang splitting scheme. The PDE is discretised in space

with the finite element method. A time step of 0.025 ms

is used and the characteristic mesh cell size is 0.002 cm.
The solver is based on Rognes et al. (2017). The codes are
available at https://github.com/jakobes/SeizureExperiments
for the monodomain model in 1D and 2D as well as
for the bidomain model in 2D. Additionally, there are
also movies provided for three main simulations, i.e. the
spreading of action potentials in the monodomain and the
bidomain model, to illustrate the behaviour of the macro–
scale models.

The coupled system (9) is solved in the domain sketched
in Fig. 15. The domain is split into two regions, the
unstable region centred around the point (II), surrounded on
either side by stable regions, (I) and (III). The instability
will primarily be produced by changing the level of the
potassium bath concentration, Kbath, but also by applying
an external stimulus. The behaviour of the system will be
judged by sampling the computed transmembrane potential
at eleven evenly spaced points along the domain, including
(I), (II) and (III) from Fig. 15. The points (I) and (III) are
positioned 0.1 cm from the end of the domain.

Two new parameters emerge with the introduction of the
monodomain model, namely the intracellular conductivity
Mi , and, the length of the unstable domain L. We propose a
set of experiments to examine the dynamics of the coupled
system and how they change with Mi and L. We choose
to concentrate on the extracellular potassium diffusion as
it can be described by only Kbath, rather than the external
stimulus, which is described by three parameters, namely
the amplitude, the duration of a square pulse and the
frequency. In all the experiments, system (9) is solved in the
domain described in Fig. 15, where the Kbath concentration
is higher in the central unstable region, and lower in the
surrounding regions.

In the following, let the value of Kbath in the central
region be denoted by Ku

bath and Ks
bath in the surrounding

region. The coupled system (9) is solved for 100 seconds,
and we are interested in how the spatial coupling modifies
the cell model behaviour with respect to bursting. In all the
experiments, spikes are initiated in the central region and
spread towards the edges of the domain. The manner in
which the spikes spread is illustrated in Fig. 16.

In each of the experiments, the simulation is carried
out for a combination of conductivities and lengths of the
unstable region. The conductivities are given by Mi =

Fig. 15 An illustration of the set up of our numerical experiment. The
system (9) is solved on the entire domain [0, 1] which measures 1 cm
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Fig. 16 Five snapshots of an action potential spreading. The action
potential is initiated soon after t0 = 975 ms, and vanishes out of the
domain soon after t4 = 983 ms. This behaviour is representative of the
behaviour of the coupled system (9) throughout all the experiments

2n mS
cm

, n = −6, −5, . . . , 4, and the length of the
unstable region is given by L = 2n cm, n = −3, −2, −1.
Three different kinds of behaviours emerge. Firstly, for
conductivities typically close to Mi = 1

64
mS
cm

, the unstable
region will exhibit bursting behaviour, but the spikes will
not spread to neighbouring cells. This is illustrated in
Fig. 17a. Secondly, for medium range conductivities and
for larger values of L, we observe the same behaviour in
the coupled system as in the cell model alone, illustrated in
Fig. 17b. Finally, for high conductivities, the stable region
will dominate, and the unstable region will only produce a
few initial spikes, and not burst again for the duration of the
simulation, as seen in Fig. 17c. These spikes, however, will
spread. These three kinds of behaviour of the system (9)
will be referenced later in the discussion of the numerical
experiments (Table 3).

Experiment 1 explores whether spikes will spread from
the unstable region in Fig. 15 to the surrounding stable
regions, where we choose Ks

bath and Ku
bath to produce two

different regimes of system (1).Kbath = 4mM is the default
setting for the cellular model (1), whileKbath = 8mM is the
value used to study seizures. The number of spikes produced
by system (9) in the first experiment is detailed in Table 4.
One burst consists of about 200 spikes. The experiments
in Tables 5, 6, 7 and 8 are all variations of this parameter
configuration, exploring the effects of raising or lowering
Ks

bath by 2 mM .
In experiment 1, the first kind of behaviour is found only

for Mi = 1
64

mS
cm

, and the third is observed gradually from

Mi = 1
4

mS
cm

, but is offset by increasing L. These behaviours
can be clearly seen, first by the huge range in the number
of spikes seen in the first column in Table 4, and secondly
by the decrease in the number of spikes in jumps of around
200 spikes starting at Mi = 1

4
mS
cm

. Notably, in experiment
2, where Ks

bath is set to 6 mM detailed in Table 5, the
first kind of behaviour of the system is no longer there
for Mi = 1

64
mS
cm

, and the transition to the third kind of
behaviour starts for larger conductivities than in experiment
1, that is at Mi = 1

2
mS
cm

. In the third experiment found in
Table 6, Ku

bath is raised to 9.5 mM . The overall behaviour
is similar to the first experiment in that only the first burst
will spread out of the unstable region, and the remaining six
will not. An obvious result of increasing the concentration
of Ku

bath is that the system exhibits more bursts (seven in
total) than experiment 1. However, the number of burst will
still decline for Mi greater than 1

4
mS
cm

, only more quickly
than in the experiments 1 and 2. In the fifth experiment
detailed in Table 8, the Ks

bath concentration is decreased by
2 mM compared to the first experiment. Interestingly, the
first kind of behaviour is now also apparent for Mi = 1

32
mS
cm

.
Furthermore, from Mi ≥ 2mS

cm
, the system will not get past

the first burst for any of the tested values of L.
The final experiment, see Table 7, is different sinceKu

bath

is chosen such that the ODE (1) converges into a stable
limit cycle as discussed in Fig. 9. However, the time it
takes before the solution settles into a pattern of continuous
spiking is greatly affected by the conductivity in the coupled
system and the length of the unstable domain. Similar to
the other experiments, for Mi = 1

64
mS
cm

, only the unstable
region will exhibit the sustained spiking behaviour. Starting
at Mi = 1

2
mS
cm

, there is a transition from continuous spiking
to discrete bursts. At Mi = 2mS

cm
this is affecting all

three lengths of the unstable domain. Despite the qualitative
change in the cell mode behaviour, the influence of the
spatial coupling is still the same. The behaviour of the
system is still dictated by the cell model, and it will
eventually settle into a pattern of continuous bursting, but
the time before this happens is affected by the parameter
configuration of Mi and L.

Finally, to return to the question of ECT, a similar
experiment is performed where the central region in Fig. 15
is destabilised using an external current, as in Fig. 6,
and Kbath is kept at 4 mM . A notable difference to the
other class of experiments is that with an applied external
stimulus, bursts will communicate to the surrounding stable
region, even for low conductivities, see Table 9. At Mi =
1 mS

cm
, the other end of the scale, the stimulated region will

seize spiking. This is the same as observed in previous
experiments, but the transition happens later.
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Fig. 17 Three figures illustrating the three different kinds of mod-
ifications the monodomain model has on the cell model (1). The
two lines are sampled at two different locations, cf. Fig. 15 , the

unstable region (yellow line) measured at (II) and the stable region
(blue line) measured at (I). When the blue and yellow lines overlap
they turn brown

3.1 Monodomainmodel in a two–dimensional
domain

In this section, we extend our investigation of the coupling
of model (1) and the monodomain model (9) to a two–
dimensional domain by considering two concentric circles
as shown in Fig. 18.

A set of experiments similar to the 1D experiments, cf.
Fig. 15 are performed. The region within the innermost
circle is destabilised by the choice of Ku

bath = 8 mM

or higher, the same way as in the 1D experiments in
e.g. Table 4. The interaction between the size of the
unstable region and the conductivity is again investigated.
The simulations are limited to 10 seconds because
2D simulations are significantly more computationally
demanding.

Fig. 18 An illustration of two concentric circles where the innermost
circle with radius Ru is the unstable region associated with Ku

bath. R
u

is varied while the radius of the outermost circle, Rs is kept constant

The size of the unstable region is characterised by the
radius of the innermost circle. Three configurations of the
circles are considered with the radius of the innermost
circle, Ru, set to Ru = 0.5 cm, 0.25 cm and 0.125 cm. The
radius of the outermost circle, Rs , is kept fixed at 1 cm. A
set of simulations with the same conductivities as in the 1D
experiments are reported in Table 10.

Action potentials are generated in the central unstable
region and spread outwards, just as in the 1D simulations.
The action potentials are grouped in bursts. During 10
seconds there is only one burst, see an example of the
transmembrane potential in Fig. 19. The number of action
potentials during the 10 seconds of simulation time is used
to characterise the dynamics of the system.

The number of spikes in Table 10 for low conductivities
is lower than in the cell model with Kbath = 8 mM .
We remark that the number of spikes in the monodomain

Fig. 19 The transmembrane of the concentric circles 0.1 cm from the
outermost circle
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model is the same as or less than in the single cell model.
However, there are a few instances where the number of
spikes are slightly higher for the monodomain model, see
Table 4. The experiment in Table 10 is similar to the
1D simulations in that the number of spikes increases
with the size of the unstable region, and decreases with
increased conductivity. The number of spikes decreases to
the same level as the cell model with Kbath = 4 mM .
These observations are confirmed by similar experiments
performed for the remaining combinations of Ks and Ku

listed in Table 3. These experiments can be found in the
Supplementary Materials.

In Table 10 there is a sharp drop in the number of spikes
in the rightmost part of the table where the number of spikes
are below 10. The drop has a triangular shape suggesting
that for smaller Ru similar drops will be present also for
smaller conductivities. Similar drops were also found in
Tables 4–9. We therefore hypothesised that the coupled
system tends to some fixed small number of spikes asRu →
0 as seen in Table 10 for conductivities below a certain
size. To test this hypothesis we extended the experiment in
Table 10 with even smaller values of Ru, 2−6, 2−7 . . . , 2−10

for a fixed value of Mi = 1/16. With Ru = 2−6 the
system spiked 11 times and with Ru = 2−7 to Ru = 2−10

it spiked 9 times. This result indicates that for sufficiently
small values of Ru, the system will tend to a small number
of spikes.

3.2 Bidomainmodel in a two–dimensional domain

The influence of the geometry is investigated by a variation
of the concentric circles inspired by the folding of the
human cortex. The domain is split into four distinct parts,
green, orange, brown and blue, as seen in Fig. 20. The
blue region represents the white matter, the orange and
brown regions are the grey matter and the green part the
cerebrospinal fluid (CSF). The geometry in Fig. 20 looks
like a rose with eight petals. The unstable geometry varies
from three petals, to two, to one petal. The number of petals
in the unstable, marked in brown in Fig. 20 is denoted P u.

The behaviour of the monodomain model and the single
cell model is quite similar in terms of the number of spikes,
for physiologically relevant parameters. Here, we therefore

Table 3 Table of values for Kbath used in experiment 1 through 5

Experiment # Ks
bath Ku

bath

1 4 8

2 6 8

3 4 9.5

4 4 10

5 2 8

extend the discussion also to the bidomain equations that
handles anisotropic intracellular and extracellular media.
Furthermore, we let model (1) be represented in the grey
matter while the white matter is either passive or modelled
by a simple neuronal model like Morris–Lecar (Gutkin and
Ermentrout 1998; Tsumoto et al. 2006). In addition, we also
include the CSF which bathes the brain. The equations are

Cm

∂V

∂t
− 1

χ
∇ · (Mi∇(Ue + V )) = −Iion,

∇ · (Mi∇(Ue + V )) + ∇ · (Me∇Ue) = 0 (10)

for x ∈ �, where � is the computational domain and
equipped with the Neumann boundary condition

n · (Mi∇V + Mi∇Ue) = 0 x ∈ ∂�,

n · (Me∇Ue) = 0 x ∈ ∂�. (11)

The parameters are the same as in the monodomain model
(9), except that the extracellular conductivity, Mi appears,
and that Ue, the extracellular potential appears as an
unknown. The cerebrospinal fluid (CSF) is treated as part of
the extracellular space with an intracellular conductivity of
10−12 mS

cm
. The extracellular conductivity, Me is 1.26mS

cm
in

the white matter, and 2.76mS
cm

in the grey matter. The white
matter is modelled as passive, i.e. there is no cell model to
govern cell dynamics there. The bidomain model is coupled
to model (1) in the grey matter, but not in the CSF nor the
white matter. The grey matter is mostly made up of cell
bodies, while the white matter consists mostly of myelinated
axons. There are ion channels in the axons, at the nodes of
Ranvier, but it is not clear that model (1) is suitable.

An alternative, simple, cell model for the white matter
is the Morris–Lecar model, (Gutkin and Ermentrout 1998;
Tsumoto et al. 2006). It is a Hodking–Huxley model with
two ion channels, sodium and potassium, unlike model
(1). Numerical experiments similar to the ones in Table 11
showed increased oscillations in the intra- and extracellular
potentials in the white matter, but oscillations were of
insufficient amplitude to propagate the action potentials.
The Morris–Lecar model with its default parameters is not
suitable for modelling the propagation of action potentials
in the white matter.

Action potentials are generated in the unstable domain,
close to the interface between the grey matter and the white
matter. This is illustrated in Fig. 21.

The action potentials follow the outline of the grey matter
until they meet. The set of experiments using the rose
geometry follows the same pattern as the 1D experiments
and experiments involving concentric circles. The number
of action potentials is used to characterise the dynamics
of the coupled system as the conductivity and the size of
the unstable domain varies. The number of spikes increases
with the size of the unstable region. This is the same as
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Table 4 Experiment 1, Ks
bath = 4 mM , Ku

bath = 8 mM

Single Cell Monodomain

Kbath = 4 Kbath = 8 1/64 1/32 1/16 1/8 1/4 1/2 1 2 4 8

0.12 5 675 236 - 679 675 674 670 449 198 133 31 9 7

0.25 5 675 247 - 679 675 675 674 671 554 203 147 68 17

0.5 5 675 239 - 679 675 675 674 674 671 669 211 170 126

Table 5 Experiment 2, Ks
bath = 6 mM , Ku

bath = 8 mM

Single Cell Monodomain

Kbath = 6 Kbath = 8 1/64 1/32 1/16 1/8 1/4 1/2 1 2 4 8

0.12 109 675 677 675 674 671 669 215 186 157 138 132

0.25 109 675 677 675 675 674 671 670 218 192 166 153

0.5 109 675 677 675 675 676 674 671 669 442 202 132

Table 6 Experiment 3, Ks
bath = 4 mM , Ku

bath = 9.5 mM

Single Cell Monodomain

Kbath = 4 Kbath = 9.5 1/64 1/32 1/16 1/8 1/4 1/2 1 2 4 8

0.12 5 1958 295 - 1956 1948 1938 1913 1772 1098 190 98 16 9

0.25 5 1958 295 - 1956 1955 1942 1937 1914 1780 1157 206 129 52

0.5 5 1958 296 - 1968 1959 1952 1945 1945 1780 1807 1370 432 180

Table 7 Experiment 4, Ks
bath = 4 mM , Ku

bath = 10 mM

Single Cell Monodomain

Kbath = 4 Kbath = 10 1/64 1/32 1/16 1/8 1/4 1/2 1 2 4 8

0.12 5 2891 308 - 2912 2889 2884 2862 2728 1401 207 113 21 10

0.25 5 2891 308 - 2913 2890 2888 2883 2862 2742 1621 224 143 69

0.5 5 2891 309 - 2914 2891 2890 2888 2884 2864 2770 1738 838 195

Table 8 Experiment 5, Ks
bath = 2 mM , Ku

bath = 8 mM

Single Cell Monodomain

Kbath = 2 Kbath = 8 1/64 1/32 1/16 1/8 1/4 1/2 1 2 4 8

0.12 2 675 201 - 715 223 - 277 674 672 449 180 54 5 3 3

0.25 2 675 201 - 731 225 - 678 675 674 672 450 188 88 7 4

0.5 2 675 204 - 727 228 - 678 675 675 674 673 451 200 131 34
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Table 9 Stimulus with A = 3 mA

cm2 , d = 600 ms, T = 1000 ms

Single Cell Monodomain

No stimulus Stimulus 1/64 1/32 1/16 1/8 1/4 1/2 1 2 4 8

0.12 5 5115 5102 5100 5099 5091 5076 4889 1986 666 277 176

0.25 5 5115 4745 4538 4564 4283 4325 4675 4266 3867 2938 367

0.5 5 5115 5103 5100 5100 5100 5099 5094 5094 4980 4612 3760

is observed in the experiments listed in Tables 4 and 10.
In the rose experiment, the number of action potentials
increases with the conductivity untilMi = 1mS

cm
, after which

it decreases again. This is in contrast to the experiments in
Tables 4 and 10.

Another observation is that the coupled system has
significantly more spikes than in the cell model. For
very low intracellular conductivities the number of spikes
approaches that of the cell model, but for higher intracellular
conductivities, the number of spikes seems to stabilise at a
level well above the cell model.

4 Discussion

In this paper we investigated the ODE model (1) describing
a neuron–glia cell interaction based on previous models
from Barreto and Cressman (2011); Cressman et al. (2009,
2011). The major question, when does a normal action
potential turn into seizures and which mechanism is behind
that, is analysed and emphasised. Our main focus was the
potassium dynamics, i.e. the influence of an enhancement or
deficit of the extracellular potassium concentration [K]o on
the full system and mainly on the occurrence of seizures. To
this end, our study is based on a suitable bifurcation analysis
to derive a clear result how the system parameters have to
be modified such that seizures appear. Here, we restricted
ourself to the investigation of the influence of the potassium

diffusion to the nearby reservoir Idiff and the potassium
current IK.

Our study shows that an enhancement of the extracellular
potassium concentration, which influences the Nernst
potential of the potassium current, may lead to seizures, cf.
Fig. 3 and Fig. 11. One reason is an enhancement in the
potassium concentration nearby the reservoir Kbath and the
existence of a torus bifurcation, cf. Section 2.1 and Fig. 7.
A further reason is a deficit in the potassium leak current,
cf. Supplementary File. Roughly speaking, we have shown
that an increase in the extracellular potassium concentration
[K]o may yield seizure. This can be induced by an increase
in the potassium concentration in the reservoir Kbath or
a deficit in the potassium leak current IKL. Furthermore,
one can assume that a similar effect will appear for
corresponding enhancement or reduction in the currents
Ipump and Iglia.

The second main aim of this work is the study of the
influence of ECT stimuli, which is used to induced seizures.
Therefore, we introduced a suitable ODE system describing
unidirectional rectangular pluses, which we coupled with
system (1). This external forcing is affecting the system
and has a big influence on the trajectories of system
(1). Based on these investigations and the knowledge that
ECT stimulus are used for the treatment of depressions
by inducing seizures Peterchev et al. (2010), we modelled
an ECT stimulus as a system of autonomous ODEs, cf.
system (7) and Eq. (8), and then, we studied its influence

Table 10 Experiment 7 — Concentric Circles with Ks
bath = 4 mM and Ku

bath = 8 mM

Single Cell Monodomain

Kbath = 4 Kbath = 8 1/64 1/32 1/16 1/8 1/4 1/2 1 2 4 8

0.12 5 241 210 208 203 193 169 114 8 6 5 5

0.25 5 241 211 211 210 208 204 194 171 119 8 5

0.5 5 241 212 212 211 211 210 208 204 194 172 6
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Fig. 20 A rose geometry inspired by the fold in the human cortex. The
green area is the cerebrospinal fluid, the blue are is the white matter.
Both the orange and brown regions part of the grey matter, but the
brown region is destabilised with Kbath = 8 mM and Kbath = 2 mM .
The radius of the unstable region is 0.5 cm and Mi = 1/64mS

cm

on the cellular model (1). It turns out that – similar to the
extracellular potassium concentration – the ECT stimulus
may induce seizures, see Section 2.3. This autonomous
ODE system then describes the ECT stimulus and it
produces seizures in the neuron, i.e. we are coupling the
cell model (1) with the ETC stimulus model. Also, in this
case our bifurcation analysis gives an insight how to choose
the amplitude of Eq. (8) to initiate a seizure in the cell
model (1), cf. Section 2.3. In Fig. 13 we established the
needed bifurcation diagram which we were using to produce
seizures in model (1) (default setting) via the ETC stimulus,
cf. Fig. 14.

One limiting factor in our study is the complexity of the
cell model (1), but our approach can be extended to more
complex model, cf. Øyehaug et al. (2012) and Y Ho and
Truccolo (2016).

Finally, we have shown that the cell model extends
to the monodomain model with the action potential then
being fast traveling waves. Still, the number of spikes or
bursts with the monodomain model is closely related to
the number of spikes and burst in the cell model. In fact,

Fig. 21 Waves of action potentials originating in the unstable region
and following the outline of the grey matter. The unstable region
encompasses three petals and Mi = 1/64mS

cm
, Ku

bath = 10 mM amd
Ks

bath = 4 mM

for physiologically relevant conductivities the number of
spikes and burst are very similar. For the bidomain model,
including grey and white matter and in both a circular
geometry and a more complex geometrical configuration
with folding, the number of spikes are increased by a
factor between two and three for physiological relevant
conductivities. Hence, from the numerical experiments it
seems that the bifurcation analysis of the cell model extends
more or less directly to the PDE models, but this is hard to
verify with current bifurcation analysis tools.

The model can be further improved either by the
consideration of a bidomain model in a geometrically more
realistic domain as in Dougherty et al. (2014), Mori (2015),
and Lopez-Rincon et al. (2020), or a 3D–1D model in an
explicit cell geometry, along the lines found in Ying and
Henriquez (2007). Alternative models including both the
connectome and dynamical models of normal conditions

Table 11 Experiment 12 — Rose geometry with Ks
bath = 4 mM and Ku

bath = 8 mM

Single Cell Bidomain

Kbath = 4 Kbath = 8 1/64 1/32 1/16 1/8 1/4 1/2 1 2 4 8

1 5 241 485 511 533 563 592 607 605 609 574 568

2 5 241 507 542 574 613 647 655 663 671 646 626

3 5 241 512 559 597 633 664 683 668 644 651 651
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and seizures have been considered in Jirsa et al. (2014),
Sanz-Leon et al. (2015), Jirsa et al. (2017), Breakspear
(2017), Olmi et al. (2019), and Lopes et al. (2020). To
what extent these models extends directly to the bidomain
setting with sufficient detail has to our knowledge not been
explored.

Moreover, an additional extension of the bidomain model
is the consideration of (extracellular) ion diffusion. Ion
diffusion is one key in the understanding of e.g. cortical
spreading depression (CSD). The propagation speed of the
ion concentration waves in CSD is slow, 1 − 10mm

min
, cf.

Yao et al. (2011), while the phenomena considered in this
paper have a characteristic time of milliseconds (spikes)
and seconds (bursts) (fast electrical waves in m

s
during a

seizure). Due to these different speeds, we did not include
the ion diffusion. However, a corresponding bidomain
model with ion diffusion would be an improvement, since
ion diffusion plays an important role for the occurrence of
certain phenomena.

In conclusion, we have quantified the length and the
duration of a seizure related to different system parameters,
i.e. Kbath and GKL, and found that the simulation of seizures
are within plausible physiological regime similar to that
which in clinical practice is required to last more than
20 − 30 s to be considered successful Frey et al. (2001)
and Girish et al. (2003). Furthermore, with physiological
reasonable conductivities and a wide range of Kbath and
GKL we have showed that seizures spread into an almost
synchronous behaviour.

Acknowledgements The authors would like to thank Aslak Tveito
for very useful discussions that helped to improve the content of the
manuscript. Furthermore, the authors wish to thank the anonymous
referees for their careful reading of the original manuscript and their
comments that eventually led to an improved presentation.

Funding Information Open Access funding provided by University of
Oslo (incl Oslo University Hospital).

Compliance with Ethical Standards

Conflict of interests The authors declare no conflict of interest.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate
if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.

References

Atherton, L.A., Prince, L.Y., Tsaneva-Atanasova, K. (2016). Bifurca-
tion analysis of a two-compartment hippocampal pyramidal cell
model. Journal of Computational Neuroscience, 41(1), 91–106.

Barreto, E., & Cressman, J.R. (2011). Ion concentration dynamics as
a mechanism for neuronal bursting. Journal of Biological Physics,
37(3), 361–373.

Breakspear, M. (2017). Dynamic models of large-scale brain activity.
Nature neuroscience, 20(3), 340.

Cressman, J.R., Ullah, G., Ziburkus, J., Schiff, S.J., Barreto, E. (2009).
The influence of sodium and potassium dynamics on excitability,
seizures, and the stability of persistent states: I. Single neuron
dynamics. Journal of Computational Neuroscience, 26(2), 159–
170.

Cressman, J.R., Ullah, G., Ziburkus, J., Schiff, S.J., Barreto, E. (2011).
Erratum to: The influence of sodium and potassium dynamics on
excitability, seizures, and the stability of persistent states: I. single
neuron dynamics. Journal of Computational Neuroscience, 30(3),
781–781.

Cymbalyuk, G., & Shilnikov, A. (2005). Coexistence of tonic spiking
oscillations in a leech neuron model. Journal of Computational
Neuroscience, 18(3), 255–263.

Desroches, M., Guckenheimer, J., Krauskopf, B., Kuehn, C., Osinga,
H.M., Wechselberger, M. (2012). Mixed-mode oscillations with
multiple time scales. SIAM Review, 54(2), 211–288.

Dhooge, A., Govaerts, W., Kuznetsov, Y.A. (2003). Matcont: A
matlab package for numerical bifurcation analysis of odes. ACM
Transactions on Mathematical Software, 29(2), 141–164.

Dhooge, A., Govaerts, W., Kuznetsov, Y.A., Meijer, H.G.E., Sautois,
B. (2008). New features of the software matcont for bifurcation
analysis of dynamical systems. Mathematical and Computer
Modelling of Dynamical Systems, 14(2), 147–175.

Dougherty, E.T., Turner, J.C., Vogel, F. (2014). Multiscale coupling of
transcranial direct current stimulation to neuron electrodynamics:
modeling the influence of the transcranial electric field on neu-
ronal depolarization. Computational and Mathematical Methods
in Medicine 2014.

Du, M., Li, J., Wang, R., Wu, Y. (2016). The influence of potassium
concentration on epileptic seizures in a coupled neuronal model in
the hippocampus. Cognitive Neurodynamics, 10(5), 405–414.

Rognes, M.E., Farrell, P.E., Funke, S.W., Hake, J.E., Maleckar,
M.M.C. (2017). cbcbeat: an adjoint-enabled framework for
computational cardiac electrophysiology. The Journal of Open
Source Software 2.

Erhardt, A.H. (2018). Bifurcation analysis of a certain Hodgkin-
Huxley model depending on multiple bifurcation parameters.
Mathematics, 6(6), 1–15.

Erhardt, A.H. (2019). Early afterdepolarisations induced by an
enhancement in the calcium current. Processes, 7(1), 1–16.

Frey, R., Heiden, A., Scharfetter, J., Schreinzer, D., Blasbichler,
T., Tauscher, J., Felleiter, P., Kasper, S. (2001). Inverse relation
between stimulus intensity and seizure duration: implications for
ect procedure. The Journal of ECT, 17(2), 102–108.
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