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Abstract

Linkage of medical databases, including insurer claims and electronic health records

(EHRs), is increasingly common. However, few studies have investigated the behavior and

output of linkage software. To determine how linkage quality is affected by different algo-

rithms, blocking variables, methods for string matching and weight determination, and deci-

sion rules, we compared the performance of 4 nonproprietary linkage software packages

linking patient identifiers from noninteroperable inpatient and outpatient EHRs. We linked

datasets using first and last name, gender, and date of birth (DOB). We evaluated DOB and

year of birth (YOB) as blocking variables and used exact and inexact matching methods.

We compared the weights assigned to record pairs and evaluated how matching weights

corresponded to a gold standard, medical record number. Deduplicated datasets contained

69,523 inpatient and 176,154 outpatient records, respectively. Linkage runs blocking on

DOB produced weights ranging in number from 8 for exact matching to 64,273 for inexact

matching. Linkage runs blocking on YOB produced 8 to 916,806 weights. Exact matching

matched record pairs with identical test characteristics (sensitivity 90.48%, specificity

99.78%) for the highest ranked group, but algorithms differentially prioritized certain vari-

ables. Inexact matching behaved more variably, leading to dramatic differences in sensitivity

(range 0.04–93.36%) and positive predictive value (PPV) (range 86.67–97.35%), even for

the most highly ranked record pairs. Blocking on DOB led to higher PPV of highly ranked

record pairs. An ensemble approach based on averaging scaled matching weights led to

modestly improved accuracy. In summary, we found few differences in the rankings of

record pairs with the highest matching weights across 4 linkage packages. Performance

was more consistent for exact string matching than for inexact string matching. Most meth-

ods and software packages performed similarly when comparing matching accuracy with

the gold standard. In some settings, an ensemble matching approach may outperform indi-

vidual linkage algorithms.
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Introduction

Linkage among medical databases such as electronic health records (EHRs), health insurer

claims, and patient-generated data is becoming increasingly important for delivering high-

quality, high-value healthcare; conducting valid and generalizable research; and evaluating

healthcare policy. In countries with fragmented healthcare systems, such as the United States,

linkage of EHRs across multiple healthcare settings and institutions enables clinicians to access

information arising from care provided in other systems, which can improve continuity and

efficiency of care and reduce redundancy.

Additionally, linkage among different kinds of data—such as EHR, registries, and claims—

can provide clinicians and researchers with access to complementary sources of information.

For example, EHR-derived data on prescribed drugs, vital signs, laboratory results, and smok-

ing and alcohol histories combined with claims-based data on dispensed drugs and out-of-sys-

tem diagnoses and encounters, can provide a more comprehensive picture of a patient’s care

than information from either dataset alone.

Consequently, database linkage can help create comprehensive, longitudinal datasets with

information on patients’ conditions and treatments over time. In addition to their utility in

clinical care, such approaches can be applied to research, allowing investigators to access richer

datasets and in the process overcome selection, information, and confounding biases [1–4].

Also, multiple databases can be linked by personal identifiers such as name, address, and date

of birth. These variables are subject to several forms of error, and they may change over time,

including address, last names upon marriage, and evolving classifications of race and gender.

Whereas use of national or universal identifiers, such as Social Security numbers, facilitates

more direct linkage between databases, access to these sensitive identifiers is often restricted

and may still be imperfect because of errors in data entry, process, and transfer. Linkage errors

resulting from inappropriate matching of different individuals or incomplete matching can

lead to bias [5–7].

Conceptually, all record linkage algorithms operate similarly. First, a set of linking variables
is designated that is common to both datasets, which provides a basis for comparing individual

records from each dataset. Second, a numerical weight is calculated for each compared pair

(one record from each database), which is interpreted as the degree of confidence that paired

records represent the same person or entity. Finally, a matching threshold is calculated or

specified, and pairs whose weights exceed the designated threshold are declared to be matches.

Typically, linkage variables are either numeric or text, such as string variables, where

matching of these variables is done using exact or inexact methods. Exact string matching

requires that two strings match exactly, character-by-character, including capitalization and

any other characters such as hyphens, accents, or spaces. By contrast, inexact string matching,

which has multiple versions, assigns a numerical similarity based on criteria such as the num-

ber of insertions, deletions, and replacements needed to convert one string to the other.

Methods for converting string comparisons to weights may be classified as either determin-
istic or probabilistic [8]. In the most basic version of deterministic record linkage, the weight

for a pair is simply the number of linking variables with exact agreement, yielding values rang-

ing from 0 to the number of linking variables. Probabilistic weight determination uses statisti-

cal modeling based on estimated probabilities that records match, given equality or similarity

of linking variables [9]. The M-probability for a given linking variable is the probability of

exact agreement on that variable given two matching records—a true positive match. The U-

probability is the probability of agreement given that the records do not match—a false posi-

tive match. Probabilities of a match typically depend on the frequency of linking variables val-

ues, either within the dataset or in external benchmark datasets. For instance, gender or
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common surnames are more likely to match by chance—resulting in higher U-probabilities—

than unusual surnames. Determination of M- and U- probabilities may be specified exoge-

nously, reflecting past experience or expert opinion (e.g., the Fellegi-Sunter approach [9]) or

calculated endogenously (e.g., using the expectation-maximization [EM] algorithm [10]).

Numerous record linkage programs exist, which differ with respect to cost and methodolo-

gic transparency (open-source as compared with proprietary), operating system/hardware

requirements, and scalability. Conceptually, all linkage programs perform string comparison,

weight determination, and match determination. Data preprocessing is a key step in record

linkage, including purging of duplicate records, harmonization of linkage variables (which is

necessary, for instance, if the common values of gender are “F” and “M” in one, but “1” and

“2” in the other), and common representation of missing values. Blocking is a common strat-

egy to reduce computational burden, where only pairs of records that agree on one or more

blocking variables are compared. If the blocking variable has n values, both time and memory

requirements are reduced by a factor of n.

Most studies on linkage performance use only one software package to link synthetic or

real-world databases [11–15]. Although these studies provide valuable information on linkage

challenges, accuracy, and biases, they do not account for all the complexities of the linkage pro-

cess or the variability across different linkage packages and approaches. Little has been pub-

lished on the comparative behavior and output of software programs that can be used to link

healthcare databases. One study used actual identifiers to evaluate probabilistic approaches

from two software packages (Link Plus and Link King) without studying how specific variables

affected weights and matches [16]. Another study created synthetic datasets to compare the

quality and performance of 10 different linkage packages but did not examine the impact of

different matching thresholds [17]. Neither study examined the performance of algorithms

within and across software packages. Consequently, the present study aimed to compare 17

linkage methods within 4 nonproprietary available linkage programs to determine how the

quality of dataset linkage is affected by linkage algorithm, blocking variable selection, methods

for string matching and weight determination, and decision rules for pair matching.

Materials and methods

We compared the performance of 4 linkage software packages applied to real patient data

from university-affiliated institutions. We focused on variables typically available in real

healthcare data (e.g., name, gender, date of birth (DOB)) that contain actual errors but with

very low levels of missingness (see also S1 File). The Rutgers University Institutional Review

Board deemed this project not to be human subjects research as defined by 45 CFR 46. None-

theless, we implemented strict security measures to preserve patient privacy and confidential-

ity in accordance with institutional regulatory and legal requirements. Results were de-

identified before being shared with investigators outside of Rutgers University (see Analysis

files). No health-related information was used for this study, and no patient identifiers were

viewed by investigators or others not employed by Rutgers University.

Datasets

We used data for the three years 2013–2015 contained in noninteroperable EHRs from two

neighboring, clinically affiliated but administratively separate institutions. The inpatient data-

set (IPD) came from the Robert Wood Johnson University Hospital, a 965-bed urban teaching

hospital with approximately 30,000 admissions per year. As received, the IPD included demo-

graphic data on all patients admitted overnight to the hospital during the study period. Each

hospital admission resulted in a distinct entry; consequently, individuals with repeated
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hospitalizations had multiple entries. The outpatient dataset (OPD) came from the Rutgers

Robert Wood Johnson Medical School, which has a multispecialty outpatient medical practice

of over 500 affiliated physicians. The OPD contained information about all patients seen at

least once during the study period, with only one record per person, based on a unique outpa-

tient medical record number (MRN), representing the most recent set of demographic data.

Both the IPD and OPD included first name, last name, DOB, gender, race, street address, city,

state, and ZIP Code. Because only the OPD contained information on ethnicity, we excluded

this variable from linkage experiments. Because the datasets were from clinically affiliated

institutions, administrators used a proprietary linkage package to assign common MRNs. An

inpatient MRN accessible within the OPD was used as a gold standard to evaluate linkage

accuracy.

We preprocessed both datasets to harmonize the variable names and values. Preprocessing

entailed dropping variables not used in the linkage runs or other analyses (e.g., street address,

date of visit), reclassifying race (e.g., Asian, black, white, other, or missing), and extracting year

of birth (YOB) from DOB. We converted implausible values—such as ZIP Codes containing

letters—to missing values, but we did not standardize names.

After data preprocessing, we proceeded with deduplication. The OPD contained 176,154

records of purportedly unique individuals, making deduplication unnecessary. We dedupli-

cated the original 104,289 IPD records by removing entries that matched exactly on 6 vari-

ables: MRN, last name, first name, gender, YOB, race, and ZIP Code. Records containing a

missing ZIP Code were retained only if no other record matching on all other identifiers had a

valid ZIP Code. The final IPD and OPD datasets contained the following variables: last name,

first name, gender, DOB, YOB, age, race, ZIP Code, and MRN. We also assigned a unique

study identifier to each record.

Software packages

We selected software packages based on multiple criteria: (1) available for a Windows-based

computer, (2) nonproprietary, (3) described in prior publications, (4) containing reasonable

documentation with some transparency regarding default settings, (5) capable of operating in

scripting/batch mode, and (6) capable of saving weights for compared pairs. Based on these

criteria, we chose 4 software packages: R (Version 3.4.0, RecordLinkage package), Merge

ToolBox (MTB, Version 0.75), Curtin University Probabilistic Linkage Engine (CUPLE, short-

ened in figures and tables to CU), and Link Plus (LP, Version 2.0) (Table A in S1 File).

Experiment design

Because both DOB and YOB are highly reliable variables in healthcare, we conducted 2 linkage

experiments, one using DOB as the blocking variable (presented as primary analyses) and the

other using YOB as the blocking variable (presented as secondary analyses). First name, last

name, and gender comprised matching variables for all linkage runs. Aside from the software

package, we varied linkage runs by the string matching method (exact or inexact); for inexact

string matching, we applied the most common method, Jaro-Winkler. We also varied the

weight determination method, using 3 probabilistic approaches (Fellegi-Sunter, expectation-

maximization, EpiLink [18]), as well as deterministic linkage. Most of the software packages

implement more than one weight determination method. For probabilistic linkage approaches

other than expectation-maximization, we used default values of M- and U-probabilities, which

for each linkage variable were typically 0.95 and the reciprocal of the number of unique values,

respectively. Some packages required manual entry of these values.
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Analysis files

We prepared 2 de-identified analysis files, one for each linkage experiment, with each file con-

taining one row of information for each compared record pair. Analysis files included columns

for IPD and OPD record identifiers, gender, age (upper limit 90), and race; a variable indicat-

ing whether the record pair matched on inpatient MRN; and 17 sets of weights corresponding

to each linkage run. We assembled the analysis files using R (Version 3.4.0) and SAS (Version

9.4).

To compare results across runs, we scaled the 17 sets of weights to range from 0 to 1, corre-

sponding to the lowest and highest weights respectively. The scaling was linear and was done

using the following equation:

ScaledWeight ¼
OriginalWeight� minðOriginalWeightÞ

maxðOriginalWeightÞ� minðOriginalWeightÞ

Additionally, we ranked the weights within runs from highest (ranked as 1) to lowest.

Declaring matches based on weight rank, such as rank 1 or rank 2, also allowed for compara-

bility across algorithms.

Using this analysis file, we investigated the 17 sets of weights and scaled weights from multi-

ple perspectives. We conducted descriptive analyses of the weights, including display of their

empirical cumulative distribution functions. We also evaluated relationships among the

weights, including their correlation, principal components analysis, and accuracy with respect

to the gold standard, inpatient MRN. We also compared the performance of using matching

weights as decision rules, including the area under the receiver operating characteristic (ROC)

curve (AUC).

Results

The deduplicated datasets contained 69,523 inpatient records and 176,154 outpatient records,

respectively. The total number of possible record pair comparisons, without blocking, was

12,199,192,962 pairs. Blocking on DOB reduced the number of record pair comparisons to

400,490. Datasets were similar based on gender distribution but distinctly different based on

age and race (Table 1).

Characteristics of the weights

Table 2 summarizes the statistics for the weights arising from the 17 linkage runs, displaying

the number of unique weights produced, the maximum and minimum weights, the number of

pairs that received the highest and second highest weights, and the number of pairs that

received the lowest and second lowest weights. As expected, exact string matching approaches

generally produced fewer distinct weights (range 4–9) than inexact string matching (range

8–64,273).

The empirical cumulative distribution functions of scaled weights varied considerably

across the 17 linkage runs, confirming that these methods behaved differently (Fig A in S1

File).

Relationships among weights

Although there was substantial agreement among the 9 algorithms that use exact string match-

ing, they did not produce identical rankings (Table 3; Table B in S1 File). All runs with exact

string matching assigned the highest weight to the same 30,536 pairs that matched on first

name, last name, gender, and DOB. Probabilistic string-matching algorithms besides
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expectation-maximization (i.e., Fellegi-Sunter and EpiLink) assigned higher weight to pairs

that matched on last name and gender than pairs matching on first name and gender

(Table 3). Software packages differed subtly in how they handled missing data (here, gender).

All runs using exact methods were highly correlated (Fig 1). Among runs using inexact

methods, only those run in CUPLE and R were highly correlated with the exact methods. Runs

using inexact string matching in the other two software packages (LP and MTB) were corre-

lated with other runs using the same software but much less so with runs in other packages.

The principal components analysis indicated only four predominant dimensions to the 17 sets

of weights, whereby the first four principal components explained 98.97% of the variation

among the weights (Table C in S1 File).

Comparison with medical record number check

Among 30,536 record pairs matching on DOB, first name, last name, and gender across most

runs, 809 pairs (representing 1.16% of IPD, 0.45% of OPD) did not match on MRN (Table 4).

Manual review of a random sample of 86 these 809 pairs suggested that these likely were the

same individual with either different MRNs (77%), a missing MRN in OPD (22%), or a mis-

specified MRN in OPD (1%). Consequently, the gold standard itself had a small error rate of

approximately 0.5% to 1%.

Table 1. Demographic characteristics by dataset.

Inpatient

(N = 69,523)

Outpatient

(N = 176,154)

Age, N (%)

<1 8,185 (11.8%) 6,127 (3.5%)

1–9 3,123 (4.5%) 21,747 (12.3%)

10–19 3,502 (5.0%) 24,105 (13.7%)

20–29 6,004 (8.6%) 17,197 (9.8%)

30–39 6,900 (9.9%) 19,992 (11.3%)

40–49 6,058 (8.7%) 20,306 (11.5%)

50–59 8,968 (12.9%) 24,825 (14.1%)

60–69 9,861 (14.2%) 21,505 (12.2%)

70–79 8,412 (12.1%) 13,063 (7.4%)

80–89 6,654 (9.6%) 6,241 (3.5%)

90+ 1,856 (2.7%) 1,046 (0.6%)

Gender, N (%)

Female 36,753 (52.9%) 100,238 (56.9%)

Male 32,770 (47.1%) 75,911 (43.1%)

NA 0 5 (0.003%)

Race, N (%)

Asian 6,533 (9.4%) 15,397 (8.7%)

Black 9,506 (13.7%) 22,607 (12.8%)

Other 14,242 (20.5%) 1,149 (0.7%)

White 38,619 (55.5%) 95,372 (54.2%)

NA 623 (0.9%) 41,629 (23.6%)

First name, unique values 13,221 27,232

Last name, unique values 31,103 60,014

Inpatient medical record number, unique values 69,091 138,156

Inpatient medical record number, missing values 0 37,975

https://doi.org/10.1371/journal.pone.0221459.t001
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Table 2. Summary of weights produced by record linkage using DOB as the blocking variable.

Linkage

Run Name

String

Matching

Weight

Determination

Number of

Weights

Minimum

Weight

Maximum

Weight

Pairs with

Highest

Weight

Pairs with Second

Highest Weight

Pairs with

Lowest

Weight

Pairs with

Second Lowest

Weight

R/EX/FS Exact Prob-FS 8 -12.3808 32.35027 30,536 24 176,066 189,273

R/EX/EM Exact Prob-EM 8 -17.7754 25.82314 30,536 24 176,066 189,273

R/EX/EPI Exact Prob-EPI 8 0 1 30,536 24 176,066 189,273

MTB/EX/FS Exact Prob-FS 9 -12.3808 32.35027 30,536 24 176,056 10

MTB/EX/

EM

Exact Prob-EM 9 -17.7681 25.82333 30,536 24 176,056 10

MTB/EX/D Exact Det 4 0 3 30,536 4,445 176,066 189,443

CU/EX/FS Exact Prob-FS 9 -12.3808 32.35027 30,536 24 176,048 10

LP/EX/FS Exact Prob-FS 9 -7.53877 12.78385 30,536 24 176,056 10

LP/EX/EM Exact Prob-EM 9 -7.53877 12.78385 30,536 24 176,056 10

R/INEX/FS Inexact Prob-FS 8 -12.3808 32.35027 31,619 25 176,018 189,095

R/INEX/EM Inexact Prob-EM 121 -18.5957 22.80771 30,536 3 176,018 189,095

MTB/INEX/

FS

Inexact Prob-FS 64,273 -12.3808 32.35027 30,536 3 5,691 1

MTB/INEX/

EM

Inexact Prob-EM 64,273 -17.7789 22.76115 30,536 3 5,691 1

MTB/INEX/

D

Inexact Det 24,603 0 3 30,536 3 5,692 1

CU/INEX/

FS

Inexact Prob-FS 1,492 -12.3808 32.35027 30,554 3 173,105 2

LP/INEX/FS Inexact Prob-FS 37 2.1 15.8 15 3 a a

LP/INEX/

EM

Inexact Prob-EM 37 2.1 15.8 15 3 a a

DOB, date of birth; R, R package; MTB, Merge ToolBox; CU, Curtin University Probabilistic Linkage Engine; LP, Link Plus; Prob-FS, probabilistic, Fellegi-Sunter; Prob-

EM, probabilistic, expectation-maximization; Prob-EPI, probabilistic, EpiLink; Det, deterministic.
a We were unable to recover negative weights for Link Plus with inexact string matching.

https://doi.org/10.1371/journal.pone.0221459.t002

Table 3. Agreement on matching variables for runs with exact string matching, blocking on DOB.

Weight

Rank

Agreement on

R/EX/FS R/EX/EM R/EX/EPI MTB/EX/FS MTB/EX/EM CU/EX/FS

1 First, Last,

Gender

First, Last,

Gender

First, Last,

Gender

First, Last, Gender First, Last, Gender First, Last, Gender

2 First, Last First, Last First, Last First, Last First, Last First, Last

3 Last, Gender First, Gender Last, Gender Last, Gender First, Gender Last, Gender

4 First, Gender Last, Gender First, Gender First, Gender Last, Gender First, Gender

5 Last First Last Last First Last

6 First Last First First Last First

7 Gender Gender Gender Gender Gender Gender

8 None None None None, gender missing None, gender missing None, gender missing

9 N/A N/A N/A None, no matching variables

missing

None, no matching variables

missing

None, no matching variables

missing

DOB, date of birth; R, R package; FS, probabilistic, Fellegi-Sunter; EM, probabilistic, expectation-maximization; EPI, probabilistic, EpiLink; MTB, Merge ToolBox; CU,

Curtin University Probabilistic Linkage Engine

https://doi.org/10.1371/journal.pone.0221459.t003
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We also noted a small number of record pairs with very low weights despite matching

MRNs, representing either different people with the same MRN or errors in the matching vari-

ables (Table 5). Record pairs that agreed only on DOB and MRN but not on first name, last

name, or gender occurred only for 1 record pair in 1 software package using inexact string

matching. Approximately 400 to 500 record pairs (about 1.2% of pairs with the second lowest

weights across multiple runs) matched only on DOB and gender but not on first or last name.

Manual review of a random sample (n = 100) of these records suggested that 99% were likely

the same individuals who did not match appropriately. In most pairs (80%), this occurred with

newborns that had a first name of “Male” or “Female” only in IPD and differed on last names,

presumably the mothers’ in IPD and fathers’ or compound last names in OPD. Other discrep-

ancies occurred because of various issues with names, most often misspellings in first names

and inconsistent representation of compound last names.

Fig 1. Correlation matrix for the 17 sets of weights. EX, exact string matching; INEX, inexact string matching; R, R package; MTB, Merge ToolBox; CU, Curtin

University Probabilistic Linkage Engine; LP, Link Plus; FS, probabilistic, Fellegi-Sunter; EM, probabilistic, expectation-maximization; EPI, probabilistic, EpiLink; D,

deterministic. The rows and columns are ordered so that runs using exact methods are at the top and left.

https://doi.org/10.1371/journal.pone.0221459.g001
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Comparative performance of the methods

We compared the performance of the packages and algorithms using scaled weights and the

gold standard, inpatient MRN, to identify declared matches, false positive matches, and false

negative matches as the weight threshold varied. Across of range of scaled weights, the number

of declared matches of record pairs varied among different packages and algorithms (Fig B

and C in S1 File). When declared matches were the record pairs with the highest weights, most

linkage algorithms performed similarly well, with sensitivity > 90%, specificity > 99%, positive

predictive value (PPV) > 97%, and negative predictive value (NPV) > 99% (Table D in S1

File). Expansion of declared matches to include those with the second highest weights did not

substantively change the test characteristics for most runs (Table E in S1 File). The ROC curves

reflected these high levels of accuracy, with AUC greater than 0.99 for most linkage runs and

minor differences among them (Fig 2; Fig D and Table F in S1 File).

Ensemble methods

We also explored whether the 17 linkage runs could be combined into an “ensemble” method

that outperformed all runs individually. The motivation came from ensemble methods in

machine learning, such as Super Learner [19], in which multiple models of the data are con-

structed and decisions are made by combining the results from these models. We explored two

plausible approaches to ensemble methods based on: (1) averaging scaled weights and (2)

“vote counting” using Rank 1 or 2 weights (i.e., pairs assigned the highest or second highest

weights).

Table 4. Agreement with gold standard among records with the highest weights, blocking on DOB.

Linkage Run Name String Matching Weight Determination Number (%) of Pairs with Highest

Weight

Number (%) of Pairs with First or

Second Highest Weight

Agreement with inpatient MRN

No Yes No Yes

R/EX/FS Exact Prob-FS 809 (2.6) 29,727 (97.4) 814 (2.7) 29,746 (97.3)

R/EX/EM Exact Prob-EM 809 (2.6) 29,727 (97.4) 814 (2.7) 29,746 (97.3)

R/EX/EPI Exact Prob-EPI 809 (2.6) 29,727 (97.4) 814 (2.7) 29,746 (97.3)

MTB/EX/FS Exact Prob-FS 809 (2.6) 29,727 (97.4) 814 (2.7) 29,746 (97.3)

MTB/EX/EM Exact Prob-EM 809 (2.6) 29,727 (97.4) 814 (2.7) 29,746 (97.3)

MTB/EX/D Exact Det 809 (2.6) 29,727 (97.4) 2,597 (7.4) 32,384 (92.6)

CU/EX/FS Exact Prob-FS 809 (2.6) 29,727 (97.4) 814 (2.7) 29,746 (97.3)

LP/EX/FS Exact Prob-FS 809 (2.6) 29,727 (97.4) 814 (2.7) 29,746 (97.3)

LP/EX/EM Exact Prob-EM 809 (2.6) 29,727 (97.4) 814 (2.7) 29,746 (97.3)

R/INEX/FS Inexact Prob-FS 945 (3.0) 30,674 (97.0) 951 (3.0) 30,693 (97.0)

R/INEX/EM Inexact Prob-EM 809 (2.6) 29,727 (97.4) 809 (2.6) 29,730 (97.4)

MTB/INEX/FS Inexact Prob-FS 809 (2.6) 29,727 (97.4) 809 (2.6) 29,730 (97.4)

MTB/INEX/EM Inexact Prob-EM 809 (2.6) 29,727 (97.4) 809 (2.6) 29,730 (97.4)

MTB/INEX/D Inexact Det 809 (2.6) 29,727 (97.4) 809 (2.6) 29,730 (97.4)

CU/INEX/FS Inexact Prob-FS 816 (2.7) 29,738 (97.3) 816 (2.7) 29,741 (97.3)

LP/INEX/FS Inexact Prob-FS 2 (13.3) 13 (86.7) 3 (16.7) 15 (83.3)

LP/INEX/EM Inexact Prob-EM 2 (13.3) 13 (86.7) 3 (16.7) 15 (83.3)

DOB, date of birth; MRN, medical record number; R, R package; MTB, Merge ToolBox; CU, Curtin University Probabilistic Linkage Engine; LP, Link Plus; Prob-FS,

probabilistic, Fellegi-Sunter; Prob-EM, probabilistic, expectation-maximization; Prob-EPI, probabilistic, EpiLink; Det, deterministic.

https://doi.org/10.1371/journal.pone.0221459.t004
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Average scaled weight

As the name connotes, the average scaled weight is the average of the 17 individual weights:

AverageScaledWeight ¼
1

17
ðWeight R13 Scaledþ . . .þWeight LP13 ScaledÞ

As measured by AUC, the average scaled weight ensemble method outperformed all indi-

vidual linkage runs (0.9962 vs.� 0.9948) (Fig E in S1 File).

Rank 1 or 2 voting

An alternative ensemble method was based on the number of linkage runs that assigned the

highest or second highest weight to a record pair (see S1 File: Ensemble method: Rank 1 or 2

voting). The AUC for this ensemble method was 0.9807, lower than with average scaled weight

and lower than some individual linkage runs (Fig E in S1 File).

Year of birth experiment

In recognition that DOB is not available in all databases or accurate in all circumstances, we

performed additional experiments blocking on YOB (S1 File: Year of birth experiment). All 9

exact string matching linkage runs assigned the highest weight to the same 30,805 pairs, as

compared with 30,536 pairs when blocking on DOB (Table G in S1 File). These additional 269

pairs matched on first name, last name, gender, and YOB, but not day of birth, month of birth,

or both. Using YOB instead of DOB as the blocking variable, we gained 43 matches that shared

Table 5. Agreement with gold standard among records with the lowest weights, blocking on DOB.

Linkage Run Name String Matching Weight Determination Number (%) Pairs with Lowest

Weight

Number (%) Pairs with First or Second

Lowest Weight

Agreement with inpatient MRN

No Yes No Yes

R/EX/FS Exact Prob-FS 176,066 (100) 0 (0) 364,871 (99.9) 468 (0.1%)

R/EX/EM Exact Prob-EM 176,066 (100) 0 (0) 364,871 (99.9) 468 (0.1%)

R/EX/EPI Exact Prob-EPI 176,066 (100) 0 (0) 364,871 (99.9) 468 (0.1%)

MTB/EX/FS Exact Prob-FS 176,056 (100) 0 (0) 176,066 (100) 0 (0)

MTB/EX/EM Exact Prob-EM 176,056 (100) 0 (0) 176,066 0 (0)

MTB/EX/D Exact Det 176,066 (100) 0 (0) 365,038 471 (0.1%)

CU/EX/FS Exact Prob-FS 176,048 (100) 0 (0) 176,058 0 (0)

LP/EX/FS Exact Prob-FS 176,056 (100) 0 (0) 176,066 0 (0)

LP/EX/EM Exact Prob-EM 176,056 (100) 0 (0) 176,066 0 (0)

R/INEX/FS Inexact Prob-FS 176,018 (100) 0 (0) 364,693 420 (0.1%)

R/INEX/EM Inexact Prob-EM 176,018 (100) 0 (0) 364,693 420 (0.1%)

MTB/INEX/FS Inexact Prob-FS 5,691 (100) 0 (0) 5,692 0 (0)

MTB/INEX/EM Inexact Prob-EM 5,691 (100) 0 (0) 5,692 0 (0)

MTB/INEX/D Inexact Det 5,692 (100) 0 (0) 5,693 0 (0)

CU/INEX/FS Inexact Prob-FS 173,105 (100) 0 (0) 173,107 0 (0)

LP/INEX/FS Inexact Prob-FS 84 (98.8) 1 (1.2) a a

LP/INEX/EM Inexact Prob-EM 84 (98.8) 1 (1.2) a a

DOB, date of birth; MRN, medical record number; R, R package; MTB, Merge ToolBox; CU, Curtin University Probabilistic Linkage Engine; LP, Link Plus; Prob-FS,

probabilistic, Fellegi-Sunter; Prob-EM, probabilistic, expectation-maximization; Prob-EPI, probabilistic, EpiLink; Det, deterministic.
a Low weights were unrecoverable in Link Plus using inexact string matching.

https://doi.org/10.1371/journal.pone.0221459.t005
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a common MRN but also added 226 matches that did not match on MRN (Table H in S1 File).

Correspondingly, blocking on YOB led to marginal improvements in sensitivity and NPV at

Fig 2. Receiver operating characteristic curves for all linkage runs. EX, exact string matching; INEX, inexact string matching; R, R package; MTB, Merge ToolBox;

CU, Curtin University Probabilistic Linkage Engine; LP, Link Plus; LP, Link Plus; FS, probabilistic, Fellegi-Sunter; EM, probabilistic, expectation-maximization; EPI,

probabilistic, EpiLink; D, deterministic. Curves are limited to values of sensitivity equal to or exceeding 0.95 for clarify. Full ROC curves are presented in Fig D in S1

File.

https://doi.org/10.1371/journal.pone.0221459.g002
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the expense of specificity and PPV (Table I in S1 File). Additionally, blocking on YOB imposed

major computational challenges because of the 329-fold increase in the number of compared

pairs (131,906,591). Compared to the efficient DOB linkage runs that took less than one min-

ute (Table J in S1 File), some YOB linkage runs took more than one hour (Table K in S1 File).

Additionally, we were unable to complete any runs using R with inexact string matching due

to computation limitations. Thus, compared to the experiment blocking on DOB, blocking on

YOB seemed ineffective, yielding 5 times more additional errors than correct matches while

substantially increasing computational time and precluding certain analyses.

Discussion

Using real data from noninteroperable EHRs, we performed a comprehensive assessment of

the behavior and usability of nonproprietary available linkage software, evaluating the deci-

sion-making capability of specific linkage methods such as type of string comparison and

weight determination and output from the linkage runs. Across multiple runs, we found rela-

tively few perceptible differences in matching results, specifically with respect to ranks of the

highest weights. Performance among software packages using exact string matching varied

much less than that for methods using inexact string matching. From other perspectives, such

as declaring matches to be pairs assigned the highest weight, linkage runs with inexact string

matching were notably less efficient. As seen in Table 2, the linkage runs with exact string

matching identified the same number of highest weight records, whereas some linkage runs

with inexact string matching produced either too many matches or, in the case of LP, dramati-

cally too few—possibly because only positive weights could be included in output. An ensem-

ble matching approach had incrementally superior accuracy to individual algorithms.

The performance of most software packages and algorithms was similar, although not iden-

tical, with respect to matching accuracy as compared with our gold standard. In our linkage

runs, exact matching using EM algorithms for weight determination appeared to be slightly

less reliable than other exact matching algorithms: EM algorithms prioritized matching on

first name over matching on last name, a more diverse and specific matching variable. Why

some linkage runs prioritized first name over last name or vice versa is unclear. Compared

with exact matching, linkage runs of inexact matching algorithms led to more variability in

both the number of discrete weights assigned (8 to 64,273) and the number of record pairs

receiving the highest weight (15 to 31,619). Our linkage runs also revealed more variability in

assigning low weights than high weights when using both exact string matching and inexact

string matching. This diversity among low-weight record pairs is unlikely to affect declared

matches at common matching thresholds; however, it does underscore the differences in

weight determination among approaches.

We focused on the weights associated with the record pairs evaluated for each linkage pro-

gram, evaluating linkage programs and algorithms as decision tools rather than the actual

matching decisions. The findings suggest that the selection of weight thresholds for declaring

matches can have a substantial impact on both operational and inferential uses of the linked

data [20, 21]. Choosing a threshold also depends on the study objectives. If false-positive link-

ages are costly, whether monetarily, scientifically, or in terms of human health, then higher

matching thresholds may be preferred at the cost of lower sensitivity. For other questions,

such as estimating the prevalence of rare diseases, even a few false negatives may cripple an

analysis and the resulting loss of statistical power may be prohibitive [5, 11–15, 22, 23].

A prior study similarly compared the performance and accuracy of different linkage

approaches at different matching thresholds [16]. However, that study was limited to only

three approaches (2 probabilistic and 1 deterministic) without mention of specific probabilistic
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matching algorithms or the impact of individual matching variables on weight determination.

Another more extensive comparison of the performance of both open-source and proprietary

linkage packages used synthetic datasets to develop a method for evaluating data linkage soft-

ware [17]. After comparing both computational speed and linkage quality of various software

packages, that study identified a couple of packages, which were not named, that outperformed

others. However, unlike our current findings, the prior work did not directly evaluate the per-

formance of specific algorithms or the impact of specific variables or weight thresholds on

decision-making.

Even small numeric differences in weighting could be more important in some settings,

such as work with low-quality, incorrect data, or high levels of missingness. Prior work has

shown that probabilistic approaches, which are often more time consuming, generally perform

better in settings with low-quality data or high levels of missingness [8]. Although the match-

ing variables in our datasets contained few missing values, treatment of missing values varied

among the 4 software packages used in the present study. Furthermore, some packages did not

allow the user to change default settings regarding missing data; other packages even lacked

documentation about the subject. These differences in the handling of missing data may have

important implications for the performance and reliability of linkage approaches, a hypothesis

that bears further investigation.

Unlike prior work [17], we did not formally assess the computational performance of the

packages. For the main experiment blocking on DOB, all ran within 1 minute (Table J in S1

File). For the experiment that blocked on YOB, only MTB and CUPLE ran smoothly for

choices of string matching and weight determination (Table K in S1 File). LP ran relatively

efficiently, in part because only positive weights were calculated for inexact string matching. R

did not run at all for inexact string matching or for exact string matching with EpiLink weight

determination, presumably because R is single-threaded and holds all objects in (real or vir-

tual) memory. This experience highlights the importance of suitable blocking variables.

The extent to which our findings can be generalized to other datasets is uncertain. Like all

real datasets, the two datasets we used had some data quality problems. As one such indicator,

nearly 3% (Table 4) of the highest ranked matches did not share the same MRN, our gold stan-

dard. Other demographic variables in the original datasets that were not used as linking vari-

ables had high levels of missingness, such as ethnicity and address. Nonetheless, in terms of

the linking variables tested, both datasets seemed to be rather good quality, in part perhaps

because of human health and financial incentives [24]. Furthermore, evaluating linkage error

using a gold standard—even an alloyed gold standard—provides important information on

linkage quality [7].

Another factor that may limit the generalizability of the findings is that we chose not to do

extensive data cleaning beyond deduplication [21, 25, 26]. Specifically, we did not perform

name standardization—such as removing name suffixes like “Jr,” conducting nickname look-

ups, and dealing with compound surnames and name transpositions—because we felt it was

beyond the scope of the current project. Based on our manual review of low-weight record

pairs with the same MRN, name standardization would likely have improved results for many

of the linkage packages. Nonetheless, such processes may come at a cost, as heavy cleaning

may decrease overall linkage quality [25]. However, we found one other group with low

matching weights despite agreements in the gold standard: infants whose first name and last

name changed between the inpatient and outpatient settings. This specific group underscores

the importance of understanding real-world healthcare practices—such as the naming of new-

born infants in inpatient settings as “Male” or “Female” with mothers’ surnames—when inter-

preting EHR data [27]. Other analogous circumstances such as name changes with marriage
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or divorce may also compromise matching accuracy based on names. It is important to note

that these findings may not be generalizable to other populations, such as the elderly.

We also did not explore the effect of using additional linking variables such as address

because of the challenges in standardizing address text and concerns about the reliability of

address variables, which can and do change over time. Identifying and accounting for identi-

fier errors when linking data, especially on ZIP Code, helps to reduce bias caused by linkage

errors [28]. Further, we did not examine the effects of varying numerical parameters—such as

values of M-probabilities and U-probabilities—or thoroughly investigate how different choices

of linking variables would affect linkage quality. Some of the results suggest that, in the same

way as weight thresholds matter less than weight rank, some algorithms may be relatively

insensitive to the choice, for instance, of M-probabilities and U-probabilities. Conducting

weight-focused experiments similar to the current study could help resolve these kinds of

questions.

Conclusion

We assessed the behavior and performance of various linkage algorithms using nonproprietary

available linkage software and real data from two EHR systems. In settings in which levels of

missing data are low and data quality is high, exact string matching approaches vary little

across software packages, although approaches using exogenous weight determination, such as

Fellegi-Sunter, may outperform those with endogenous methods, such as EM algorithms.

With few exceptions, most linkage runs with either exact string matching or inexact string

matching yielded similar groups of higher-weighted record pairs with high accuracy. Where

possible, blocking on DOB seems preferable to blocking on YOB, given its greater computa-

tional efficiency and greater accuracy. Certain ensemble methods appear to improve overall

performance of the algorithms.

Supporting information

S1 File. Supporting tables, figures and text.

(PDF)

Acknowledgments

We thank James Boyd and Anna Ferrante for access to the Curtin University Probabilistic

Linkage Engine (LinXmart) software and for initial discussions regarding the design of our

experiments; Haoqian Chen and Matthew Iozzio for administrative support; Barry Eggleston

for replication of data analyses; Steven Cohen for review of the final manuscript; and Jeffrey

Novey for editorial assistance.

Author Contributions

Conceptualization: Alan F. Karr, Suzanne L. West, Soko Setoguchi, Tzuyung D. Kou, Tobias

Gerhard, Daniel B. Horton.

Data curation: Matthew T. Taylor, Tobias Gerhard, Daniel B. Horton.

Formal analysis: Alan F. Karr, Matthew T. Taylor, Daniel B. Horton.

Funding acquisition: Suzanne L. West, Tzuyung D. Kou.

Methodology: Alan F. Karr, Suzanne L. West, Daniel B. Horton.

Project administration: Alan F. Karr, Suzanne L. West, Tobias Gerhard, Daniel B. Horton.

Comparing record linkage software programs and algorithms using real-world data

PLOS ONE | https://doi.org/10.1371/journal.pone.0221459 September 24, 2019 14 / 16

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0221459.s001
https://doi.org/10.1371/journal.pone.0221459


Validation: Alan F. Karr, Daniel B. Horton.

Writing – original draft: Alan F. Karr, Matthew T. Taylor, Suzanne L. West, Daniel B.

Horton.

Writing – review & editing: Alan F. Karr, Matthew T. Taylor, Suzanne L. West, Soko Setogu-

chi, Tzuyung D. Kou, Tobias Gerhard, Daniel B. Horton.

References
1. West of Scotland Coronary Prevention Study Group. Computerised record linkage: compared with tra-

ditional patient follow-up methods in clinical trials and illustrated in a prospective epidemiological study.

J Clin Epidemiol. 1995; 48(12):1441–52. PubMed https://doi.org/10.1016/0895-4356(95)00530-7

PMID: 8543958.

2. McDonald L, Schultze A, Carroll R, Ramagopalan SV. Performing studies using the UK Clinical Practice

Research Datalink: to link or not to link? Eur J Epidemiol. 2018; 33(6):601–5. https://doi.org/10.1007/

s10654-018-0389-5 PMID: 29619668.

3. Cornish RP, Macleod J, Carpenter JR, Tilling K. Multiple imputation using linked proxy outcome data

resulted in important bias reduction and efficiency gains: a simulation study. Emerg Themes Epidemiol.

2017; 14:14. https://doi.org/10.1186/s12982-017-0068-0 PMID: 29270206; PubMed Central PMCID:

PMC5735815.

4. Patorno E, Gopalakrishnan C, Franklin JM, Brodovicz KG, Masso-Gonzalez E, Bartels DB, et al.

Claims-based studies of oral glucose-lowering medications can achieve balance in critical clinical vari-

ables only observed in electronic health records. Diabetes Obes Metab. 2018; 20(4):974–84. https://

doi.org/10.1111/dom.13184 PMID: 29206336.

5. Moore CL, Amin J, Gidding HF, Law MG. A new method for assessing how sensitivity and specificity of

linkage studies affects estimation. PLoS One. 2014; 9(7):e103690. Epub 2014/07/30. https://doi.org/10.

1371/journal.pone.0103690 PMID: 25068293; PubMed Central PMCID: PMC4113448.

6. Baldi I, Ponti A, Zanetti R, Ciccone G, Merletti F, Gregori D. The impact of record-linkage bias in the

Cox model. J Eval Clin Pract. 2010; 16(1):92–6. https://doi.org/10.1111/j.1365-2753.2009.01119.x

PMID: 20367819.

7. Harron KL, Doidge JC, Knight HE, Gilbert RE, Goldstein H, Cromwell DA, et al. A guide to evaluating

linkage quality for the analysis of linked data. International Journal of Epidemiology. 2017; 46(5):1699–

710. https://doi.org/10.1093/ije/dyx177 PMID: 29025131

8. Zhu Y, Matsuyama Y, Ohashi Y, Setoguchi S. When to conduct probabilistic linkage vs. deterministic

linkage? A simulation study. J Biomed Inform. 2015; 56:80–6. https://doi.org/10.1016/j.jbi.2015.05.012

PMID: 26004791.

9. Fellegi IP, Sunter AB. A theory for record linkage. Journal of the American Statistical Association. 1969;

64(328):1183–210. https://doi.org/10.1080/01621459.1969.10501049

10. Dempster AP, Laird NM, Rubin DB. Maximum likelihood from incomplete data via the EM algorithm.

Journal of the Royal Statistical Society Series B (Methodological). 1977; 39(1):1–38.

11. Aldridge RW, Shaji K, Hayward AC, Abubakar I. Accuracy of probabilistic linkage using the enhanced

matching system for public health and epidemiological studies. PLoS One. 2015; 10(8):e0136179.

https://doi.org/10.1371/journal.pone.0136179 PMID: 26302242; PubMed Central PMCID:

PMC4547731.

12. Ford JB, Roberts CL, Taylor LK. Characteristics of unmatched maternal and baby records in linked birth

records and hospital discharge data. Paediatr Perinat Epidemiol. 2006; 20(4):329–37. https://doi.org/

10.1111/j.1365-3016.2006.00715.x PMID: 16879505.

13. Hagger-Johnson G, Harron K, Fleming T, Gilbert R, Goldstein H, Landy R, et al. Data linkage errors in

hospital administrative data when applying a pseudonymisation algorithm to paediatric intensive care

records. BMJ Open. 2015; 5(8):e008118. https://doi.org/10.1136/bmjopen-2015-008118 PMID:

26297363; PubMed Central PMCID: PMC4550723.

14. Lariscy JT. Differential record linkage by Hispanic ethnicity and age in linked mortality studies: implica-

tions for the epidemiologic paradox. J Aging Health. 2011; 23(8):1263–84. https://doi.org/10.1177/

0898264311421369 PMID: 21934120; PubMed Central PMCID: PMC4598042.

15. Schmidlin K, Clough-Gorr KM, Spoerri A, Egger M, Zwahlen M, Swiss National C. Impact of unlinked

deaths and coding changes on mortality trends in the Swiss National Cohort. BMC Med Inform Decis

Mak. 2013; 13:1. https://doi.org/10.1186/1472-6947-13-1 PMID: 23289362; PubMed Central PMCID:

PMC3547805.

Comparing record linkage software programs and algorithms using real-world data

PLOS ONE | https://doi.org/10.1371/journal.pone.0221459 September 24, 2019 15 / 16

https://doi.org/10.1016/0895-4356(95)00530-7
http://www.ncbi.nlm.nih.gov/pubmed/8543958
https://doi.org/10.1007/s10654-018-0389-5
https://doi.org/10.1007/s10654-018-0389-5
http://www.ncbi.nlm.nih.gov/pubmed/29619668
https://doi.org/10.1186/s12982-017-0068-0
http://www.ncbi.nlm.nih.gov/pubmed/29270206
https://doi.org/10.1111/dom.13184
https://doi.org/10.1111/dom.13184
http://www.ncbi.nlm.nih.gov/pubmed/29206336
https://doi.org/10.1371/journal.pone.0103690
https://doi.org/10.1371/journal.pone.0103690
http://www.ncbi.nlm.nih.gov/pubmed/25068293
https://doi.org/10.1111/j.1365-2753.2009.01119.x
http://www.ncbi.nlm.nih.gov/pubmed/20367819
https://doi.org/10.1093/ije/dyx177
http://www.ncbi.nlm.nih.gov/pubmed/29025131
https://doi.org/10.1016/j.jbi.2015.05.012
http://www.ncbi.nlm.nih.gov/pubmed/26004791
https://doi.org/10.1080/01621459.1969.10501049
https://doi.org/10.1371/journal.pone.0136179
http://www.ncbi.nlm.nih.gov/pubmed/26302242
https://doi.org/10.1111/j.1365-3016.2006.00715.x
https://doi.org/10.1111/j.1365-3016.2006.00715.x
http://www.ncbi.nlm.nih.gov/pubmed/16879505
https://doi.org/10.1136/bmjopen-2015-008118
http://www.ncbi.nlm.nih.gov/pubmed/26297363
https://doi.org/10.1177/0898264311421369
https://doi.org/10.1177/0898264311421369
http://www.ncbi.nlm.nih.gov/pubmed/21934120
https://doi.org/10.1186/1472-6947-13-1
http://www.ncbi.nlm.nih.gov/pubmed/23289362
https://doi.org/10.1371/journal.pone.0221459


16. Campbell KM, Deck D, Krupski A. Record linkage software in the public domain: a comparison of Link

Plus, The Link King, and a ’basic’ deterministic algorithm. Health Informatics J. 2008; 14(1):5–15.

https://doi.org/10.1177/1460458208088855 PMID: 18258671.

17. Ferrante A, Boyd J. A transparent and transportable methodology for evaluating Data Linkage software.

J Biomed Inform. 2012; 45(1):165–72. https://doi.org/10.1016/j.jbi.2011.10.006 PMID: 22061295.

18. Contiero P, Tittarelli A, Tagliabue G, Maghini A, Fabiano S, Crosignani P, et al. The EpiLink record link-

age software: presentation and results of linkage test on cancer registry files. Methods Inf Med. 2005;

44(1):66–71. PMID: 15778796.

19. van der Laan MJ, Polley EC, Hubbard AE. Super learner. Stat Appl Genet Mol Biol. 2007; 6:Article25.

Epub 2007/10/04. https://doi.org/10.2202/1544-6115.1309 PMID: 17910531.

20. McIllece J, Kapani V. A simplified approach to administrative record linkage in the quarterly census of

employment and wages. JSM Proceedings: Survey Research Methods. 2014:4392–404.

21. Sayers A, Ben-Shlomo Y, Blom AW, Steele F. Probabilistic record linkage. Int J Epidemiol. 2016; 45

(3):954–64. https://doi.org/10.1093/ije/dyv322 PMID: 26686842; PubMed Central PMCID:

PMC5005943.

22. Krewski D, Dewanji A, Wang Y, Bartlett S, Zielinski JM, Mallick R. The effect of record linkage errors on

risk estimates in cohort mortality studies. Statistics Canada. 2005; 31(1):13–21.

23. Bohensky MA, Jolley D, Sundararajan V, Evans S, Pilcher DV, Scott I, et al. Data linkage: a powerful

research tool with potential problems. BMC Health Serv Res. 2010; 10:346. https://doi.org/10.1186/

1472-6963-10-346 PMID: 21176171; PubMed Central PMCID: PMC3271236.

24. Karr AF, Sanil AP, Banks DL. Data quality: A statistical perspective. Statistical Methodology. 2006;

3:137–73.

25. Randall SM, Ferrante AM, Boyd JH, Semmens JB. The effect of data cleaning on record linkage quality.

BMC Med Inform Decis Mak. 2013; 13:64. https://doi.org/10.1186/1472-6947-13-64 PMID: 23739011;

PubMed Central PMCID: PMC3688507.

26. Gilbert R, Lafferty R, Hagger-Johnson G, Harron K, Zhang LC, Smith P, et al. GUILD: GUidance for

Information about Linking Data sets. J Public Health (Oxf). 2018; 40(1):191–8. https://doi.org/10.1093/

pubmed/fdx037 PMID: 28369581; PubMed Central PMCID: PMC5896589.

27. Agniel D, Kohane IS, Weber GM. Biases in electronic health record data due to processes within the

healthcare system: retrospective observational study. BMJ. 2018; 361:k1479. https://doi.org/10.1136/

bmj.k1479 PMID: 29712648; PubMed Central PMCID: PMC5925441 at www.icmje.org/coi_disclosure.

pdf and declare: all authors had financial support from the National Institutes of Health for this study.

28. Harron K, Hagger-Johnson G, Gilbert R, Goldstein H. Utilising identifier error variation in linkage of

large administrative data sources. BMC Med Res Methodol. 2017; 17(1):23. https://doi.org/10.1186/

s12874-017-0306-8 PMID: 28173759; PubMed Central PMCID: PMC5297137.

Comparing record linkage software programs and algorithms using real-world data

PLOS ONE | https://doi.org/10.1371/journal.pone.0221459 September 24, 2019 16 / 16

https://doi.org/10.1177/1460458208088855
http://www.ncbi.nlm.nih.gov/pubmed/18258671
https://doi.org/10.1016/j.jbi.2011.10.006
http://www.ncbi.nlm.nih.gov/pubmed/22061295
http://www.ncbi.nlm.nih.gov/pubmed/15778796
https://doi.org/10.2202/1544-6115.1309
http://www.ncbi.nlm.nih.gov/pubmed/17910531
https://doi.org/10.1093/ije/dyv322
http://www.ncbi.nlm.nih.gov/pubmed/26686842
https://doi.org/10.1186/1472-6963-10-346
https://doi.org/10.1186/1472-6963-10-346
http://www.ncbi.nlm.nih.gov/pubmed/21176171
https://doi.org/10.1186/1472-6947-13-64
http://www.ncbi.nlm.nih.gov/pubmed/23739011
https://doi.org/10.1093/pubmed/fdx037
https://doi.org/10.1093/pubmed/fdx037
http://www.ncbi.nlm.nih.gov/pubmed/28369581
https://doi.org/10.1136/bmj.k1479
https://doi.org/10.1136/bmj.k1479
http://www.ncbi.nlm.nih.gov/pubmed/29712648
http://www.icmje.org/coi_disclosure.pdf
http://www.icmje.org/coi_disclosure.pdf
https://doi.org/10.1186/s12874-017-0306-8
https://doi.org/10.1186/s12874-017-0306-8
http://www.ncbi.nlm.nih.gov/pubmed/28173759
https://doi.org/10.1371/journal.pone.0221459

