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ABSTRACT

Oligodendrocyte development is controlled by numerous
extracellular signals that regulate a series of transcription
factors that promote the differentiation of oligodendrocyte
progenitor cells to myelinating cells in the central nervous
system. A major element of this regulatory system that has
only recently been studied is the intracellular signalling from
surface receptors to transcription factors to down-regulate
inhibitors and up-regulate inducers of oligodendrocyte dif-
ferentiation and myelination. The current review focuses on
one such pathway: the mTOR (mammalian target of ra-
pamycin) pathway, which integrates signals in many cell
systems and induces cell responses including cell prolifera-
tion and cell differentiation. This review describes the known
functions of mTOR as they relate to oligodendrocyte develop-
ment, and its recently discovered impact on oligodendrocyte
differentiation and myelination. A potential model for its role
in oligodendrocyte development is proposed.
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INTRODUCTION

CNS (central nervous system) myelin is produced by the
differentiation of the oligodendroglial plasma membrane,
which surrounds axons in a compact multilamellar structure
acting both to insulate axons and facilitate nerve impulse
conduction as well as to provide trophic support for the
axon. Oligodendrocyte development has been extensively
characterized, and in early studies a number of extracellular
signals including several growth factors were identified that
influence OPC (oligodendrocyte progenitor cell) survival,
proliferation and differentiation (for overviews; see Miller,
2002; Baron et al., 2005).

Oligodendrocyte lineage development is defined by dis-
tinct morphology changes both in vitro and in vivo (Pfeiffer
et al., 1993; Song et al., 2001), which is achieved by rapid gene
expression and cytoskeletal changes in response to extracel-
lular signals (Song et al., 2001; Liang et al., 2004; Lafrenaye
and Fuss, 2010; Rajasekharan et al., 2010; Colognato and
Tzvetanova, 2011; Eyermann et al., 2012). In addition to in-
vestigations of extracellular signals, numerous studies have
focused on identifying the transcription factors that reg-
ulate oligodendrocyte specification and differentiation (for
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overviews, see Wegner, 2008; Li et al., 2009; Emery, 2010a,
2010b). These studies have highlighted the importance of 10–
15 such factors, and extensive data exist demonstrating the
complex regulation of gene expression at different stages of
oligodendrocyte development (Wegner, 2008; Li et al., 2009).

An understudied research area until recently has been
the intracellular signalling pathways that link these two es-
sential regulators of oligodendrocyte development: surface
receptor signalling and the transcription factors that reg-
ulate oligodendrocyte-specific gene expression. This review
focuses on one such pathway: the mTOR (mammalian tar-
get of rapamycin) pathway, which is downstream of PI3K
(phosphoinositide 3-kinase)/Akt, and which regulates many
aspects of cell development. The PI3K/Akt pathway is piv-
otal in many survival and growth factor signalling systems
(Franke et al., 1995; Dudek et al., 1997; Franke et al., 1997;
Kennedy et al., 1997), where it acts through phosphorylation
of numerous substrates that promote cell survival and pro-
liferation. PI3K/Akt signalling mediates oligodendrocyte pro-
genitor cell survival/proliferation induced by PDGF (platelet-
derived growth factor) (Ebner et al., 2000; Baron et al., 2003)
and IGF-I (insulin-like growth factor 1) (Ness et al., 2002;
Ness and Wood, 2002; Ness et al., 2004; Zaka et al., 2005; Cui
and Almazan, 2007; Frederick et al., 2007; Min et al., 2012).
Of particular interest for this review, is the role of PI3K/Akt
signalling in cell differentiation reported in many cell sys-
tems (Fishwick et al., 2010; Baracho et al., 2011; Gardner
et al., 2012). In particular, recent studies have shown that
the PI3K/Akt pathway, through mTOR, promotes oligoden-
drocyte differentiation and myelination in the CNS and in
the PNS (peripheral nervous system) (Narayanan et al., 2009;
Tyler et al., 2009; Tyler et al., 2011; Guardiola-Diaz et al.,
2012; Sherman et al., 2012).

In the following sections, we provide an overview of
mTOR signalling complexes and targets, their known func-
tions in translation regulation, transcription, RNA processing
and cell differentiation in non-myelin producing cells. We
then discuss our current knowledge of mTOR signalling in
oligodendrocyte development and in developmental myeli-
nation in the CNS and PNS as a downstream mediator of
PI3K/Akt signalling. Finally, we connect mTOR signalling with
downstream transcriptional regulation of oligodendrocyte
differentiation and myelination programmes, and we provide
perspectives on how mTOR probably links extracellular and
intracellular mediators and coordinates with other signalling
pathways to promote a fully differentiated myelinating
phenotype in oligodendrocytes.

THE MAMMALIAN TARGET OF
RAPAMYCIN (mTOR)

mTOR is a highly evolutionarily conserved serine/threonine
protein kinase, which is a downstream mediator of PI3K/Akt

signalling in organisms from yeast to mammals. mTOR is ubiq-
uitously expressed in cells, and it regulates multiple cellular
functions including survival, proliferation, organogenesis and
differentiation of numerous cell types (Hwang et al., 2008).
Canonical signalling through mTOR has been widely studied
in autophagy, where mTOR acts as an amino acid sensor re-
sponding to cellular stress and as the hub for integration of
extracellular signals to regulate cell growth (for reviews, see
Sarbassov et al., 2005a; Dann and Thomas, 2006; Wullschleger
et al., 2006). mTOR is essential for development; mTOR-null
mice die during early embryogenesis (Guertin et al., 2006b).
Growth factors such as insulin or IGF-I activate mTOR sig-
nalling by activating PI3K/Akt. Activated Akt inhibits TSC
(tuberous sclerosis complex) 1/2, thereby relieving its inhi-
bition of Rheb (Ras homologue enriched in brain), allowing
Rheb activation of mTOR (Figure 1; for review, see Avruch
et al., 2006). mTOR is phosphorylated at Ser2448 by PI3K/Akt
signalling and is autophosphorylated at Ser2481(Sekulic et al.,
2000; Soliman et al., 2010); Ser2481 autophosphorylation is
required for its activity (Soliman et al., 2010).

mTOR complexes and targets
mTOR exists in two functionally distinct complexes,
the mTORC1 (raptor–mTOR complex) and the mTORC2
(rictor–mTOR complex). The mTORC1 complex is the better
studied of the two complexes because it regulates translation
of 5′ TOP (terminal oligopyrimidine tract)-containing mRNAs
in response to extracellular signals (Huo et al., 2011), and
it is central to a signalling cascade that regulates initiation
of cap-dependent RNA translation. (Cap-independent trans-
lation is unaffected by mTOR signalling.) 4EBP1–3 (eIF4E-
binding proteins 1–3) bind to the mRNA cap-binding pro-
tein eIF4E, inhibiting the initiation of cap-dependent trans-
lation. mTOR phosphorylates 4EBP1–3, which inhibits their
activity and consequently allows release of eIF4E to promote
cap-dependent translation. Additionally, the p70 ribosomal
proteins S6K (S6 kinase) 1/2 that phosphorylate the S6 pro-
tein of small ribosomal subunits are also phosphorylated and
activated by mTORC1, along with other kinases, thereby en-
hancing protein translation.

In comparison with mTORC1, the biological function of
mTORC2 is less well understood, in part because of its more
recent identification (Sarbassov et al., 2005b). mTORC2 can
be activated by PI3K (Dalle Pezze et al., 2012) or by TSC1/2
(Huang et al., 2008) or inactivated by mTORC1-activated
S6K1 (Dibble et al., 2009; Julien et al., 2010) (Figure 1).
mTORC2, also known as PDK2 (phosphoinositide-dependent
protein kinase-2), phosphorylates the hydrophobic motif of
Akt at Ser473, and of closely related AGC-type kinases (pro-
tein kinase A/protein kinase G/protein kinase C-family ki-
nases) (Parekh et al., 1999; Sarbassov et al., 2005b; Guertin
et al., 2006b). The knockout of mTORC2-specific rictor is em-
bryonic lethal and results in complete loss of Ser473 phos-
phorylation of Akt (Yang et al., 2006a), which is essential for
the maximal activation of Akt. In contrast, mTORC1 does not
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Figure 1 mTOR signalling pathways
Model of the growth factor-mediated regulation of mTOR signalling through mTORC1 and mTORC2. The well-established function
of mTOR in nutrient sensing is not described here. Extracellular factors, such as IGF-I, insulin or neuregulin, bind to their respective
receptors [IGF-IR, insulin receptor (IR) or ErbBs] and activate the PI3K/Akt pathway, which targets mTORC1 and mTORC2 to regulate
unique cellular processes. PI3K activates PDK1, which phosphorylates Akt on Thr308. This activates mTORC1 directly or indirectly through
inactivation of TSC1/2 to eliminate its inactivation of Rheb1, thereby activating mTORC1. mTORC2 can be directly activated by PI3K or
TSC1/2 and is inactivated by S6K1, a target of mTORC1 and of the Erk 1/2 pathway, which is also activated by these factors. See text
for details on these interactions. Yellow-encircled black symbols represent conserved proteins between mTORC1 and mTORC2. Arrows
indicate positive interactions; bars indicate negative interactions.

phosphorylate Akt. Interestingly, mTORC2 knockdown has no
effect on S6K1 or 4EBP (enhancer-binding protein) phospho-
rylation, suggesting that mTORC2 targets an Akt pool that is
distinct from the Akt pool upstream of mTORC1 (Jacinto et al.,
2004; Sarbassov et al., 2004). In some cell types, mTORC2 has
a major role in the organization of the cytoskeleton (Jacinto
et al., 2004; Sarbassov et al., 2004; Liu et al., 2008), mediated
by its phosphorylation of PKC-α (protein kinase C-α) (Jac-
into et al., 2004; Guertin et al., 2006b). Additionally, mTORC2
regulates SGK1 (serum- and glucocorticoid-induced protein
kinase 1) activity, a major regulator of Forkhead transcription
factors and of MEKK2 [MAPK (mitogen-activated protein ki-
nase)/ERK (extracellular signal-regulated kinase) kinase 2],
which impacts the MAPK (mitogen-activated protein kinase)
pathways (Guertin et al., 2006a; Pearce et al., 2010).

The multimeric mTORC1 contains mTOR, raptor and sev-
eral other adaptor proteins, including mLST8 (mammalian
lethal with Sec13 protein 8) and Deptor, which are also shared
with mTORC2 (Hara et al., 2002; Kim et al., 2002; Kim et al.,

2003) (Figure 1). By contrast, the negative regulator PRAS40
(praline-rich Akt substrate of 40 kDa) is unique to mTORC1
(Kovacina et al., 2003; Vander Haar et al., 2007). PRAS40
negatively regulates mTORC1 by binding to raptor and in-
hibiting the recruitment of other mTORC1 substrates critical
for protein translation; upon insulin stimulation, PRAS40 is
phosphorylated, releasing its inhibition of mTORC1 activity
(Sancak et al., 2007).

Proteins unique to mTORC2 include protor (protein ob-
served with rictor) (Pearce et al., 2007). Protor-null mice have
significantly reduced SGK1 phosphorylation (Pearce et al.,
2011), consistent with the data discussed above that SGK1 is
an mTORC2 target. mSIN1 (mammalian stress-activated pro-
tein kinase interacting protein 1) is also unique to mTORC2.
It has recently been shown that mSin1 phosphorylation
prevents the lysosomal degradation of mTORC2 (Chen and
Sarbassov, 2011).

In vivo, mTORfl/fl (Risson et al., 2009; Lang et al., 2010),
raptorfl/fl (Sengupta et al., 2010) and rictorfl/fl (Kumar et al.,
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2008) mice have been created to establish conditional knock-
outs to study the selective loss of mTOR or of each complex
in different tissues and cell types. Studies using these mouse
lines are rapidly emerging and include loss of mTOR in muscle
(Risson et al., 2009; Lang et al., 2010) or Schwann cells (Sher-
man et al., 2012), of raptor in liver (Sengupta et al., 2010),
thymocytes (Tang et al., 2012) or the haematopoietic lineage
(Hoshii et al., 2012; Kalaitzidis et al., 2012) and of rictor in
muscle (Kumar et al., 2008), prostate (Guertin et al., 2009), fat
(Kumar et al., 2010), neurons (Siuta et al., 2010), beta cells (Gu
et al., 2010), T-cells/thymocytes (Lee et al., 2010; Tang et al.,
2012), liver (Yuan et al., 2012), the haematopoietic lineage
(Kalaitzidis et al., 2012) or neural progenitor cells (Carson
et al., 2013). These studies demonstrate the wide importance
for the mTOR complexes in many cell systems.

mTOR inhibitors
Rapamycin is a specific inhibitor of mTOR (Dann and Thomas,
2006; Wullschleger et al., 2006). It inhibits mTOR by bind-
ing with high affinity to its internal receptor, FKBP12
[FK506-binding protein 12 (FK506 is an immunosuppres-
sant macrolide)]. When rapamycin-bound FKBP12 binds to
free mTOR at the FKBP12-binding domain, there is al-
losteric hinderance that blocks raptor binding to mTOR.
FKBP12–rapamycin inhibits mTORC1 activity both by disrupt-
ing mTOR–raptor association and by inhibiting mTOR auto-
phosphorylation, but rapamycin does not inhibit all mTOR
function. mTORC2 was originally thought to be rapamycin-
insensitive, since it does not interact with FKBP12–rapamycin
(Sarbassov et al., 2004). However, high doses or prolonged
exposure to rapamycin inhibit mTORC2 assembly by seques-
tering free mTOR so it is no longer available to form mTORC2,
and Akt Ser473 phosphorylation is no longer maintained (Sar-
bassov et al., 2006).

Several mTOR inhibitors have been developed recently,
including Torin 1, a competitive ATP inhibitor, which fully
blocks both mTORC1 and mTORC2 (Thoreen et al., 2009; Liu
et al., 2010; Liu et al., 2012). However, there has yet to be
an inhibitor that specifically blocks only mTORC2, despite
emerging data that mTORC2 may be a very important cancer
target (Sparks and Guertin, 2010).

mTOR function: more than translation
While it is widely known that mTORC1 promotes mRNA trans-
lation in response to extracellular signals, there is evidence
that mTOR is also involved in transcriptional regulation and
RNA processing (Hannan et al., 2003; Cunningham et al.,
2007; Willis and Moir, 2007; Kantidakis et al., 2010; Shor
et al., 2010). An example of its role in RNA processing is the
splicing factor SF2/ASF, which interacts with mTOR as a scaf-
fold on specific mRNAs to regulate RNA splicing, stability, nu-
clear export and promote translation initiation (Michlewski
et al., 2008; White et al., 2010).

mTOR signalling regulates many genes in metabolic and
biosynthetic pathways in mammalian cells (Peng et al.,
2002; Duvel et al., 2010). In particular, mTORC1, the com-
plex that is more responsive to metabolic conditions, up-
regulates genes controlling protein and nucleotide biosyn-
thesis, lipid/sterol biosynthesis, mitochondrial and glycolytic
metabolism, and the pentose phosphate shunt, while down-
regulating genes controlling general catabolism. In skeletal
muscle cells, mTORC1 acts as a nutrient sensor to maintain
mitochondrial energy production by increasing transcription
of genes that encode oxidative metabolism complex proteins
(Cunningham et al., 2007).

Regulation of mitochondrial genes in muscle is a particu-
larly relevant example for transcriptional regulation by mTOR
as it involves the interaction between raptor, the unique
mTORC1 protein and the zinc-finger transcription factor
YY1 (Yin Yang 1) (Cunningham et al., 2007), which also is
important in oligodendrocyte differentiation (see later sec-
tions). In skeletal muscle, the transcriptional regulator PGC-
1α (peroxisome-proliferator-activated receptor coactivator
1α) functions as a coactivator of YY1 in an mTOR-dependent
manner, such that raptor forms a complex with YY1 and
PGC-1α to bind mitochondrial gene promoters and enhance
transcription (Figure 2). Following rapamycin treatment and
consequent mTORC1 inhibition, PGC-1α can no longer asso-
ciate with YY1 to promote mitochondrial gene transcription
(Cunningham et al., 2007).

In addition to regulating metabolic processes in normal
cells, mTORC1 regulates several transcription factors that
control gene expression during cell stress such as hypoxia
(Dunlop and Tee, 2009; Duvel et al., 2010). mTOR is a positive
regulator of HIF-1α (hypoxia-induced factor1α) activation
by hypoxia in cancer cells (Hudson et al., 2002). The HIF
complex regulates hypoxia-inducible genes such as erythro-
poietin and VEGF (vascular endothelial growth factor). The
anti-cancer activity of rapamycin in vivo may result from
inhibition of the hypoxia response programme in developing
tumours.

The impact of mTORC2 on transcription is less well under-
stood. In some cell systems, mTORC1 is predominantly cyto-
plasmically localized, whereas mTORC2 is found in both the
nucleus and cytoplasm, suggesting a nuclear role for mTORC2
(Rosner and Hengstschlager, 2008). Rapamycin causes the
dephosphorylation of the mTORC2 proteins, mSin1 and ric-
tor and their translocation out of the nucleus (Rosner and
Hengstschlager, 2008). Many aspects of mTOR regulation of
transcription, including whether one or both mTOR com-
plexes are involved, are still unclear. Nevertheless, it is clear
that mTOR has a unique role in regulating the activity of spe-
cific transcription factors and genes that regulate multiple
cellular cascades.

Cell differentiation and TOR
Most functional studies on the PI3K/Akt/TOR pathway have
focused on its role in cell size and proliferation, the latter
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Figure 2 Interaction of transcription factors and raptor to regulate mitochondrial gene expression
In skeletal muscle cells, PGC-1α, YY1 and raptor form a complex in the nucleus to activate mitochondrial gene expression. Upon
rapamycin (an mTOR inhibitor) treatment, PGC-1α no longer complexes with YY1, inhibiting mitochondria gene transcription. Adapted
and reprinted by permission from Macmillan Publishers Ltd: Cunningham JT, Rodgers JT, Arlow DH, Vazquez F, Mootha VK, Puigserver P
(2007) mTOR controls mitochondrial oxidative function through a YY1-PGC-1 α transcriptional complex. Nature 450:736-740, copyright
2007.

Figure 3 Interaction of mTOR with PPARγ and CEBP/α to regulate adipocyte differentiation
In adipocytes, insulin and nutrient signalling converge on mTOR, which activates a positive-feedback loop between PPARγ and CEBP/α
to regulate adipocyte gene expression. In the presence of rapamycin (an mTOR inhibitor), inactivation of PPARγ prevents adipocyte gene
transcription. Figures adapted from Kim and Chen (2004).

particularly in transformed cells. However, several investiga-
tors have reported a role for this pathway in differentiation of
specific cell types, which is most relevant to its proposed role
in regulating the myelination programme. Thus, we briefly
review literature on mTOR function in cell differentiation in
other systems including its described role in lipid synthe-
sis in adipocytes, as a basis for the subsequent discussion of
how mTOR may regulate oligodendrocyte differentiation and
myelin synthesis.

PI3K/Akt/mTOR signalling has been described in processes
of cell differentiation in Drosophila as well as mammalian
systems. In Drosophila, the dTOR pathway is activated down-
stream of insulin receptor signalling where it controls timing
of neuronal differentiation in the eye (Bateman and McNeill,
2004). In mammalian systems, a role for mTOR in directing
cell differentiation has been described in immune cells (for
review, see Araki et al., 2011), myoblasts (Coolican et al.,
1997; Sarbassov and Peterson, 1998; Cho et al., 2004) and
adipocytes (Cho et al., 2004).

Adipocyte differentiation is perhaps one of the best
characterized and most relevant differentiation pathways
from extracellular signalling to mTOR to gene transcrip-
tion (Cho et al., 2004). Adipocyte differentiation involves
synthesizing and storing triglycerols and mobilizing them
as needed. This is a complex system, regulated by at least
three transcription factors: C/EBP (CCAAT/enhancer-binding
protein), PPARγ (peroxisome-proliferator-activated-receptor
γ) and SREBP-1 (sterol-regulatory-element-binding protein;

also called adipocyte determination and differentiation-
dependent factor 1, discussed below). PPARγ is a member
of a superfamily of nuclear receptors that is a critical ac-
tivator of genes regulating cholesterol, fatty acids, triglyc-
erols and phospholipid synthesis. Adipocyte differentiation
is stimulated by insulin, which binds to its receptors on the
cell surface, inducing phosphorylation of IRS (insulin recep-
tor substrate) proteins. IRS then elicits the conversion of lipid
messengers at the plasma membrane to recruit and activate
PI3K and Akt. The transcription factors regulating adipocyte
differentiation are subsequently activated in an mTORC1-
dependent manner. Rapamycin studies show that inhibit-
ing mTORC1 specifically disrupts the positive transcriptional
feedback loop between C/EBP and PPARγ, blocking the trans-
activation activity of PPAR-γ on its target genes (Kim and
Chen, 2004) (Figure 3).

Lipid biosynthesis and TOR
The role of mTOR in lipid biosynthesis described above in
adipocytes occurs in other cells such as hepatocytes, and may
well occur in oligodendrocytes. Akt-dependent lipogenesis is
mediated through mTORC1, which regulates SREBP-1, a bHLH
(basic helix–loop–helix) transcription factor that induces ex-
pression of genes that control fatty acid and cholesterol
biosynthesis (Porstmann et al., 2008). Recent studies suggest
that mTORC1 regulates SREBP-1 activity through lipin-1, a
phosphatidic acid phosphatase that inhibits SREBP-1 activity
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by displacing it from DNA (Peterson et al., 2011). Lipin-1 is
multi-phosphorylated by mTORC1 to restrict it to the cyto-
plasm, thereby allowing SREBP-1 to function in the nucleus.
When dephosphorylated, lipin-1 moves in to the nucleus to
suppress SREBP-1 transcriptional activity.

While mTORC2 has less direct impact on lipid biosynthesis,
rapamycin-insensitive regulation of cholesterol biosynthesis
in some cell systems suggests a role for mTORC2 (Wang et al.,
2011). Conditional deletion of rictor in liver blocked the re-
sponse to insulin, and reduced SREBP expression and thereby
hepatic lipogenesis, which is further evidence of an mTORC2-
dependent lipogenesis pathway (Yuan et al., 2012). In yeast
and Caenorhabditis elegans, TORC2 has been identified as
an important regulator of ceramide synthesis, through its
downstream target SGK. Thus, TORC2 seems to play selective
roles in lipid biosynthesis in some systems (for review, see
Laplante and Sabatini, 2009).

This extensive literature makes it clear that both mTOR
complexes impact processes of cell differentiation in sev-
eral cell types, and that an important component of this in
some cells includes regulating cholesterol and lipid synthetic
pathways. The potential importance of this in oligodendro-
cyte differentiation and myelin synthesis will be discussed in
more detail below.

mTOR IN OLIGODENDROCYTE
DIFFERENTIATION AND CNS/PNS
MYELINATION

In the CNS, a series of studies in the past three years has
demonstrated the importance of the Akt/mTOR pathway in
oligodendrocyte development. Both in vivo and in vitro stud-
ies demonstrate effectively that mTOR is important in CNS
myelination. Transgenic mice overexpressing constitutively
active Akt in oligodendrocytes show increased expression of
mTOR and increased myelination (Flores et al., 2008). Long-
term exposure to rapamycin prevents the hypermyelinating
phenotype in these mice as well as normal developmental
myelination, but has no effect on myelin maintenance in
the normal adult CNS (Narayanan et al., 2009). In vitro work
similarly utilized rapamycin to inhibit mTOR throughout the
oligodendrocyte lineage (Tyler et al., 2009; Tyler et al., 2011).
These studies confirmed the importance of mTOR in myelina-
tion and provided the additional insight that mTOR regulates
oligodendrocyte differentiation. A more recent in vitro study
supports mTOR function in oligodendrocyte differentiation
(Guardiola-Diaz et al., 2012), although the timing of mTOR
effects appear to vary depending on in vitro conditions (Tyler
et al., 2009; Guardiola-Diaz et al., 2012). Taken together,
in vitro and in vivo works identified mTOR as a critical sig-
nalling kinase in both oligodendrocyte lineage differentiation
and myelination.

The initial studies on mTOR in developing oligodendroglia
support roles for both mTORC1 and mTORC2 (Tyler et al.,
2009). Both complexes form, and downstream targets of
mTORC1 (p70S6K and 4EBP) and mTORC2 (Akt473) are phos-
phorylated during oligodendrocyte differentiation in vitro
(Tyler et al., 2009). Interestingly, however, whereas siRNA
(small interfering RNA) knockdown of either raptor or rictor
inhibits MBP (myelin basic protein) protein expression, only
knockdown of rictor (mTORC2) reduces myelin protein mRNA
expression (Tyler et al., 2009).

The initial studies on Akt and mTOR in oligodendroglia
were followed by the recent demonstration that the condi-
tional knockout of mTOR in Schwann cells has a significant
impact on Schwann cell myelination (Sherman et al., 2012).
While radial sorting of myelinated PNS axons occurs, as does
the initial wrapping of axons by mTOR-deficient Schwann
cells, the extensive increase in myelin that occurs during
postnatal growth is greatly decreased, and axon diameters
are grossly reduced. Very little increase in myelin thickness is
observed beyond that seen at very early ages.

Upstream of mTOR in the PNS and CNS
In both oligodendrocytes and Schwann cells, the condi-
tional knockout of PTEN (phosphatase and tensin homologue
deleted on chromosome 10), the phosphatase inhibiting PIP3
and the upstream inhibitor of PI3K/Akt, induces a hyper-
myelinating phenotype. This is likely mediated by mTOR, since
phosphorylation of p70S6K and S6 ribosomal protein down-
stream of mTORC1 is increased (Goebbels et al., 2010; Har-
rington et al., 2010). However, remyelination in the adult
is not apparently regulated by PTEN, since no hypermyeli-
nation is seen after demyelination and remyelination in the
adult (Harrington et al., 2010).

More recently, PTEN was identified as the signalling path-
way regulating the termination of active myelination in the
PNS. PTEN is initially ubiquitinated and degraded as Schwann
cells begin to myelinate. Mammalian DLG1 (disc large ho-
mologue 1) is an adaptor protein that increases during ac-
tive myelination to eventually stabilize PTEN, preventing its
degradation. This then reduces Akt/mTOR signalling to shift
the active process of myelination to a myelin maintenance
state (Cotter et al., 2010).

As discussed previously, the pathway from PI3K/Akt ac-
tivation to mTOR activation includes inhibition of TSC1/2,
which, when active, phosphorylates and inactivates the small
GTPase Rheb, the activator of mTORC1 (see Figure 1). Con-
ditional deletion of Rheb in embryonic neural progenitors in
Nestin-Cre/Rhebfl/fl mice results in postnatal hypomyelina-
tion due to defects in oligodendrocyte differentiation with
no discernable effects on neuronal development (Zou et al.,
2011). Loss of Rheb in the neural progenitors reduces mTORC1
signalling and increases mTORC2 signalling (Zou et al., 2011)
suggesting the hypomyelination is due to loss of mTORC1.
Precisely where in the developmental pathway Rheb is
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required is not yet clear, since nestin-Cre-driven recombi-
nation results in deletion of Rheb early in the lineage.

In contrast to the conditional Rheb deletion, genetic dele-
tion of TSC1 in embryonic neural progenitor cells in mice re-
sults in neuronal dysfunction, epilepsy and premature death
(Goto et al., 2011). These mice also are hypomyelinated, simi-
lar to reports of hypomyelination in humans with TSC muta-
tions (Makki et al., 2007; Arulrajah et al., 2009). These reports
are counter-intuitive, since the known pathway suggests that
deletion of TSC function within the oligodendrocyte lineage
should lead to hyperactivation of mTOR signalling. Two pos-
sible explanations for the phenoytpe with TSC1 deletion in
neural progenitors are (i) these are not oligodendroglial-
selective TSC1 deletions, suggesting that signals from other
TSC1-deleted cells may impair myelination; and (ii) recent
reports suggest that whereas TSC1/TSC2 inhibits mTORC1 via
inhibiting Rheb, the TSC complex directly activates mTORC2
(Yang et al., 2006b; Huang et al., 2008; Zou et al., 2011). Thus,
TSC loss could have a negative effect selectively on mTORC2
and thereby oligodendrocyte development.

Extracellular mediators of PI3K/Akt/mTOR
signalling in oligodendrocytes
Extracellular factors with demonstrated roles in promot-
ing oligodendrocyte differentiation and/or CNS myelination
through stimulation of the PI3K/Akt pathway include IGF-I,
neuregulins and thyroid hormone. These factors are thus
likely and, in some cases, known regulators of mTOR dur-
ing oligodendrocyte development. Both IGF-I and neuregulin
are potent stimulators of the PI3K/Akt pathway. However,
they, along with thyroid hormone, were initially identified
as important regulators of OPC and oligodendrocyte sur-
vival in vitro. Thus, a unique role for signalling from these
molecules via PI3K/Akt specifically to regulate oligodendro-
cyte differentiation and myelination processes has been dif-
ficult to elucidate, although recent studies provide some in-
sight.

Insulin-like growth factors
The functions of IGF-I in oligodendrocyte development in vivo
were revealed initially from experiments showing that over-
expression of IGF-I in transgenic mice results in increased
brain growth and myelination (Carson et al., 1993; Ye et al.,
1995). Subsequent gene knock-out studies further demon-
strated that deletion of IGF-I results in reduced brain size
and hypomyelination (Beck et al., 1995; Ye et al., 2002).
These effects were originally attributed to IGF-I stimulation
of myelin synthesis, supporting previous in vitro data showing
that IGF-I promotes production of myelin-specific genes in
differentiating oligodendrocytes (McMorris and McKinnon,
1996). However, cells at all stages of the oligodendrocyte lin-
eage express the IGF-IR (IGF type 1 receptor) (McMorris et al.,
1986; McMorris et al., 1993; McMorris and McKinnon, 1996),
the major signalling receptor for IGF-I and -II. Studies using

conditional deletion of IGF-1R in the oligodendrocyte lineage
support functions for IGF signalling at multiple stages in the
lineage including OPC proliferation and survival as well as
myelin synthesis (Zeger et al., 2007).

Studies on the role of the IGF-IR in oligodendrocytes have
been complicated by the fact that this receptor is also ac-
tivated by insulin in the micromolar range (LeRoith et al.,
1995), concentrations commonly used in chemically defined
culture media for primary cells including embryonic neu-
rons, OPCs and oligodendrocytes (Bottenstein et al., 1980;
McCarthy and de Vellis, 1980). However, selective IGF-I stim-
ulation of the IGF-1R in vitro under conditions where insulin
levels are sufficient only to stimulate the insulin receptor but
not the IGF-IR revealed roles for IGF signalling per se in OPC
proliferation and protein synthesis as well as survival (Jiang
et al., 2001; Ness et al., 2002; Ness and Wood, 2002; Freder-
ick and Wood, 2004; Cui and Almazan, 2007; Frederick et al.,
2007; Romanelli et al., 2007, 2009; Bibollet-Bahena and Al-
mazan, 2009; Min et al., 2012). The effect of IGF-I in multiple
processes during development of this lineage has made it
difficult to determine whether IGF-I also directly regulates
oligodendrocyte differentiation. IGF-I signalling through the
IGF-IR is a potent activator of PI3K/Akt and mTOR in oligo-
dendroglia (Ness et al., 2002; Ness and Wood, 2002; Romanelli
et al., 2007; Bibollet-Bahena and Almazan, 2009; Min et al.,
2012). IGF-I has the unique ability to sustain Akt signalling in
differentiating oligodendrocyte progenitors (Ness and Wood,
2002), supporting the hypothesis that IGF signalling upstream
of PI3K/Akt/mTOR may be important for their differentiation
and maturation.

Neuregulins
Another signalling system regulating myelination is the
neuregulin/ErbB receptor system. The role of neuregulin/ErbB
receptor signalling has been more effectively investigated in
the PNS, where it is a major regulator of Schwann cell devel-
opment at several stages including differentiation and myeli-
nation (for reviews, see Nave and Salzer, 2006; Newbern and
Birchmeier, 2010). Neuregulin signalling through PI3K regu-
lates Schwann cell differentiation (Maurel and Salzer, 2000).
The amount of neuregulin type III on the surface of axons
regulates the amount of myelin generated by Schwann cells
in vivo (Michailov et al., 2004), and neuregulin/ErbB signalling
also regulates the cessation of active myelination in Schwann
cells (Cotter et al., 2010). One signalling pathway has been
identified connecting neuregulin/ErbB receptor signalling in
the PNS with myelin gene expression and myelination per se.
The pathway involves neuregulin/ErbB activation of Akt and
increased cytoplasmic calcium. Increased calcium activates
calcineurin leading to the translocation of NFAT into the nu-
cleus, where it interacts with Sox10 to bind and activate the
Egr2 (Krox20) gene (Kao et al., 2009), the main transcriptional
regulator of myelin gene expression in Schwann cells.

Whereas the connection from neuregulin to mTOR
through PI3K/Akt in myelin-producing cells is clear in the
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PNS, this pathway is less clear in the CNS. Neuregulins re-
leased from or present on the surface of neurons are known
to play a major role in the maintenance and survival of
oligodendrocytes and their progenitors in vitro (Canoll et al.,
1996; Vartanian et al., 1997; Fernandez et al., 2000; Flo-
res et al., 2000). Neuregulins have additional effects in the
oligodendrocyte lineage, including inducing proliferation or
blocking/inducing differentiation (Lemke, 1996; Burden and
Yarden, 1997). They signal through both the PI3K and the
MAPK pathways (Canoll et al., 1999), but the precise sig-
nalling pathways through which neuregulins induce differ-
ent responses in oligodendrocyte lineage cells are still under
investigation. Furthermore, in contrast to the PNS, altered
neuregulin signalling in the CNS in vivo does not have a con-
sistent outcome. Some papers suggest an in vivo impact of
neuregulin on CNS myelination (Taveggia et al., 2008), but an
extensive study of reduced neuregulin 1 or ErbB gene dosage
in CNS neurons or oligodendrocytes, respectively, revealed
normal myelination, although increased neuregulin did en-
hance myelination in this study (Brinkmann et al., 2008).
Thus, in the CNS, it is likely that neuregulin signalling is one
of several upstream factors, which activate mTOR signalling
in oligodendroglia to promote myelination.

Thyroid hormone
Thyroid hormone has been known to regulate oligoden-
drocyte differentiation and myelination since the 1960s,
when neonatal thyroidectomy was shown to reduce myelina-
tion and thyroid hormone replacement reversed the deficit
(Balazs et al., 1969). Thyroid hormone impacts multiple stages
of oligodendrocyte development, including commitment to
the lineage and OPC proliferation (Barres et al., 1994; Ahlgren
et al., 1997; Rodriguez-Pena, 1999). These events appear
to be regulated by expression of thyroid hormone receptor
α (Fauquier et al., 2011; Picou et al., 2012). Thyroid hor-
mone also mediates oligodendrocyte differentiation in cul-
tured oligodendrocytes and myelinating cultures (Bhat et al.,
1979; Bhat et al., 1981; Almazan et al., 1985), via expres-
sion of IGF-IR (Sarlieve et al., 2004). Thyroid receptors can
act directly as transcription factors, either as homodimers or
as heterodimers with retinoid X receptors or other related
receptors. In fact, retinoic acid acting through the related
retinoic acid receptor can substitute for thyroid hormone
to enhance oligodendrocyte differentiation in vitro (Barres
et al., 1994). In the absence of ligand, thyroid receptors are
transcriptional repressors, but in the presence of thyroid hor-
mone, in myelinating oligodendrocytes, thyroid receptors can
directly activate MBP and PLP (proteolipid protein) promot-
ers (Farsetti et al., 1991; Farsetti et al., 1992; Bogazzi et al.,
1994). Intriguingly, they also have nongenomic effects by
direct interaction with the p85a subunit of PI3K, resulting
in activation of Akt and mTOR. In fact TRβ1, the thyroid
receptor mediating oligodendrocyte differentiation, directly
activates Akt in pancreatic β-cells (Verga Falzacappa et al.,

2007). Whether thyroid hormone impacts Akt and mTOR sig-
nalling in differentiating oligodendrocytes is unknown.

POTENTIAL mTOR FUNCTIONS IN
OLIGODENDROCYTE DIFFERENTIATION
AND MYELINATION

It is clear that the mTOR pathway is an essential mediator
of PI3K/Akt signalling during oligodendrocyte development,
and we can connect this pathway to several external growth
factors or hormones with known roles in oligodendroglia dif-
ferentiation and myelination. However, the specific targets of
mTOR remain to be defined in oligodendrocytes. Identifying
targets of mTOR signalling in other cell types is equally an
area of current investigation by a number of laboratories. In
the following sections, we discuss potential targets we pre-
dict are mTOR regulated in differentiating oligodendrocytes
based on our own data as well as data obtained in studies on
cell types other than oligodendrocytes. We propose several
aspects of the differentiation and myelination programs for
which mTOR signalling may be critical. These include nuclear
regulation of differentiation, cytoskeletal rearrangements in-
volved in morphological maturation, and processes necessary
for myelin synthesis (summarized in Figure 4).

mTOR in OPC differentiation
The initial stages of oligodendrocyte differentiation involve
chromatin remodeling and transcriptional regulation. The
current model for differentiation supports a co-ordinated
process whereby inhibitors of differentiation are down-
regulated prior to up-regulation of factors necessary for
myelin gene transcription (Li et al., 2009). Several neg-
ative regulators of oligodendrocyte differentiation have
been identified including the ID (inhibitor of DNA bind-
ing/differentiation) helix–loop–helix members ID2 and ID4
and TCF4/TCF7L2 (T cell factor 4). Some of these factors were
initially identified as downstream targets of signalling path-
ways that inhibit oligodendrogenesis such as BMPs (bone
morphogenetic proteins) and Wnts.

Initial studies on rapamycin inhibition of oligodendrocyte
differentiation in vitro demonstrated elevated levels of ID2,
ID4 and TCF4/TCF7L2 RNA expression, which correlate with a
block in differentiation to the GalC (galactosyl cerebroside)-
positive immature oligodendrocyte stage of the lineage (Tyler
et al., 2009). Based on these data, we propose a role for
mTOR signalling in transcriptional regulation of oligodendro-
cyte differentiation, specifically in down-regulating negative
transcriptional regulators. Although additional transcription
regulators have been identified that inhibit stages of oligo-
dendrocyte differentiation and myelination, we focus here
on the molecules and associated pathways mentioned above
for which there is evidence supporting a potential role for
mTOR in their regulation.
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Figure 4 Proposed model of mTOR signalling in oligodendrocyte differentiation
Lipid biogenesis: mTOR signalling normally promotes SGK activity, increasing ceramide synthesis, and phosphorylates Lipin-1, restricting
it to the cytoplasm (A). In the absence of mTOR signalling (B), Lipin-1 remains unphosphorylated and, as such, can translocate to the
nucleus where it inhibits SREBP-1 from promoting the transcription of genes involved in cholesterol and fatty acid synthesis. Thus,
without mTOR signalling, lipid biogenesis is decreased. Transcriptional regulation: in the presence of active mTOR signalling (A), there is
a reduction in the negative regulators of oligodendrocyte differentiation, allowing the positive regulators, such as Olig1/2 and Sox10,
to promote myelin gene transcription. mTOR may function to inhibit these negative regulators through mechanisms that promote YY1
interaction with HDAC, shown to inhibit the transcription of ID4 and Tcf4, and through inhibition of Gpr17 which induces ID2 expression
and localization in the nucleus. When mTOR signalling is inhibited (B), the negative regulators are present and active, sequestering
positive regulators outside of the nucleus resulting in lower myelin gene transcription. Cytoskeleton: several proteins implicated in
the cytoskeleton have been identified as part of the mTOR proteome. These targets may be downstream of PKC-α, the activity of
which is increased upon mTOR phosphorylation (A). Without mTOR signalling (B), PKCα activity is reduced as is the expression of these
cytoskeletal proteins. Dashed lines indicate hypothetical relationships based on articles cited within this review. Line thickness denotes
the magnitude of the effect with thicker lines indicating a larger effect.

BMP signalling and inhibitor of DNA-binding (ID) proteins
BMPs play an important role in the regulation of oligoden-
drocyte development and differentiation. Cells at all stages
of the oligodendrocyte lineage express BMP receptors (Mabie
et al., 1997; Cheng et al., 2007). BMPs inhibit various stages

of oligodendrocyte development including oligodendroglial
specification, OPC differentiation into immature oligoden-
drocytes and the acquisition of mature myelin markers by
immature oligodendrocytes. For purposes of this review, we
restrict our discussion to BMP inhibition of oligodendrocyte
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differentiation. BMPs inhibit the differentiation of neonatal
or adult OPCs to GalC-positive immature oligodendrocytes
in vitro (Mabie et al., 1997; Grinspan et al., 2000; Cheng
et al., 2007) and decrease the number of MBP-positive cells
in cultures of immature oligodendrocytes undergoing dif-
ferentiation (See et al., 2004; Cheng et al., 2007). Similarly,
transgenic overexpression of BMP in vivo results in a decrease
in mature oligodendrocytes throughout the brain, an effect
that is inhibited in vitro by treating differentiating cultures
from these transgenic mice with the BMP inhibitor, Noggin
(Gomes et al., 2003).

Extracellular BMPs exert their effects, at least in part,
through intracellular transcription factors (for a recent re-
view, see Chen et al., 2012). BMP treatment increases mRNA
and protein expression of ID2 and ID4, which inhibit oligo-
dendrocyte development (Samanta and Kessler, 2004; Cheng
et al., 2007). ID2 and ID4 proteins are inhibitory HLH tran-
scription regulators, which lack a DNA-binding domain, and
act by sequestering other HLH members. Overexpression of
ID2 in vitro enhances PDGF-stimulated OPC proliferation and
inhibits oligodendrocyte differentiation, while loss of ID2
decreases OPC proliferation and increases differentiation in
culture (Wang et al., 2001). More recently, Marin-Husstege
and colleagues found that overexpression of ID4 in OPCs
blocks differentiation and expression of myelin genes (Marin-
Husstege et al., 2006). ID4, in particular, inhibits OPC differ-
entiation through direct binding to Olig1 and Olig2, class
B HLH transcription factors that promote specification and
differentiation of oligodendrocytes (Lu et al., 2002; Mekki-
Dauriac et al., 2002; Rowitch et al., 2002; Takebayashi et al.,
2002; Zhou and Anderson, 2002; Rowitch, 2004; Ligon
et al., 2006). BMPs are thought to regulate the subcellu-
lar localization of Olig1 and Olig2 through induction of ID4,
which directly binds to Olig1/2 and sequesters them from the
nucleus (Samanta and Kessler, 2004). The demonstration that
mTOR inhibition results in elevated levels of ID2 and ID4 and
prevents OPC differentiation (Tyler et al., 2009) is sugges-
tive of a role for mTOR either directly, by decreasing ID2/ID4
expression, or indirectly, by suppressing BMP signalling.

Wnt signalling and TCF7L2/TCF4
In the developing nervous system, Wnt is expressed in the
dorsal cervical spinal cord (Shimizu et al., 2005). Because
the formation of O4-positive OPCs is inhibited in the dor-
sal spinal cord, it has been postulated that dorsal factors
such as Wnt negatively regulate oligodendrocyte develop-
ment. In support of this concept, OPCs treated with Wnt3a
ligand retain their bipolar morphology, failing to differen-
tiate into immature oligodendrocytes (Shimizu et al., 2005;
Feigenson et al., 2009; Feigenson et al., 2011). The effect of
Wnt on oligodendrocyte differentiation is mediated through
the canonical Wnt pathway, since it can be replicated with
constitutively active β-catenin or in OPCs from mice lacking
Axin2, an inhibitor of the canonical Wnt pathway (Feigenson
et al., 2009; Ye et al., 2009; Fancy et al., 2011). Stabilization

or addition of Wnt inhibitors prevents this block in differ-
entiation (Shimizu et al., 2005; Feigenson et al., 2009; Fancy
et al., 2011; Feigenson et al., 2011). In vivo, mice expressing
constitutively active β-catenin or lacking Axin2 have fewer
PLP-positive cells throughout the brain during both develop-
ment and remyelination (Fancy et al., 2009; Feigenson et al.,
2009; Ye et al., 2009; Fancy et al., 2011).

Interestingly, Wnt signalling may be dependent on BMP
signalling to negatively regulate oligodendrocyte differenti-
ation. Neural precursor cells that are transfected with active
β-catenin and consequently fail to express PLP have increased
BMP expression and increased ID2 and ID4 promoter activity
(Ye et al., 2009; Feigenson et al., 2011). Moreover, PLP ex-
pression is rescued upon treatment of these cells with Noggin
(Kasai et al., 2005). Similarly, OPCs that lack BMP receptors or
are treated with Noggin differentiate normally when exposed
to Wnt3a, suggesting BMP signalling is necessary for Wnt sig-
nalling to inhibit oligodendrocyte differentiation (Feigenson
et al., 2011).

TCF7L2/TCF4 is downstream of Wnt/β-catenin canonical
signalling and is specifically expressed in the oligodendro-
cyte lineage in the CNS (Fancy et al., 2009; Ye et al., 2009). In
oligodendrocytes, TCF7L2/TCF4 inhibits MBP and PLP expres-
sion (Fu et al., 2009). TCF7L2/TCF4-null mice die at birth, but
analysis of spinal cords revealed normal numbers of PDGFRα-
positive OPCs that are likely unable to differentiate further,
due to a lack of myelin synthesis (Ye et al., 2009). As men-
tioned previously, mTOR inhibition results in increased levels
of TCF7L2/TCF4, suggesting a possible interaction between
the mTOR and Wnt signalling pathways (Tyler et al., 2009).

YY1 and GPR17 (G-protein-coupled receptor 17):
potential mechanisms for mTOR regulation of ID2, ID4
and TCF4/TCF7L2
Although interactions of the mTOR pathway with BMP and
Wnt signalling could occur through distinct mechanisms,
there is at least one transcriptional regulator, YY1, which
co-regulates target genes in both pathways. YY1 is a zinc
finger protein that can bind DNA, and is important for cell
proliferation and differentiation (Donohoe et al., 1999). It can
interact with HATs (histone acetyl transferases) and HDACs
(histone deacetylases) to directly activate or repress gene
promoters. Downstream of neuregulin signalling in the PNS,
YY1 acts as an activator of Egr2/Krox20, the zinc finger tran-
scription factor that regulates Schwann cell myelination (He
et al., 2010). In the oligodendrocyte lineage, YY1 represses
both id4 and Tcf7l2/Tcf4 gene promoters when in complex
with HDAC1 (He et al., 2007; He and Casaccia-Bonnefil, 2008).
Conditional ablation of YY1 in oligodendrocytes results in re-
duced OPC differentiation and myelination (He et al., 2007).
Recent studies in the Oli-Neu glial cell line suggests that
YY1 may also function later in the oligodendrocyte differ-
entiation programme to inhibit PLP gene expression at the
immature OL stage (Zolova and Wight, 2011).
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YY1 represses the ID4 and Tcf7L2/Tcf4 gene promoters in
oligodendrocytes (He et al., 2007; He and Casaccia-Bonnefil,
2008; Hu et al., 2008), as does mTOR activity, since rapamycin
inhibition of mTOR in oligodendrocytes increases the expres-
sion of ID4 as well as TCF7L2/TCF4 (Tyler et al., 2009). Thus,
it is possible that mTOR inhibition of ID4 and TCF7L2/TCF4
is through direct positive regulation of YY1. Alternatively,
mTOR may enhance the interaction between YY1 and HDAC1,
which is necessary for the inhibitory effects of YY1 on ID4
and TCF7L2/TCF4 transcription during oligodendrocyte dif-
ferentiation. This may occur though interaction with raptor,
which is the mechanism for mTORC1 regulation of YY1 and
its function on mitochondrial gene promoters in other cell
types (Cunningham et al., 2007).

Another mechanism for regulating ID2/4 is the GPR17
(Chen et al., 2009). GRP17 regulates ID2 expression levels
and directly binds to both ID2 and ID4 proteins and promotes
their translocation to the nucleus, thereby promoting their
activity (Chen et al., 2009). GPR17 is a G-protein coupled re-
ceptor that is a repressor of oligodendrocyte differentiation
and is expressed primarily in pre-myelinating oligodendro-
cytes (Chen et al., 2009; Ceruti et al., 2011). Its expression
normally decreases as differentiation progresses (Chen et al.,
2009). Removal or overexpression of GPR17 during myelina-
tion in vivo results in hyper- or hypo-myelination respectively
(Chen et al., 2009). Of particular relevance is that GPR17
expression increased in a proteomic analysis of rapamycin-
treated OPCs (Tyler et al., 2011). Thus, it is possible that the
increase in ID2 observed in mTOR-inhibited cultures in vitro
results from increased GPR17 protein expression (Tyler et al.,
2009; Tyler et al., 2011).

mTOR and myelin gene expression
Whether mTOR signalling also has a role in regulating ex-
pression of positive transcription regulators is not yet known.
Whereas rapamycin inhibition of oligodendrocyte differen-
tiation in vitro is associated with induction of ID2/4 and
TCF7L2/TCF4 mRNA expression, rapamycin has no effect on
mRNA expression of Olig1/2 or Nkx2.2 (Tyler et al., 2009).
However, it is potentially of interest that siRNA knockdown
of raptor or rictor results in different outcomes for myelin
protein mRNA expression: siRNA to either raptor or rictor
decreases MBP at the protein level but only knockdown of
rictor decreases MBP mRNA as well as mRNAs for other myelin
proteins (Tyler et al., 2009). These data suggest the possibility
that mTORC2 may have a complex-specific role in regulat-
ing the factors responsible for inducing myelin protein gene
expression.

Additional mTOR targets in oligodendrocyte
differentiation
Cytoskeletal regulation downstream of mTOR
Proteomic studies (Tyler et al., 2011) and a recent report by
the Bansal laboratory (Guardiola-Diaz et al., 2012) support

the hypothesis that mTOR signalling is required for cytoskele-
tal regulation and morphological maturation. Proteins iden-
tified and confirmed in the mTOR proteome with known roles
in cytoskeleton include Fyn tyrosine kinase, Sirt2, bIV-tubulin,
Gap43 and BASP-1 (Tyler et al., 2011). Fyn regulates the cy-
toskeleton in differentiating oligodendrocytes (Liang et al.,
2004). A major mechanism for mTOR regulation of cytoskele-
ton in developing oligodendrocytes is likely via mTORC2. As
discussed previously, mTORC2 regulates the cytoskeleton in
other cell types via phosphorylation of PKCα (Facchinetti
et al., 2008; Ikenoue et al., 2008).

mTOR regulation of myelin lipids
The prior proteomic analysis supports the hypothesis that,
in addition to its impact on myelin protein gene expres-
sion, mTOR induces expression of multiple lipogenesis pro-
teins as oligodendrocytes differentiate (Tyler et al., 2011).
Fasn (fatty acid synthase) is expressed in oligodendrocytes
late in brain development and is dramatically decreased in
mTOR-inhibited oligodendrocytes (Saito et al., 2009; Tyler
et al., 2011). Similarly, fdft1 (farnesyl-diphosphate farne-
syltransferase 1), a cholesterol synthetic enzyme essential
for myelin production (Saher et al., 2005), is also part
of the mTOR-regulated proteome (Tyler et al., 2011). Sev-
eral other lipid biosynthetic proteins including the choles-
terol biosynthesis proteins Idi1 (isopentyenyl-diphosphate
d-isomerase), Fdps (farnesyl pyrophosphate synthetase) and
Hmgcs1 (hydroxymethylglutaryl-CoA synthase) and the Acsl3
and Acsl4 (fatty acid biosynthesis enzymes long-chain-fatty-
acid-CoA ligase 3 and 4) (Tyler et al., 2011) were also iden-
tified in the mTOR proteome screen. Taken together, these
studies support an essential role for mTOR signalling in lipo-
genesis in maturing oligodendrocytes initiating myelin pro-
duction, similar to its role in other cell types as discussed in
earlier sections of this review.

Other signalling pathways
In addition to mTOR signalling, previous studies demonstrate
that MAPK signalling also contributes to oligodendrocyte
differentiation and/or myelination. Specifically, blocking p38
MAPK inhibits oligodendrocyte differentiation in vitro (Bhat
et al., 2007; Fragoso et al., 2007; Haines et al., 2008; Chew
et al., 2010), and loss of Erk2/MAPK or of both Erk1/2/MAPK
in oligodendrocytes in vivo results in defects in developmen-
tal myelination (Fyffe-Maricich et al., 2011; Ishii et al., 2012).
The Erk/MAPK pathway is essential for myelin thickness but
appears dispensible for oligodendrocyte differentiation and
myelin initiation during development (Ishii et al., 2012). It is
entirely unclear where the MAPK signalling pathways con-
verge with mTOR signalling (Mendoza et al., 2011). A recent
study suggests the two pathways act in sequence temporally
during oligodendrocyte differentiation in vitro (Guardiola-
Diaz et al., 2012). However, the mTOR signalling literature
also supports a direct action of Erk/MAPK signalling on the
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mTORC1 target, p70S6K (Lehman and Gomez-Cambronero,
2002). Furthermore, an extensive literature in the cancer field
supports strong cross-talk between these two pathways, pri-
marily through IRS-1, which is cross-inhibitory (for recent
reviews, see Mendoza et al., 2011; De Luca et al., 2012).
Whether the interaction of these pathways is positive or
negative and the timing of their interactions are open areas
of investigation that will have an important impact on our
understanding of CNS myelination.

CONCLUSIONS

mTOR signalling clearly has essential roles in developing
oligodendrocytes and in myelination in the CNS and PNS.
Our focus here has been to integrate the rapidly emerging
data on mTOR in oligodendrocytes with literature defining
mTOR function in other cell types. We have developed a
working model placing mTOR downstream of known acti-
vators of PI3K/Akt signalling and upstream of a number of
targets important for regulating many aspects of oligoden-
drocyte differentiation including nuclear transcriptional reg-
ulators, mediators of cytoskeletal organization and enzymes
necessary for lipogenesis (Figure 4). As noted above, other
signalling pathways are also clearly involved in myelination.
How these pathways integrate to enhance myelination is
an active and exciting research area. There will continue to
be rapid progress in unraveling how extracellular regulators
and intracellular signalling pathways co-ordinate to regulate
the sequence of transcriptional and cellular events essen-
tial for the commitment, morphological and maturational
changes necessary for normal myelination. These studies will
also impact our understanding of abnormal myelination and
processes involved in remyelination.
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