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Abstract

Background: Earlier age at onset of pubertal events and longer intervals between them (tempo) have been
associated with increased breast cancer risk. It is unknown whether the timing and tempo of puberty are associated
with adult breast density, which could mediate the increased risk.

Methods: From 1988 to 1997, girls participating in the Dietary Intervention Study in Children (DISC) were clinically
assessed annually between ages 8 and 17 years for Tanner stages of breast development (thelarche) and pubic hair
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(pubarche), and onset of menses (menarche) was self-reported. In 2006-2008, 182 participants then aged 25-29
years had their percent dense breast volume (%DBV) measured by magnetic resonance imaging. Multivariable,
linear mixed-effects regression models adjusted for reproductive factors, demographics, and body size were used to
evaluate associations of age and tempo of puberty events with %DBV.

Results: The mean (standard deviation) and range of %DBV were 27.6 (20.5) and 0.2-86.1. Age at thelarche was
negatively associated with %DBV (p trend = 0.04), while pubertal tempo between thelarche and menarche was
positively associated with %DBV (p trend = 0.007). %DBV was 40% higher in women whose thelarche-to-menarche
tempo was 2.9 years or longer (geometric mean (95%Cl) = 21.8% (18.2-26.2%)) compared to women whose
thelarche-to-menarche tempo was less than 1.6 years (geometric mean (95%Cl) = 15.6% (13.9-17.5%)).

Conclusions: Our results suggest that a slower pubertal tempo, i.e, greater number of months between thelarche
and menarche, is associated with higher percent breast density in young women. Future research should examine
whether breast density mediates the association between slower tempo and increased breast cancer risk.

Background

An earlier age at menarche is an established risk factor for
breast cancer [1-3]. However, menarche is only one rela-
tively late part of the complex female pubertal transition,
which also includes thelarche (the onset of breast develop-
ment) and pubarche (the onset of pubic hair growth).
Thelarche, typically the first sign of puberty, usually occurs
2—4 years before menarche [4]. An earlier recalled age at
thelarche is associated with a 20% increased risk of breast
cancer [5]. Pubertal tempo, that is the length of time be-
tween thelarche and menarche, also was positively associ-
ated with increased risk, independent of either age at
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thelarche or menarche [5]. Possible inaccurate recall of pu-
bertal timing could attenuate the association with breast
cancer, highlighting the need to assess both age and tempo
of pubertal development prospectively in longitudinal stud-
ies. Yet connecting pubertal timing with a breast cancer
diagnosis that occurs more than 50 years later is an obstacle
for epidemiological studies [6]. One way to address this
challenge is to assess intermediate markers that can be
measured earlier in life. Breast density is one of the stron-
gest predictors of premenopausal and postmenopausal
breast cancer risk [7, 8] and may be a useful intermediate
marker between early life factors, such as pubertal develop-
ment, and breast cancer risk (see Fig. 1).

Characterizing the relationship between pubertal de-
velopment and breast density may help clarify if breast
cancer risk is influenced by factors during breast
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Fig. 1 Pubertal and breast density risk factors for breast cancer across the life course. Thelarche and pubarche mark the onset of breast
development and pubic hair growth, respectively. Menarche is the onset of menstruation. The age at onset determines the pubertal timing of
these events, and the time between these events is known as pubertal tempo

development, when breast tissue might be particularly
susceptible to proliferative and carcinogenic stimuli.
Given that earlier ages at thelarche and menarche are as-
sociated with increased breast cancer risk [5] and that
breast density is positively associated with risk [9], we
hypothesized that adult women who had an earlier the-
larche and slower pubertal development would have
denser breasts compared to those who had a later the-
larche and faster pubertal development. We tested this
hypothesis in the Dietary Intervention Study in Children
(DISC) cohort, a prospective study originally designed as
a diet intervention in children, who were re-visited in
their mid-to-late twenties [10]. The objective of this in-
vestigation was to examine the relationship between pro-
spectively assessed pubertal timing (age at thelarche,
pubarche, and menarche) and tempo (the interval be-
tween thelarche and menarche or pubarche and menar-
che) with percent dense breast volume (%DBV)
measured at ages 25—29 years.

Methods

Population

Between 1988 and 1997, DISC, a multicenter randomized
controlled clinical trial sponsored by the National Heart,
Lung, and Blood Institute (NHLBI), was conducted to test
the safety and efficacy of a dietary intervention to reduce
serum low-density lipoprotein cholesterol (LDL-C) in chil-
dren with elevated LDL-C [10-12]. At baseline, 663
healthy, pre-pubertal, 8—10-year-old children, including
301 girls, with elevated LDL-C were recruited into DISC
at six clinical centers and randomized to a behavioral diet-
ary intervention or usual care control group. The inter-
vention continued until the mean age of participants was
16.7 years. In 2006—2008 when participants were 25 to 29
years old, the DISC06 Follow-Up Study was conducted to

evaluate the longer-term effects of the diet intervention
on breast cancer risk factors in female participants. Prior
to randomization, parents/guardians provided informed
consent and DISC participants provided assent, while par-
ticipants provided informed consent prior to the DISC06
follow-up visit. An NHLBI-appointed independent data
and safety monitoring committee monitored the original
DISC trial. Institutional review boards at all participating
clinical centers and the data coordinating center approved
both the DISC and the DISC06 Follow-Up Study proto-
cols. The DISC06 Follow-Up Study protocol also was ap-
proved by the Fox Chase Cancer Center’s Institutional
Review Board.

All female DISC participants were invited to partici-
pate in the DISC06 Follow-Up Study, and 260 (86.4%) of
the 301 females originally randomized took part.
Women who were pregnant or breastfeeding at or
within 12 weeks before the study visit (z =30) and those
who had breast implants or breast reduction surgery
(n=16) were not eligible for the current analysis. An
additional 32 women were excluded because they had
technically unacceptable or missing breast magnetic res-
onance imaging (MRI) leaving a total of 182 participants
for inclusion in analyses.

Data collection

Pubertal staging

Trained and certified clinicians assessed girls for breast and
pubic hair Tanner stage (T1-5) at annual visits between
the ages of 8 and 17 years until T5 was reached [13]. Ages
at thelarche and pubarche were calculated by taking the
mid-point of age between the two visits when girls transi-
tioned from T1 to T2+ for the appearance of breast devel-
opment and pubic hair, respectively. Participants reported
whether they had begun menstruating at each visit and if
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so, their age at menarche in years and months [13]. Age at
thelarche was subtracted from age at menarche for each girl
to create the thelarche-to-menarche tempo variable, and
age at pubarche was subtracted from age at menarche to
create the pubarche-to-menarche tempo variable.

Breast density measurement

%DBV was measured using noncontrast MRI on a
whole-body 1.5-Tesla or higher field-strength MRI scan-
ner with a dedicated breast-imaging radiofrequency coil
as previously described [10, 14]. One investigator (Dr. C.
Klifa at the University of California, San Francisco, San
Francisco, CA) processed all MRI image data by identify-
ing the chest wall-breast tissue boundary and skin sur-
face and using automated fuzzy C-means to separate
breast fibroglandular and fatty tissue [14]. These
methods allow for the measurement of total breast vol-
ume and absolute dense breast volume (ADBV), which
quantifies fibroglandular tissue. We calculated the abso-
lute non-dense breast volume (ANDBV) by subtracting
ADBYV from total breast volume and %DBV as the ratio
of ADBV to total breast volume multiplied by 100. We
averaged the density measures of both breasts for ana-
lysis. %DBV was the primary outcome and is highly cor-
related with percent breast density (r=.87) based on
mammography [15], which is an established risk factor
for breast cancer [16]. ADBV and ANDBYV were second-
ary outcomes.

Covariates

At DISCO06 follow-up visits, participants completed sev-
eral questionnaires on demographic characteristics; med-
ical, reproductive, and menstrual histories; medication
use; and health habits. Height, weight, and waist circum-
ference were measured, and body composition was
assessed by whole-body dual-energy X-ray absorpti-
ometry (DXA) as previously described [10].

Statistical analysis

We initially explored distributions of breast density mea-
sures graphically and by using nonparametric statistics, and
prior to modeling, log-transformed measures to improve
normality. We calculated geometric means and 95% confi-
dence intervals of %DBV, ADBV, and ANDBYV across quar-
tiles of ages at thelarche, pubarche, menarche, and pubertal
tempo variables by exponentiating the least square means
from multivariable linear mixed-effects regression models
with clinic as a random effect and robust standard errors.
Model 1 is the crude, unadjusted model. Model 2 adjusted
for adult covariates, including parity (nulliparous vs parous),
duration of hormone use (continuous), education (some
college or less, bachelor’s degree, graduate degree), race
(white vs. non-white), smoking status (never vs ever),
whole-body percent fat measured by DXA (continuous),
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and height (continuous). Because childhood BMI is a strong
predictor of pubertal timing and was also previously associ-
ated with %DBV in DISC06 [17], model 3 adjusted for the
same covariates in model 2 as well as BMI at 8—10 years of
age, expressed as a z-score relative to CDC 2000 Growth
Charts [18]. Missing values of whole-body percent fat (N =
6), age at thelarche (n=12), and age at pubarche (n=9)
were imputed using values from a prediction model that in-
cluded adult BMI as an independent variable as well as co-
variates in model 3; this process was repeated 25 times to
create 25 multiply-imputed datasets. Results from each im-
puted dataset were pooled using Rubin’s rule [19]. Using
model 3, we explored the combined effects of pubertal
timing (ages at thelarche and menarche) and thelarche-
menarche tempo with breast density. Each of the continu-
ous pubertal timing variables was dichotomized at the
median and cross-classified with the similarly dichotomized
tempo variable creating two dummy variables each with
four categories: (1) early menarche/short tempo (reference),
early menarche/long tempo, late menarche/short tempo,
late menarche/long tempo; and (2) early thelarche/short
tempo (reference), early thelarche/long tempo, late the-
larche/short tempo, late thelarche/long tempo. We tested
for interactions between thelarche-to-menarche tempo and
diet intervention assignment as well as between thelarche
and menarche by including cross-product terms in the fully
adjusted models. In sensitivity analyses, we tested if the ob-
served associations with %DBV held in subsets restricted to
white participants, nulliparous participants, women not
using hormonal contraceptives, or women whose baseline
BMI z-score was < 1.5. All tests were two-sided and consid-
ered to be significant if p value <0.05. All analyses were
conducted using STATA 13.0 (College Station, TX).

Results
At baseline, all girls were pre-pubertal, and during the
DISC trial, the majority reached thelarche before pub-
arche. The mean age of 182 women included in the
present study was 27.2years at the DISC06 follow-up
visit (Table 1). The majority were white (90%), nullipar-
ous (71%), and ever users of hormonal contraceptives
(93%, with 58% current users). Their mean BMI was
25.4 kg/m2. The mean (standard deviation) of %DBV was
27.6 (20.5). Covariates across tempo categories were
generally similar (shown in Additional file 1: Table S1).
The three related pubertal milestones—menarche, the-
larche, and pubarche, were moderately correlated; Pear-
son correlation coefficients ranged from r 0.42 to 0.46.
The correlations between menarche and the tempo vari-
ables were higher (thelarche-to-menarche tempo r=
0.68; pubarche-to-menarche tempo r = 0.61).

Table 2 shows associations of pubertal timing and
tempo with adult %DBV. Across the three models, the
thelarche-to-menarche tempo association was consistently
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Table 1 Characteristics of DISC participants in childhood and as young adults

Number Mean SD Percentage
Child characteristics
Race/ethnicity
White 164 90
Other 18 10
Age at baseline, years 182 9.13 0.59
BMI z-score at baseline 182 023 0.90
Age at thelarche, years 170 10.59 1.09
Age at pubarche, years 173 10.97 1.19
Age at menarche, years 182 12.90 1.26
Adult characteristics
Age at follow-up, years 182 2717 1.02
BMI, kg/m? 182 2539 536
DXA % body fat, % 176 3541 882
Exogenous hormone use
Never 11 6
Former 66 36
Current 105 58
Duration of hormone use, years 171 56 35
Parous (vs nulliparous) 53/182 29
Education
Graduate degree 25 14
Bachelor's degree 95 52
Some college or less 62 34
Ever smokers (vs never-smokers) 82/182 45
Breast density measures
Percent dense breast volume (%) 182 276 20.5
Absolute dense breast volume (cm?) 182 104.2 706
Absolute non-dense breast volume (cm?) 182 4133 364.3

associated with %DBV. Age at thelarche was associated
with %DBV after adjustment for child BMI z-score,
whereas the association with age at menarche was attenu-
ated. Age at pubarche was not associated with %DBV in
any model, and pubarche-to-menarche tempo was not as-
sociated with %DBV after adjustment for covariates. In
fully adjusted models (model 3), %DBV increased with
increasing duration from thelarche- to- menarche tempo
(p trend = 0.007). DBV was 40% higher in women whose
thelarche-to-menarche tempo was 2.9years or longer
(geometric mean (95%CI) = 21.8% (18.2—26.2)) compared
to women whose thelarche-to-menarche tempo was less
than 1.6 years (geometric mean (95%CI)=15.6% (14.2—
20.7)). Girls who were oldest at thelarche (>11.1 years)
had an 18% lower %DBV compared to girls who were
youngest (8.7 to < 9.9 years; p trend = 0.04).

There was a positive multiplicative interaction between
thelarche and menarche in association with %DBV (p for

interaction < 0.001).We, therefore, explored the combined
effects of pubertal timing (age at thelarche and menarche)
and thelarche-menarche tempo in cross-classified models
and present the %DBV geometric means and 95% confi-
dence intervals from these models in Table 3. Women
with early menarche and short tempo had the lowest
%DBV compared with women with early menarche and
long tempo and women with late menarche and either
short or long tempo. Women with early thelarche and
short tempo had similar %DBV to women with either later
thelarche and/or longer tempo (20.46% vs 19.81-20.4%)
(15.73% vs. 18.84—21.33; p < 0.01).

There was no interaction between thelarche-to-
menarche tempo and diet intervention assignment. In
sensitivity analyses, restricting to white women, nullipar-
ous women, women not using hormonal contraceptives,
or women with baseline BMI z-score<1.5 did not
change results substantially (data not shown).
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Table 2 Geometric mean (95% confidence interval (Cl)) from mixed-effect regression models for each pubertal factor in relation to

percent dense breast volume (%DBV)

Pubertal characteristic Model 1 Model 2 Model 3
Age at thelarche, years
8.710 <99 19.56 (15.62-24.48) 18.74 (16.93-20.76) 20.83 (1842-23.57)
991to <104 19.36 (14.15-26.48) 19.06 (16.24-22.36) 19.50 (16.36-23.24)
104 to < 11.1 16.27 (12.01-22.05) 18.36 (14.54-23.19) 17.79 (14.15-22.38)
111+ 19.90 (1241-31.91) 18.72 (13.55-25.86) 17.04 (13.28-21.86)
p trend 0.56 0.94 0.04
Age at pubarche, years
8610 <103 22,08 (18.18-26.81) 19.04 (16.9-21.45) 20.84 (18.2-23.86)
103 to <109 17.31 (12.27-24.42) 16.88 (11.9-23.94) 16.97 (12.21-23.57)
109to <115 16.20 (13.84-18.98) 17.51 (14.91-20.56) 17.73 (14.81-21.23)
11.5+ 19.72 (13.74-28.32) 21.66 (18.25-25.71) 1947 (17.38-21.83)
p trend 0.87 039 0.64
Age at menarche, years
10to <122 16.89 (13.04-21.87) 15.96 (13.28-19.19) 17.10 (14.15-20.66)
12210 <128 14.38 (12.03-17.19) 15.39 (11.53-20.54) 16.38 (12.4-21.65)
12810 <134 19.98 (15.19-26.27) 22.90 (20.37-25.75) 21,65 (19.36-24.21)
134+ 25.96 (17.03-39.56) 21.76 (1641-28.86) 20.18 (15.66-25.99)
p trend 0.03 0.01 0.13
Thelarche-to-menarche tempo, years
<16 13.90 (10.23-18.88) 1545 (14.08-16.95) 15.55 (13.85-1747)
16to <23 1991 (16.02-24.76) 18.88 (16.17-22.04) 1949 (16.89-22.5)
2310 <29 18.90 (13.14-27.18) 1847 (15.77-21.62) 18.38 (15.7-21.51)
2.9+ 24.85 (16.51-37.40) 22.55 (17.8-28.56) 21.84 (18.18-26.24)
p trend 0.01 0.004 0.007
Pubarche-to-menarche tempo, years
<11 14.40 (10.03-20.66) 15.9 (12.23-20.68) 16.23 (12.3-2141)
11to<17 17.16 (13.85-21.26) 1869 (16.16-21.61) 1840 (16.82-20.14)
1.710 <26 16.68 (11.20-24.85) 17.85 (13.7-23.25) 17.87 (13.88-23.02)
26+ 29.09 (25.22-33.56) 22.80 (20.25-25.68) 22.66 (20.79-24.7)
p trend <0.001 0.06 0.06

Model 1 is unadjusted

Model 2 adjusts for the following variables as fixed effects: adult covariates, including parity (nulliparous vs parous), duration of hormone use (years, continuous),
education (some college or less (reference), bachelor degree, graduate degree), race (white vs. non-white), smoking status (never vs ever), whole-body percent fat
measured by DXA (%, continuous), and height (continuous). Clinic included as a random effect

Model 3 adjusts for the same factors in model 2, and in addition, BMI at 8-10 years of age expressed as a z-score relative to CDC 2000 Growth Charts (continuous)

Associations of pubertal timing and tempo with ADBV
and ANDBYV are shown in Additional file 1: Tables S2
and S3. None of the fully adjusted associations were sta-
tistically significant.

Discussion

In this prospective study with over 20 years of follow-up,
girls with a thelarche-to-menarche tempo of approxi-
mately 3 years or more have significantly higher %DBV
in their mid-to-late twenties compared to girls with a
tempo of ~1.5years or less. Age at thelarche, but not

menarche, also was associated with %DBV in our fully
adjusted models.

This prospective study demonstrates an association
between clinically assessed pubertal timing and tempo
with %DBV in young women. One previous study by
Schoemaker et al. evaluated recalled pubertal timing in
relation to adult breast density [20]. In that study, which
measured breast density from mammograms at age 40—
75 years, women with higher absolute dense breast area
had a longer thelarche-to-menarche duration independ-
ent of the timing of pubertal onset. The association of
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Table 3 Geometric mean (95% confidence interval (Cl)) from mixed-effect regression models, stratified by median of thelarche,
menarche, and thelarche-to-menarche tempo in relation to percent dense breast volume (%DBV)

Number Mean (95% confidence interval) p value

Thelarche effect

Early menarche/short tempo 62 15.73 (14.3-17.30) Reference

Early menarche/long tempo 29 18.84 (17.05-20.81) 0.01

Late menarche/short tempo 29 21.33 (18.99-23.97) <0.001

Late menarche/long tempo 62 20.88 (17.49-24.92) <0.001
Menarche effect

Early thelarche/short tempo 29 2047 (16.18-25.91) Reference

Early thelarche/long tempo 62 19.81 (17.49-22.44) 0.82

Late thelarche/short tempo 62 16.34 (14.64-18.23) 0.1

Late thelarche/long tempo 29 2040 (16.52-25.20) 0.98

The means and 95% confidence intervals are generated from stratified models including the same covariates included in model 3 of Table 2. The following
variables were adjusted as fixed effects: adult covariates, including parity (nulliparous vs parous), duration of hormone use (years, continuous), education (some
college or less (reference), bachelor degree, graduate degree), race (white vs. non-white), smoking status (never vs ever), and whole-body percent fat measured by
DXA (%, continuous), height (continuous), and BMI at 8-10 years of age expressed as a z-score relative to CDC 2000 Growth Charts. Clinic was adjusted for as a

random effect

tempo with percent density followed a similar pattern
but it was not statistically significant. The current study
prospectively confirms a positive relationship between
pubertal tempo with breast density, though not absolute
dense breast volume. There were several differences be-
tween the previous study and ours. We measured volu-
metric breast density by MRI, whereas Schoemaker et al.
measured areal breast density from mammograms,
which could contribute to different results even though
MRI and mammographic breast density measures are
highly correlated [20]. We ascertained thelarche and
pubarche by annual Tanner staging and menarche by
self-report to the nearest month during adolescence,
whereas in the previous study ages (in years) of thelarche
and menarche were recalled decades later. We also mea-
sured height and weight in childhood, whereas partici-
pants in the study by Schoemaker et al. recalled their
body size in relation to peers [20]. Furthermore, we ad-
justed for adult body fatness in our analysis using per-
cent body fat from DXA as opposed to BMI. Lastly,
differences in breast composition across the life course
could alter associations with pubertal tempo. In particu-
lar, our participants were considerably younger and all
were premenopausal at the time of breast density assess-
ment, whereas 80% of participants in the study by
Schoemaker et al. were postmenopausal [20]. In one
other prospective study by Denholm et al., ages at the-
larche and menarche were positively associated with per-
cent breast water (which is positively associated with
mammographic percent density) [21]. However, they did
not directly asses the association between pubertal
tempo and breast density.

The mean (SD) of %DBYV in our study was 27.6 (20.5),
which is slightly higher than that in another small study

(n=24) of healthy premenopausal Asian women by
Chen et al. that found the mean %DBV to be 21.4 (8.4)
[22]. In contrast, in a study of young women’s breast tis-
sue composition by Boyd et al. [23], the median percent
water was 45%, which is substantially larger than the
percent dense breast tissue that we observed. Thicker
MRI sections used in the Boyd study were more likely to
contain mixtures of water and fat, which may have con-
tributed to higher overall percent water values.

Earlier age at menarche is a long established risk
factor for breast cancer [24]. Even though the aver-
age age at menarche stabilized around 12years in
the 1960s [25-27], there has been a continual rise in
breast cancer incidence in women younger than 50
years old [28]. Several previous studies did not
observe an association of age at menarche with
breast density [29-31], while others found that later
age of menarche is associated with higher density
[20, 32-34]. Consistent with Shoemaker et al. [20],
we show that the positive association of age at me-
narche and %DBV is attenuated after adjusting for
childhood BMI. Alternatively, there is building evi-
dence of the potential importance of age at breast
development for predicting breast cancer risk [5].
Age at thelarche was inversely associated with non-
dense breast area in ours and the study by Schoe-
maker et al. [20]. In another study of girls, Tanner
breast stage was positively associated with concur-
rently measured adolescent breast density, and
though attenuated, the association was still present
after adjusting for menarcheal status [35]. The con-
tinual decline in age at thelarche [27, 36], the corre-
sponding decrease in the correlation between age at
menarche and age at thelarche over time [37], and
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the more recent finding that slow tempo is related
to increased risk of breast cancer [5] suggest that
the duration between thelarche and menarche may
be at least as if not more informative of breast can-
cer risk than either marker of puberty alone.

Our study has limitations. To be eligible for the original
DISC trial, children had to have high LDL-C defined as
greater than or equal to the 80th and less than the 98th
age- and sex-specific percentiles of the Lipid Research
Clinics population, which for girls translates to 117.5-
164.5 mg/dL [38]. Additional DISC eligibility criteria that
girls be 7.8—10.1 years old and pre-pubertal (Tanner stage
1) may have excluded early as well as late maturers. Thus,
our findings may not be generalizable to all healthy children
and the resultant truncated distribution of pubertal mile-
stones may have weakened observed associations. Further-
more, because early maturers tend to progress through
puberty at a slower tempo [39], associations between tempo
and density may have been weakened. While pubertal sta-
ging was assessed by a clinician, palpation was not used to
distinguish between breast development and lipomastia.
Therefore, breast development could have been overesti-
mated in overweight girls. However, even after removing
girls with high BMI z-scores (> 1.5), the pattern of associa-
tions between tempo and adult %DBV remained, suggesting
that the finding is robust to any misclassification of lipo-
mastia for breast development. Our findings suggest associ-
ations between age at thelarche and thelarche-to-menarche
tempo and %DBV but cannot prove causation or rule out a
common cause.

Despite these limitations, our study has several
strengths. In particular, we were able to leverage prospect-
ively collected data on pubertal development and breast
density measured from the DISC study. Trained and certi-
fied personnel following standard protocols collected all
data. Clinicians assessed sexual maturation and partici-
pants reported onset of menses annually. Finally, breast
density was measured at age 25-29 years by MRI, which
gives accurate and precise measurement of %DBV.

Conclusions

Our finding that a longer pubertal tempo is associated
with increased %DBV may help to explain the current
increasing rates of early-onset breast cancer incidence
[40]. In the last 50 years, there has been a secular decline
in the age of thelarche but not menarche, which trans-
lates to pubertal tempo being elongated over time [25].
Now, puberty for the general population has come to
look more like those women in our study with longer
tempo and associated higher breast density. Longer
tempo also has been associated with increased breast
cancer risk [5]. Additional studies are needed to deter-
mine if breast density mediates the association between
pubertal tempo and risk.
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