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ABSTRACT
Francisella tularensis is a Gram-negative, intracellular bacterium causing the zoonosis tularemia. This highly infectious
microorganism is considered a potential biological threat agent. Humans are usually infected through direct contact
with the animal reservoir and tick bites. However, tularemia cases also occur after contact with a contaminated hydro-
telluric environment. Water-borne tularemia outbreaks and sporadic cases have occurred worldwide in the last
decades, with specific clinical and epidemiological traits. These infections represent a major public health and military
challenge. Human contaminations have occurred through consumption or use of F. tularensis-contaminated water, and
various aquatic activities such as swimming, canyoning and fishing. In addition, in Sweden and Finland, mosquitoes
are primary vectors of tularemia due to infection of mosquito larvae in contaminated aquatic environments. The
mechanisms of F. tularensis survival in water may include the formation of biofilms, interactions with free-living
amoebae, and the transition to a ‘viable but nonculturable’ state, but the relative contribution of these possible
mechanisms remains unknown. Many new aquatic species of Francisella have been characterized in recent years.
F. tularensis likely shares with these species an ability of long-term survival in the aquatic environment, which has to
be considered in terms of tularemia surveillance and control.
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Introduction

Francisella tularensis is a small, Gram-negative cocco-
bacillus and the causative agent of the zoonosis tulare-
mia [1]. Because it is highly infectious and can be
spread by aerosols, this microorganism is classified in
the category A of potential agents of biological threat
by the US Centers for Disease Control and Prevention
(CDC) [2]. The species F. tularensis is classically
divided into four subspecies: F. tularensis subsp. tular-
ensis (Type A strains), F. tularensis subsp. holarctica
(Type B strains), F. tularensis subsp. mediasiatica,
and F. tularensis subsp. novicida, which may be con-
sidered a different species (F. novicida) because it is
an aquatic bacterium of low virulence in humans
[3,4]. Type A and type B strains of F. tularensis are
the two etiological agents of tularemia. The former sub-
species is mainly localized in North America, although

it has been occasionally detected in arthropods in Slo-
vakia and Austria [5]. The latter one is found through-
out the Northern Hemisphere [1], but has recently
been detected in Australia [6].

F. tularensis has multiple reservoirs. Firstly, this
bacterium can infect a multitude of animal species,
including lagomorphs and small rodents, which are
the primary sources of human infections [1,7,8]. Sec-
ondly, Ixodidae ticks are vectors but also a probable
reservoir of F. tularensis owing to the transstadial
transmission of this pathogen in these arthropods
[1,8]. Mosquitoes and deer flies can also transmit
F. tularensis to humans and animals in specific areas,
but are not considered long-term reservoirs of this
pathogen [1,8]. Finally, a hydro-telluric reservoir of
F. tularensis is suggested by numerous studies but has
not been extensively characterized [1,8]. Water-borne
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tularemia was first described in the 1930s in the USSR
[9]. Human infection with F. tularensismay occur from
these different reservoirs, and the clinical presentation
of tularemia is primarily related to the mode of infec-
tion. Six major clinical forms of tularemia are classi-
cally recognized. The most frequent route of
contamination is through the skin, through contact
with an infected animal (especially hares in hunters)
or arthropod bites. The ulceroglandular form of
tularemia combines a skin ulcer at the site of
F. tularensis inoculation and regional lymphadenopa-
thy. The glandular form corresponds to regional lym-
phadenopathy without any visible skin lesion.
Infection with F. tularensis through the conjunctiva
(e.g. hand to eye contamination) or the oral route
(ingestion of contaminated water or food) correspond
to the oculoglandular and oropharyngeal forms,
respectively. The involvement of lungs through inhala-
tion of infected aerosols or hematogenous spread of
bacteria corresponds to the pneumonic form. Finally,
whatever the portal of entry of bacteria, severe sepsis
often associated with confusion and F. tularensis bac-
teremia corresponds to the typhoidal form. The present
review summarizes the literature data on human tular-
emia cases infected from aquatic sources, detection of
F. tularensis in aquatic environments, and potential
mechanisms of F. tularensis survival in water
environments.

Search strategy and selection criteria

Data on tularemia cases related to aquatic sources, on
the presence of Francisella species in water environ-
ments, and the mechanisms of survival of these bacteria
in water environments were collected from the English
literature in the PubMed database. Only articles pub-
lished in the last two decades (1998–2018) were
included. They were extracted using the keywords
‘tularemia’ or ‘Francisella’ and ‘case report’ or ‘water’
or ‘mosquito’ or ‘biofilms’ or ‘amoeba.’ In addition,
data on other aquatic Francisella species were added,
including F. novivida, F. philomiragia, F. halioticida,
F. hispaniensis, F. noatunensis, F. salina, F. frigiditurris,
Allofrancisella (formerly Francisella) gangzhouensis,
F. marina, F. ulginis and F. endociliophora.

Tularemia of aquatic sources

Tularemia and drinking water

In the last 20 years, tularemia cases linked to drinking
water have been reported in Turkey, Kosovo, Bulgaria,
Georgia, Macedonia, Norway, Sweden, Italy, and
Germany (Table 1).

In Turkey, tularemia reemerged in 1988 in the form
of water-borne outbreaks of oropharyngeal tularemia
cases [10]. Between 1988 and 2018, 28 tularemia

outbreaks and non-outbreak tularemia cases linked to
consumption of contaminated water were reported in
this country [11–36]. The Turkish outbreaks were fre-
quently of large scale, involving more than one hun-
dred people for some of them [11–15]. Patients were
almost exclusively suffering from the oropharyngeal
form of tularemia, in accordance with the oral route
of contamination with F. tularensis. In addition, cases
were observed in the whole population, with a male/
female sex ratio close to 1 or even lower, and both chil-
dren and adults involved [11–19,31,33–35]. This is in
sharp contrast to countries where infections usually
occur through contact with animals or tick bites, and
therefore predominate in middle-aged men due to
more frequent occupational or leisure exposures [8].
Less frequently, exposure to contaminated water
resulted in glandular [12,15], oculoglandular
[14,15,19,25,26], and pneumonic [24] forms of tulare-
mia. In some reports, Francisella species or more specifi-
cally F. tularensis were detected by PCR or culture in the
suspected water sources [12,15–20,24,32]. Moreover, the
same F. tularensis genotypes were detected concomi-
tantly from water sources and related tularemia patients
in some studies [24,32,37], confirming the epidemiologi-
cal link between drinking water and human infection. In
the majority of cases, the source of contamination was
spring water, water from the community water supplies
or water from wells. These water sources were not or
inadequately disinfected. Contamination of the water
by infected animal carcasses or excreta was the most
likely hypothesis [10]. Although F. tularensis subsp.
holarctica was identified only for some of these out-
breaks, only type B strains have been associated with
human infections in Europe and Asia.

In Kosovo, two huge oropharyngeal tularemia out-
breaks occurred in 1999–2000 and 2001–2002, each
one involving more than two hundred patients
[38,39]. It was not possible to establish if the primary
source of infection was contaminated water or food,
but it can be assumed that both were involved in the
human transmission of F. tularensis [38,39]. These out-
breaks were likely a collateral damage of the Kosovo
war, which ended in 1999 and left the country with
bad sanitary conditions. Indeed, people reported that
mice and rats invaded their villages during this period,
which may correlate with contamination of water wells
and cellars with F. tularensis. This bacterium was
detected in a field mouse recovered from a water well
in an affected village [39].

A long-lasting outbreak occurred between 1997 and
2005 in Bulgaria, involving 285 people [40].
F. tularensis was isolated from water samples collected
from private wells. Thus, the route of human contami-
nation was likely water consumption. The majority of
patients suffered from the oropharyngeal form of tular-
emia [40]. Similarly, in Georgia, a tularemia outbreak
involving 26 patients occurred in 2006 [41], with a
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predominance of oropharyngeal cases. The water
source was the community water supply from which
F. tularensis was isolated [41]. Finally, a small outbreak
involving 13 patients was described in 2015 in Macedo-
nia [42].

Water-borne tularemia cases are also reported in
Scandinavia. In Norway, three small outbreaks, invol-
ving eight to 39 people, linked to the consumption of
contaminated water were reported over 20 years [43–
45]. Most of the patients suffered from oropharyngeal
tularemia [43–45], although ulceroglandular, glandu-
lar, pneumonic and typhoidal forms were also observed
[43–45]. The source of these infections was water col-
lected from private water wells, as confirmed by

PCR-detection of F. tularensis DNA [43–45].
F. tularensis-infected rodent carcasses probably con-
taminated these water wells. In one report, a lemming
carcass retrieved from the contaminated water well was
PCR-positive for F. tularensis [43]. The involved
F. tularensis subspecies was not identified, but only
type B strains are found in this country. In Sweden, a
small outbreak and sporadic cases of oropharyngeal
tularemia were also associated with the consumption
of contaminated water from private water wells [46,47].

Tularemia cases related to F. tularensis-contami-
nated water consumption have been occasionally
observed in other countries. In Italy, in 1988, a tulare-
mia outbreak linked to the use of water collected from

Table 1. Tularemia outbreaks and sporadic cases related to drinking water.

Country
Year of

occurrence
Number of

cases Clinical forms (n)
Source of infection (water detection of

F. tularensis)
F. tularensis

subsp. involved Reference

Bulgaria 1997–2005 285 OP (275), UG (6), OG (4) Drinking water mainly from private wells
(culture, pos)

holarctica [40]

Georgia 2006 26 OP (21), GL (5) Using water from the community water
supply (culture, pos)

NS [41]

Germany 2007 1 OP Drinking surface water (NS) holarctica [49]
Italy 1988 24 OP (12), OG (1), AS (11) Drinking water (NS) NS [48]
Kosovo 1999–2000 > 200 OP Drinking water or eating food (Ag, neg) NS [39]

2001–2002 > 200 OP Drinking water or eating food (Ag, neg) NS [38]
Macedonia 2015 13 NS Drinking water (NS) NS [42]
Norway 1997 8 OP or UG Drinking water from wells (one well with a

lemming carcass PCR-positive for
F. tularensis) (PCR, pos)

NS [43]

2006 9 OP (5), GL (3), UN (1) Drinking water from private wells or eating
snow (PCR, pos)

NS [44]

2011 39 OP (21), UG or GL (10), PN (2),
TY (2), AS (3), UN (1)

Drinking water from private wells or stream
(PCR, pos)

NS [45]

Sweden NS 1 OP Drinking water from a well (NS) holarctica [46]
2013 6 OP Drinking water from a private well (culture,

pos)
NS [47]

Turkey 1988–1998 205 OP (83%), OG (8%), UN (9%) Drinking water (NS) NS [14]
NS 1 OP Drinking water from a well (culture, neg) NS [29]
2001 14 OP Drinking village pipe water (culture, neg) NS [35]
2005 5 OP Drinking natural spring water (PCR, neg) NS [30]
2005 10 OP (7), AS (3) Drinking spring water (culture, neg and

PCR, pos)
NS [20]

2004–2005 54 OP Drinking water (PCR, neg) NS [34]
2004–2005 39 OP Drinking water (NS) NS [36]

NS 2 OP Drinking water (NS) NS [28]
2005 11 OP (8), OG (3) Drinking village fountain water (PCR, pos) NS [19]

2004–2005 145 OP Drinking spring water (NS) holarctica [13]
2005 70 OP mostly Drinking natural spring water (culture, neg) NS [33]
2004 86 OP mostly Drinking water from a rivulet (PCR, pos) NS [17]

2004–2005 135 OP Drinking natural spring water (PCR, neg) NS [11]
2000 22 OP (19), UG (3) Drinking spring water (PCR positive for

Francisella spp.)
NS [18]

2005–2006 58 OP Drinking natural spring water (PCR, pos) holarctica [16]
NS 1 OG Drinking and washing face with spring

water (NS)
NS [26]

NS 3 OP Drinking spring water (NS) holarctica [27]
NS 4 OP Drinking water (NS) NS [23]
2011 2 PN (with bacteremia) Drinking water (culture, pos) holarctica [24]
2010 4 OP (3), OP and OG (1) Drinking (3) or exposure (1) to natural

spring water (NS)
NS [25]

2009–2011 139 OP (74%), GL (15.8%), OG
(5%)

Drinking spring water (PCR, pos) NS [15]

NS 2 OP (with abdominal
lymphadenopathy)

Drinking natural spring water (NS) NS [21]

NS 3 OP Drinking natural spring water (NS) NS [22]
2010–2012 110 OP or GL Drinking water (PCR, pos) NS [12]

2013 55 OP Drinking tap water contaminated by
surface water (culture, neg)

NS [31]

2008, 2009
and 2012

89, 54 and
35

OP Drinking water (culture, pos) NS [32]

(NS) Not specified; Clinical forms: ulceroglandular (UG), glandular (GL), oropharyngeal (OP), oculoglandular (OG), pneumonic (PN), typhoidal (TY), asympto-
matic (AS), and unknown form (UN); (Ag) F. tularensis antigen detection; (pos) positive, (neg) negative.
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an aqueduct involved 24 people living in the same vil-
lage, most of which developed oropharyngeal tularemia
[48]. More recently, a German oropharyngeal case of
tularemia was suspected to be associated with drinking
of non-purified surface water during a holiday in
Bavaria [49].

Tularemia and mosquitoes

In Sweden and Finland, tularemia is mainly trans-
mitted through mosquito bites. Large tularemia out-
breaks, frequently involving more than one hundred
people, have occurred almost annually in Sweden
during the last two decades [46,50–54]. These out-
breaks mainly occurred in central Sweden (counties
of Örebro, Stockholm, Södermanland, Västmanland,
Värmland, and Dalarna), in wet and woody areas of
the Boreal Forest, during the late summer period,
because of the mosquito vector habitat and seasonality
[46,50–54]. A large scale epidemiological study in Swe-
den over 29 years identified that tularemia incidence
was positively correlated with the presence of lakes
and rivers [55]. Similarly, outbreak modeling demon-
strated that tularemia in Sweden is concentrated in a
few high-risk regions, with a high incidence in summer
likely related to the population dynamics of the mos-
quito vector [56]. Due to this specific mode of trans-
mission, the ulceroglandular form of tularemia is
predominant in Sweden. In addition, cases occur in
the exposed population regardless of age, but more fre-
quently in men than women probably because of more
outdoor activities in men [46,50,51,53]. Swedish mos-
quitoes collected in Örebro were PCR-positive for
F. tularensis subsp. holarctica, still arguing their role
in tularemia transmission in this country [57].

Tularemia is also predominantly a mosquito-borne
disease in Finland, where several tularemia outbreaks
[58] or sporadic cases [59,60] have been linked with
this mode of transmission. Here again, tularemia is a
seasonal disease occurring during late summer, and
ulceroglandular tularemia is the primary clinical pres-
entation [58,61].

The potential role of mosquitoes in the transmission
of F. tularensis to humans has been occasionally
reported in other countries, such as Germany [62].

All these reports involved F. tularensis subsp. holarctica
as they occurred in Europe. Table 2 summarizes the lit-
erature reports of mosquito-borne tularemia cases.
Interestingly, F. tularensis DNA was detected in Alas-
kan mosquitoes, suggesting that tularemia could be a
mosquito-borne disease in this U.S. state [63].

Tularemia of other aquatic sources

All around the world, human contamination with
F. tularensis has occasionally occurred through other
types of water exposure (Table 3).

Tularemia cases were reported after near-drowning
accidents in France [64] and Finland [65]. For these
two cases, patients developed a pneumonic form of
the disease after inhalation of contaminated water.
For the French case, contamination occurred after
inhalation of freshwater and was caused by
F. tularensis subsp. holarctica. The involved subspecies
and water salinity were not specified for the Finnish
case. Four tularemia cases reported in Turkey were
related to swimming activities [66,67]. Three of these
cases were oropharyngeal forms that developed after
swimming in the same lake [67]. The fourth patient
suffered from a glandular form after swimming in a
natural aquatic environment in a valley [66]. Otomas-
toiditis caused by F. tularensis subsp. holarctica were
reported in three patients (two from France, one
from Germany) after canyoning in the same river in
France, between 2009 and 2014 [68]. Otitis likely
occurred after exposure to F. tularensis contaminated
water, although the source was not specifically ident-
ified [68].

Tularemia cases also occurred after handling
F. tularensis-contaminated aquatic animals [69–71].
A small tularemia outbreak involving 19 patients
occurred in Spain after crayfish fishing [69]. The
patients developed a glandular or ulceroglandular
form of the disease through skin injuries while catching
or cleaning red swamp crayfishes sinned in the same
river. Cases were grouped over three weeks after
which fishing was prohibited [69]. The source of con-
tamination was confirmed by PCR-detection of
F. tularensis DNA in one crayfish and two water
samples from the river [69]. In Canada, a patient

Table 2. Tularemia outbreaks and sporadic cases related to mosquito bites.
Country Year of occurrence Number of cases Clinical forms F. tularensis subsp. involved Reference

Finland 2000 1 UG NS [59]
2007 50 UG mostly holarctica [58]
2010 1 UG NS [60]

Germany NS 1 UG holarctica [62]
Sweden 1981, 1995, 1999, 2000, 2002, 2003,

and 2004
349 UG mostly holarctica [50]

2000–2004 278 UG holarctica [46,51]
2000 105 UG mostly NS [52]
2003 475 NS NS [53]
2006 90 NS NS [54]

(NS) Not specified; Clinical forms: ulceroglandular (UG).
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developed ulceroglandular tularemia after a finger
injury while cleaning pike and pickerel, which are
freshwater fishes [70]. Similarly, in the USA, a patient
contracted an ulceroglandular tularemia due to
F. tularensis subsp. holarctica after a finger injury
while fishing on a freshwater lake [71].

The particular ecology of Martha’s Vineyard (Mas-
sachusetts), an island in the east coast of the USA
should be highlighted. Two outbreaks of pneumonic
tularemia occurred on this island, the first in 1978
[72] and the second from 2000 to 2006 [73,74].
F. tularensis subsp. tularensis was isolated from one
dead patient and rabbits [73,75]. According to a
case–control study, landscaping activities, especially
lawn mowing and brush-cutting, were the most likely
sources of exposure to F. tularensis through aerosols
from environmental material [73,76]. However, the
environmental reservoir of F. tularensis could not be
characterized. Skunks and raccoons were found to
be seropositive for F. tularensis, but other animal
species tested had not or very rarely been infected
with this pathogen [75]. A low prevalence of infection
and a high degree of Francisella genetic diversity in
ticks argued against the role of these arthropods as

a source of human contamination [77]. In contrast,
the role of the aquatic environment as a long-term
reservoir of F. tularensis was strongly suspected.
PCR detection of Francisella sp. DNA was frequently
reported from brackish-water samples collected on
the island [78].

The role of brackish water as a potential reservoir
of F. tularensis is supported by a more recent study in
Nunavik territory (Canada) demonstrating that
tularemia seroprevalence in the human population
was positively correlated with residence near the
coast [79].

Other Francisella species and aquatic
reservoir

The genus Francisella includes many other species with
a proven or probable aquatic habitat. Genetic analyses
have suggested that the ancestral Francisella species
originated in a marine habitat [80]. Here, we review
water-borne human infections caused by Francisella
species other than F. tularensis (Table 4). Some of
these species are opportunistic pathogens mainly

Table 3. Tularemia outbreaks and sporadic cases related to other aquatic sources.

Country Year of occurrence
Number of

cases Clinical forms (n) Source of infection
F. tularensis subsp.

involved Reference

Canada NS 1 UG Suspicion of finger injury while
cleaning freshwater fishes

NS [70]

Finland NS 1 PN Near-drowning accident NS [65]
France NS 1 PN with bacteremia Near-drowning accident while

fishing in a river
holarctica [64]

2008–2014 3 Otomastoiditis Canyoneering in the same river holarctica [68]
Spain 1998 19 UG and GL Crayfish fishing in a river holarctica [69]
Turkey 2007 3 OP Swimming in the same lake NS [67]

2010 1 GL Swimming in freshwater NS [66]
USA 2000–2006 (Martha’s

Vineyard island)
59 PN (38), UG or GL (9), TY

(2), OP (1)
Water environmental source likely tularensis [73,74]

2016 1 UG Finger injury while fishing in a
freshwater lake.

holarctica [71]

(NS) Not specified; Clinical forms: ulceroglandular (UG), glandular (GL), oropharyngeal (OP), pneumonic (PN), and typhoidal (TY).

Table 4. Human infections caused by Francisella species other than F. tularensis related to aquatic sources.

Country
Year of

occurrence
Number of

cases Clinical forms Source of infection
F. tularensis subsp.

involved Reference

Australia NS 1 UG Cut in the toe in brackish water F. novicida-like [99]
NS 1 NS, bacteremia Cut with a fishhook while fishing F. hispaniensis [105]

Canada NS 1 OP and PN Skin abrasion from a saltwater crab F. philomiragia [84]
Spain NS 1 OP Holiday activities in the Mediterranean sea F. philomiragia [83]
Turkey NS 1 TY Swimming in the sea and taking mud baths F. philomiragia [81]
USA 1977–1985 5 PN, bacteremia Near-drowning accident in saltwater or brackish

water
F. philomiragia [86]

1995 1 NS, bacteremia Use of water from a private well for food
preparation and bathing

F. novicida-like [100]

NS 1 NS, bacteremia Working in the brackish water of Assawoman Bay in
Maryland

F. philomiragia [85]

NS 1 TY Practice of jet-ski in a bay in the Atlantic Ocean F. philomiragia [82]
NS 1 NS, bacteremia Near-drowning accident while surfing in the

Atlantic Ocean
F. novicida [97]

2001 1 NS Exposure to hot spring water near a salt-lake F. novicida [89]
NS 1 UG Suspicion of infection through contact of an open

wound in brackish water
Species close to
F. halioticida

[113]

2011 3 NS, bacteremia Consumption of ice from ice machines F. novicida [98]

(NS) Not specified; Clinical forms: ulceroglandular (UG), glandular (GL), oropharyngeal (OP), oculoglandular (OG), pneumonic (PN), and typhoidal (TY).
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causing diseases in immunocompromised patients
exposed to an aquatic environment. Among them,
infections caused by F. philomiragia or F. novicida
have been most frequently reported.

Less than 20 human infections with F. philomiragia
have been published in the English literature [81–88].
These infections occurred in healthy individuals that
have survived a near-drowning accident [86] or in
immunocompromised patients (especially people
suffering from chronic granulomatous disease) after
exposure to an aquatic environment [81–86]. Interest-
ingly, human contamination usually occurred after
exposure to salt- or brackish-water [81–86]. Infections
with F. philomiragia most often occurred during rec-
reational activities in sea, ocean or bay connected to
the ocean [81–83,85,86]. A young patient was contami-
nated after a skin lesion caused by a saltwater crab [84].
In a review of 14 cases, Wenger et al. showed that most
F. philomiragia infections occurred in patients living
within 50 miles of a salt-water coastline [86], again
suggesting a clear association between salt-water
exposure and F. philomiragia infections.

The geographical distribution of F. philomiragia is
probably wide as human infections with this species
have been described in the USA [82,85,86], Canada
[84], Europe [83] and Turkey [81]. Frequent detection
of F. philomiragia in water samples by culture or PCR
indicates that the aquatic environment is likely the pri-
mary reservoir of this bacterium [78,89–93]. In two
studies, in Norway [92] and the USA [78],
F. philomiragia was only found in salt- or brackish-
water but not in fresh-water, suggesting that water sal-
inity is a major element in the natural life cycle of
F. philomiragia. However, this species was also isolated
from spring water near a salt lake in the USA [89] and
cooling towers in China [91], reflecting its distribution
in different aquatic reservoirs. F. philomiragia DNA
was also detected in ballast water from cargo traveling
all around the world [90], which might be a mode of
diffusion of this species at the global scale. Although
the aquatic reservoir appears to be predominant,
F. philomiragia was isolated in a sick muskrat and in
brackish water surrounding it [94] suggesting that a
mammal reservoir may exist for this bacterium.
F. philomiragia was also detected in Dermacentor
ticks [95].

F. novicida is also a rare human pathogen. A dozen
cases have been published in the English literature so
far [96]. For all cases with an identified mode of con-
tamination, an aquatic source was involved [89,97–
100]. In the USA, a case of F. novicida bacteremia
occurred after a near-drowning accident in the Atlantic
Ocean [97], another case after exposure to hot spring
water near a salt lake [89], and the last one after
exposure to water from a private water well [100]. A
striking outbreak of F. novicida bacteremia occurred
among inmates in the USA after consumption of ice

from ice machines from which F. novicida DNA was
detected by PCR [98]. Finally, in Australia, a patient
developed an ulceroglandular form of infection with
F. novicida after cutting himself in brackish water
[99]. Most of the patients suffering from F. novicida
infection were immunocompromised or had under-
lying health conditions [98,100]. The identification of
F. novicida has never been reported in animals or
arthropods [96]. The only known reservoir of this
bacterium is the aquatic environment as attested by
its repeated isolation from water samples
[78,89,101,102]. As for F. philomiragia, salinity seems
to impact F. novicida survival in water, as this bacter-
ium was detected by culture or PCR only in sea-
water [101,102], brackish-water [78] and spring water
near a salt lake [89].

Other Francisella species have been rarely associated
with human infections originating from aquatic
sources. F. hispaniensis was first isolated in 2003
from a Spanish patient suffering from bacteremia
[103,104]. The source of contamination was not ident-
ified [103]. However, a few years later, F. hispaniensis
was isolated in the blood of an Australian immuno-
compromised patient after he cut himself with a
fishhook while fishing [105].

The genus Francisella also includes species that are
pathogenic for marine animals. F. noatunensis subsp.
orientalis and Francisella noatunensis subsp. noatunen-
sis are widely described as warm- and cold-water fish
pathogens, responsible for ‘piscine francisellosis.’ This
disease causes high morbidity and mortality in many
fish species worldwide and is responsible for economic
losses in aquaculture [106–109]. F. noatunensis does
not seem to be pathogenic in humans [106].
F. halioticida can infect Haliotis mollusks (abalones)
[110,111] and F. marina sp. nov. was recently identified
as causing disease in Spotted Rose Snapper fishes [112].
Interestingly, a novel Francisella species very close to
F. halioticida was isolated in the USA, in a diabetic
patient, from an infected skin wound developed after
contact with brackish water [113]. Finally, other Fran-
cisella species are endosymbionts of marine ciliates
such as F. endociliophora [114].

Over the past ten years, new Francisella species have
been isolated from the aquatic environment. F. salina
and F. uliginis were isolated from sea-water in the
USA [101,102]. Water from cooling towers also
seems to be a reservoir of Francisella species as attested
by recent isolation from these air conditioning systems of
F. frigiditurris in the USA [102] and F. guangzhouensis
in China and Germany [91,115–117]. These two latter
species have been transferred to the new genus
Allofrancisella [115].

Table 5 summaries studies dealing with the detection
of Francisella species in water samples, either using cul-
ture, PCR or bothmethods. It shows the broad spectrum
of Francisella species found in aquatic reservoirs.
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Regarding PCR methods, it is important to notice that
Francisella species that are not yet characterized may
not be PCR-amplified from water samples due to the
use of inadequate primers [78]. Even if there is PCR
amplification with a new species, it may not be accu-
rately identified as a novel species due to a lack of resol-
ution within the utilized amplicon. Full identification of
a novel species requires whole genome sequencing.

Mechanisms of F. tularensis survival in water
environments

The high frequency of water-borne tularemia cases
implies the persistence of F. tularensis in the aquatic
environment. However, the mechanisms of
F. tularensis survival in this environment have not
been elucidated so far.

Long-term survival of F. tularensis in water

Experimental studies suggest long-term survival of
F. tularensis in various water environments. Several
authors described the survival of F. tularensis in
water microcosm from 1 to 70 days [118–120].
F. tularensis survival seems to be influenced by both
water temperature [118] and salinity [119]. Gilbert
and Rose observed that F. tularensis subsp. holarctica
remains cultivable after a stay in water for one day at
5°C or 25°C, but up to 28 days at 8°C [118]. Berrada
and Telford showed that both type A and type B strains
of F. tularensis remain cultivable after a stay of 8–10
days in fresh-water, but 30–42 days in brackish-
water, both at 21°C [119]. In another study,
F. tularensis subsp. holarctica remained cultivable
after a stay in fresh water at 8°C up to 70 days [120].

Interestingly, when F. tularensis became uncultiva-
ble on agar plates, bacteria could still be detected and
were metabolically active in water [118,120]. This
phenomenon was observed by Gilbert and Rose [118]
and Forsman et al. [120] for F. tularensis subsp. holarc-
tica. The latter authors described the persistence of
metabolic activity for F. tularensis in water up to 140
days [120]. This state is defined as ‘viable but non-cul-
turable’ (VBNC) and could be responsible for long-
term survival of bacteria in the water environment.
The VBNC state has been defined as a state from
which bacterial cells cannot be cultured but maintain
a metabolic activity and cellular integrity [118]. In
addition, the VBNC state may be reversible, as bacteria
may become cultivable under certain conditions. This
reversion in the ability to grow on acellular media is
called ‘resuscitation’ of VBNC bacteria. The VBNC
state has been described for a wide range of bacteria
such as Vibrio sp. [121,122], Campylobacter sp. [123],
Escherichia coli [122] and Legionella pneumophila
[124]. Depending on the bacterial species, the infec-
tious nature and pathogenic potential of VBNC cells

are variable, as well as the ways of their resuscitation.
Forsman et al. reported that F. tularensis VBNC cells
were no longer virulent in mice, and could not be
resuscitated [120]. Finally, a recent study demonstrated
that F. tularensis subsp. holarctica possesses a mechan-
osensitive channel that protects this bacterium from
hypo-osmotic shock when it is released from an
infected animal to water [125].

Long-term survival in water has also been reported
for other Francisella species. Berrada and Telford
showed that F. novicida (like F. tularensis) remains cul-
tivable after a stay of up to 30–42 days in brackish-
water, at 21°C [119]. The fish-pathogen Francisella
species are able to survive in water in the absence of
a suitable fish host. Indeed, F. noatunensis subsp. orien-
talis remains cultivable after a stay up to 2 days in
freshwater and up to 3 days in seawater [126].
F. noatunensis subsp. noatunensis remains cultivable
after up to 12 days in freshwater and up to 50 days
in seawater [127]. Interestingly, F. noatunensis was
also able to enter in a VBNC state after a period of
stay in the water, and these VBNC were not pathogenic
to cods [127].

Long-term survival of F. tularensis in natural aquatic
environments is suggested by a number of studies detect-
ing this bacterium by culture or PCR in environmental
water samples [12,16,17,19,20,32,40,41,43,44,47,78,128–
132]. Not surprisingly, long-term detection of
F. tularensis in water environments was reported in
countries were water-borne tularemia cases are frequent
and predominant. In Turkey, two environmental studies
identified F. tularensis subsp. holarctica in water samples
collected from the aquatic environment or from village
water supply systems highlighting the role of different
water sources as common and persistent reservoirs of
F. tularensis in this country [32,130]. In Sweden,
F. tularensis subsp. holarctica was PCR-detected in
water samples collected during outbreak and non-out-
break periods, in tularemia endemic areas [131]. How-
ever, F. tularensis was also detected from water
samples in countries where tularemia is not or rarely a
water-borne disease [128,129,132]. Hightower et al. iso-
lated F. tularensis strains fromwater in Ukraine and con-
sidered that the aquatic environment was the third main
F. tularensis reservoir after arthropods and mammals in
this country [129]. In Germany, following the reemer-
gence of tularemia in 2004, an ecological study in out-
break areas found a river water sample PCR-positive
for F. tularensis suggesting a natural aquatic reservoir
for this bacterium [132]. In the Netherland, tularemia
also re-emerged in 2011 leading to the surveillance of
F. tularensis prevalence in the environment [128]. Sur-
face water samples were PCR-positive for F. tularensis
subsp. holarctica in 10% of the randomly collected
samples and 88% of the samples collected in areas
where tularemia cases among hares or humans had
been reported [128]. These studies show the almost
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Table 5. Detection of Francisella species in water samples.
Country Year of sampling Type of water samples (n) Testing methods Findings (n samples) Reference

China 2008 Cooling towers (NS) Culture and strain identification by fatty acid analysis, and
16S rRNA, 23S rRNAs, recA, rpoA, rpoB, rpoD, rpoH, groEL,
dnaK, gyrB, sdhA, and fopA genes sequencing

F. guangzhouensis (4) [117]

2009–2011 Cooling towers (312) Culture and strain identification by 16S rRNA, rpoB and
sdhA genes sequencing

Francisella strains phylogenetically close to F. philomiragia (1) or
F. guangzhouensis (8)

[91]

2008 and after Cooling towers (NS) Culture and strain identification by mass spectrometry,
fatty acid analysis, and 16S rRNA, rpoB, mdhA, and sdhA
genes sequencing

Francisella strains phylogenetically close to F. guangzhouensis (5). Description of
Allofrancisella inopinata gen. nov., sp. nov. and A. frigidaquae sp. nov.; transfer
of F. guangzhouensis to A. guangzhouensis comb. nov.

[115]

Germany 2005–2006 NS (28) PCR targeting 16S rRNA and fopA genes F. tularensis (1) [132]
2012 Cooling tower (NS) Culture and strain identification by 16S rRNA, fopA, gyrA,

rpoA, groEL, sdhA, and dnaK genes sequencing
Francisella strain phylogenetically close to F. guangzhouensis (1) [116]

Netherlands 2013–2017 Surface water collected from areas with
reported human or hare tularemia cases (127)
or unrelated to recent tularemia cases (339)

PCR targeting ISFtu2 and fopA genes F. tularensis in 88% of the case-related samples and in 10% of the randomly
collected samples

[128]

Norway 2010 Seawater (149) or freshwater (64) PCR sequencing of 16S rRNA; and for positive samples sdhA
and purCD PCR

Francisella sp. in seawater (38) but not in freshwater samples. F. philomiragia-
related species mostly.

[92]

Sweden 2003– 2005 Surface water (341) PCR sequencing of lpnA, 16S rDNA, lpnA, and FtM19InDel F. tularensis (108), mainly subsp. holarctica, rarely subsp. mediasiatica [131]
Turkey 2008 - 2009 Rivers, spring waters or village fountains in

tularemia-endemic areas (154)
Culture and strains identification by 16S rRNA gene
sequencing; and PCR targeting ISFtu2

F. tularensis subsp. holarctica isolation (4); or F. tularensis positive PCR ISFtu2 (17) [130]

Ukraine 1941– 2008 NS (NS) Culture F. tularensis (393) [129]
USA 2003 NS (23) PCR sequencing of 16S rDNA; and for positive samples

ISFtu2, 23 kDa, tul4, fopA and sdhA PCR
F. philomiragia (1) [93]

NS Seawater (NS) Culture (CHAB-PACCV medium) and strains identification
by PCR sequencing of 16S rRNA and sdhA genes

F. philomiragia-like (2) and F. novicida-like (1). The two F. philomiragia-like
strains were latter characterized as new Francisella species by Challacombe
et al.: F. salina and F. uliginis.

[101,102]

2005– 2007
(Martha’s
Vineyard island)

Fresh-water (35) or brackish-water (42) Culture and PCR targeting 16S rRNA gene; for positive
samples sdhA, tul4, ISFtu2, and fopA PCR.

No positive fresh-water samples. Francisella DNA detected by PCR in brackish-
water samples (19). Mainly F. philomiragia; few F. novicida- or F. tularensis-like
strains. F. philomiragia grown from one brackish-water sample.

[78]

NS Hot or cold spring waters near a salt lake (NS) Culture and strain identification by fatty acid analyses,
ribotyping and 16S rRNA gene sequencing

F. philomiragia and F. novicida (NS) [89]

NS Cooling tower (NS) NS F. frigiditurris (NS) [102]
Cargo
ships*

2007–2008 Ballast water from 5 general cargo ships (NS) PCR sequencing of 16S rRNA gene F. philomiragia and F. noatunensis in ballast water from 4 cargo ships [90]

(NS) Not specified; * Cargo ships from Columbia, Republic of the Congo, USA, Canada, and Iran.
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constant presence of F. tularensis in randomly collected
water samples at different time periods. This observation
can only be explained by repeated contaminations of the
aquatic environment, particularly from the animal reser-
voir during epizootics, but also by the persistence of
these bacteria in the water environment during non-epi-
zootic periods.

Table 5 summarizes studies dealing with
F. tularensis detection in water environments. PCR
was more effective than culture for detection of
F. tularensis in water samples, possibly because of a
low bacterial inoculum, the encroachment of
F. tularensis by other bacterial species, or a VBNC
state of bacteria. However, PCR results should be inter-
preted with caution since it has been shown that
F. tularensis specific primers (such as those targeting
fopA or tul4 genes) may also amplify DNA from Fran-
cisella species other than the tularemia agents [78].

Survival in biofilms

An essential mechanism for survival and persistence of
bacteria in the water environment is biofilm formation.
Biofilms are defined as naturally formed adherent com-
munities of bacteria within an extracellular polymeric
matrix [133]. A number of bacterial species, such as
Vibrio cholerae [134], Legionella pneumophila [135],
Helicobacter pylori [136] and Pseudomonas aeruginosa
[137] form biofilms to promote their survival under
environmental water conditions. In vitro studies have
demonstrated that both F. tularensis subsp. holarctica
[138,139] and F. tularensis subsp. tularensis [139] can
form biofilms. The aquatic Francisella species,
F. novicida [139–141] and F. philomiragia [142] have
also been capable of biofilm formation experimentally.
F. novicida was also demonstrated to be able to form
biofilm in chitin surface, the second most abundant
biopolymer in nature, providing the structure of
arthropods, insects, and fungi [139]. F. philomiragia
was shown to form more biofilm at 25°C than at 37°
C, which is compatible with its natural aquatic reser-
voir [142]. The fish pathogen F. noatunensis was also
demonstrated to form biofilm in vivo. [143]. Until
now, biofilm formation has not been associated with
virulence in Francisella species [133]. Thus, biofilm for-
mation is most likely a way of environmental survival
and persistence in these species [133]. To our knowl-
edge, Francisella biofilm has never been described in
natural environmental water microcosm.

Survival in amoebae

Free-living amoebae are ubiquitous organisms in soil
and water environments. Several human pathogens,
such as L. pneumophila and some Mycobacterium
species resist phagocytosis and digestion by the free-
living amoebae and may survive in water environment

inside amoebae [144]. Moreover, these bacteria may
survive for long periods in amoeba cysts [144]. This
mode of survival may apply to Francisella species,
especially F. tularensis. Multiple experimental studies
have focused on the interaction between Francisella
species and several amoeba species [145–154]. Berdal
et al. demonstrated that F. tularensis could penetrate
in the amoeba Acanthamoeba castellanii and be
released from it [152]. Then, other authors described
the multiplication of F. tularensis subsp. tularensis in
A. castellannii 24 h post-infection [150]. F. novicida
and F. philomiragia were also able to multiply within
Hartmanella vermiformis and A. castellanii
[142,146,148,150,151]. F. noatunensis was also able to
infect and replicate within the amoeba Dictostelium
discoideum [149]. Francisella cells were localized
within vacuoles in amoeba trophozoites [146] but
were also able to survive in amoebal cysts for several
weeks [150]. This latter finding suggested that amoeba
could be a long-term reservoir of Francisella spp. in
water environments. Other authors described an
enhanced survival of F. tularensis subsp. tularensis,
F. tularensis subsp. holarctica and F. novicida in co-cul-
ture with amoebae such as A. castellanii, A. polyphaga,
Vermamoeba vermiformis or Ochromonas danica
[145,147,153]. These authors described the presence
of Francisella sp. inside and outside the amoeba in
the co-culture model, suggesting that bacterial survival
could be related to intra-amoebal replication, to favor-
able interaction between extracellular bacteria and
amoeba, or both [145,147,153]. Interestingly, Gustafs-
son et al. demonstrated that growth supernatant of
A. palestinensis (without the presence of amoebae)
increased multiplication of F. tularensis [154]. After
five days in co-culture with amoeba, F. tularensis
subsp. holarctica was also shown to enter in a VBNC
state [147]. In contrast to L. pneumophila, passage
through amoebae did not increase Francisella novicida
virulence [148]. Despite some disagreements about
interaction mechanisms, all these reports argue that
Francisella spp. are resistant to free-living amoeba
and that protists may contribute to the survival of
Francisella sp. in the water environment. However, to
our knowledge, Francisella species have never been
detected within amoebae in environmental water
samples, in contrast to L. pneumophila and Mycobac-
terium spp. [155].

Survival in mosquito larvae

Mosquito larvae may also represent a long-term
F. tularensis reservoir in the aquatic environment. It
has been shown that these larvae can ingest
F. tularensis subsp. holarctica that are present in
water and ingested bacteria survive throughout the
different maturation stages of these arthropods up to
adult mosquitoes [57,63,138,156,157]. The fact that
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mosquito-borne tularemia cases have occurred over
years in Sweden and Finland should be considered a
further evidence of the existence of a long-term aquatic
reservoir of F. tularensis.However, it should be notified
that mosquitoes could also be infected at the adult stage
after a blood meal on an infected host [57]; in this case
tularaemia is not water-borne.

Discussion

Although water-borne tularemia was first described in
the 1930s [9], this route of human contamination has
been largely underestimated. Tularemia cases linked
to the aquatic reservoir are common and can occur
as large epidemics. Thus, tularemia is a major public
health problem in countries where water-borne tulare-
mia cases predominate. These cases may occur through
consumption of F. tularensis-contaminated drinking
water, such as in Turkey [11–36] and its neighboring
countries [38–42], and in Norway [43–45] where
large-scale tularemia outbreaks caused by
F. tularensis subsp. holarctica are regularly reported.
Drinking water as a source of human infections with
type B strains of F. tularensis have also been occasion-
ally encountered in Sweden [46,47] and central
Europe [48,49]. Human infections have occurred
after consumption of contaminated water from the
community water supplies, especially in countries
with bad sanitary conditions, old water networks
and inappropriate water treatment. Consumption of
unsanitized surface water or well water was also a
source of contamination. Consequently, it is of pri-
mary interest for practitioners to keep in mind that
tularemia may correspond to sub-acute or chronic
pharyngitis associated with cervical lymphadenopa-
thy, especially in patients living or traveling in
countries where water-borne tularemia cases are fre-
quent. In addition, medical questioning regarding
tularemia exposure should include a statement about
unsanitized water consumption. Until now, this
mode of human contamination has been observed
in restricted areas and only linked to F. tularensis
subsp. holarctica. However, similar cases could occur
throughout the Northern hemisphere where type B
strains are encountered. F. tularensis subsp. tularensis
has also been associated with the water environment
[72–74], and could also cause tularemia cases related
to drinking water.

Mosquito-borne tularemia is also related to con-
tamination of the aquatic environment by
F. tularensis. Tularemia outbreaks caused by
F. tularensis subsp. holarctica in Sweden [46,50–54]
and Finland [58–60] are primarily related to mosquito
bites. Because of skin inoculation of bacteria, the
ulceroglandular form of tularemia predominates.
Infections usually occur during the warm season at
the time of maximum activity of mosquitoes.

Scandinavian practitioners are now particularly
aware of this situation and usually diagnose tularemia
early in the course of the disease. In contrast, this
mode of transmission is most often unknown by
physicians in other parts of the word, and mos-
quito-borne tularemia cases could be missed in
patients returning from Scandinavian countries.
Also, potential transmission of tularemia through
mosquito bites outside Scandinavia has not been
thoroughly evaluated. A probable autochtonous mos-
quito-borne tularemia case was reported in Germany
[62]. In Alaska, mosquitoes tested positive for
F. tularensis DNA [63] arguing that these arthropods
could also transmit tularemia to humans in this US
state. In this time of global warming, mosquito vec-
tors could spread to new geographic areas, leading
to a rise in mosquito-borne tularemia cases [158].

Finally, tularemia cases may occur through other
types of aquatic exposure such as near drowning acci-
dent [64,65], swimming [66,67], canyoning [68] and
fishing activities [69–71], due to penetration of
F. tularensis through the skin, conjunctiva, or diges-
tive and respiratory tracts. These cases have been
reported in Europe [64,65,68,69], Turkey [66,67]
and North America [70,71], suggesting a wide aquatic
distribution of F. tularensis. Type B strains of
F. tularensis were likely involved in all these cases,
except one case occurring in Canada for which type
A and type B strains could be involved [70]. These
data suggest that F. tularensis subsp. holarctica
could be more frequently associated with aquatic
reservoirs than F. tularensis subsp. tularensis There
is currently no explanation regarding the preferential
association of type B strains with water. Williamson
et al. demonstrated that type B strains can resist to
hypoosmotic shock when released into water [125].
It would be interesting to compare the osmotic
shock resistance of type A versus type B strains.
Noticeably, almost all human contaminations
occurred after contact with fresh-water, suggesting
that F. tularensis may better survive in such aquatic
environment. F. tularensis subsp. tularensis may also
infect humans through water exposure, as attested
by the particular ecology of the Martha’s Vineyard
island in the USA [72–74]. In this case, brackish-
water was considered as a potential reservoir of
F. tularensis [78]. Altogether, available data indicate
that human contamination with F. tularensis may
occur from a wide diversity of aquatic sources and
activities.

Francisella species other than F. tularensis are pri-
marily considered aquatic bacteria. F. philomiragia
and F. novicida have been occasionally involved in
human infections, especially in immunocompromised
patients, but also in specific situations such as near-
drowning accident [81–86,89,97–100]. Infections
caused by these species were frequently associated
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with exposure to brackish-water or salt-water [81–
86,89,97,99]. In line with this observation,
F. philomiragia and F. novicida have been frequently
isolated from brackish- and salt-water samples
[78,89,90,92,101,102]. In recent years, novel Francisella
species have been detected in environmental or clinical
samples, the majority of them being associated with an
aquatic reservoir. Among them, F. hispaniensis [105]
and F. halioticida [113] are rare human pathogens.
These findings strongly suggest that the Francisella
species are mainly aquatic bacteria.

Several mechanisms could be involved in the survi-
val of F. tularensis in aquatic environments. Exper-
imental and epidemiological studies have
demonstrated that both F. tularensis subsp. tularensis
and F. tularensis subsp. holarctica can survive for
long periods in water microcosms [32,78,118–
120,125,128–132]. Interestingly, after a long stay in
water, F. tularensis has been shown experimentally
to evolve to a VBNC state [118,120], which could
account for long-term survival of this bacterium in
water. Both type A and type B strains of
F. tularensis can form biofilms in vitro [138,139],
another potential survival mechanism of these bac-
teria in aquatic environments. Experimentally, both
subspecies are able to multiply in amoebae or at
least interact with these protozoa to enhance their
survival [145,147,150,152,153]. Finally, F. tularensis
subsp. holarctica is also able to infect mosquito larvae
in vitro and survive during larvae maturation up to
the adult stage [57,63,138,156,157]. It should be men-
tioned, however, that all these mechanisms have been
evaluated experimentally, but not yet confirmed in
natural water environments. It is very likely that all
these mechanisms exist and are entangled. Infected
animals and animal carcasses may contaminate

water environments, in which protozoa, mosquito lar-
vae and biofilm communities may become contami-
nated with F. tularensis and serve as reservoirs for
this bacterium.

In conclusion, our goal was to demonstrate that
F. tularensis is likely able to survive for prolonged
periods in various aquatic environments, which likely
constitute a significant reservoir for this bacterium.
Figure 1 summarizes the probable tularemia aquatic
cycle as it can be pictured from current literature
data. In terms of public health, it is important to
remember that providing people with access to safe
drinking water via treatment of municipal and private
sources remains a priority. Better characterization and
control of the aquatic reservoir of F. tularensis would
also be of tremendous importance following a bioter-
rorist attack. Following a bioterrorist attack,
F. tularensis could survive for months in the environ-
ment, leading to a high number of secondary tularemia
cases. Water and mosquito reservoirs should be moni-
tored in the overall tularemia surveillance, in addition
to the wildlife reservoir.
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Figure 1. Potential aquatic sources of human infections with Francisella tularensis. Francisella tularensis is released into water from
animals. The bacterium is able to survive in water (W), in mosquito larvae (L), in biofilms (B), or in cooperation with amoeba (A).
Human can be contaminated from the aquatic reservoir by drinking contaminated water (D), after a mosquito bite (M), or during
swimming (S) and fishing (F) activities.
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