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Introduction: There are still uncertainties about the true nature of age related changes

in topological properties of the brain functional network and its structural connectivity

during various developmental stages. In this cross- sectional study, we investigated the

effects of age and its relationship with regional nodal properties of the functional brain

network and white matter integrity.

Method: DTI and fMRI data were acquired from 458 healthy Chinese participants

ranging from age 8 to 81 years. Tractography was conducted on the DTI data using

FSL. Graph Theory analyses were conducted on the functional data yielding topological

properties of the functional network using SPM and GRETNA toolbox. Two multiple

regressions were performed to investigate the effects of age on nodal topological

properties of the functional brain network and white matter integrity.

Result: For the functional studies, we observed that regional nodal characteristics such

as node betweenness were decreased while node degree and node efficiency was

increased in relation to increasing age. Perversely, we observed that the relationship

between nodal topological properties and fasciculus structures were primarily positive

for nodal betweenness but negative for nodal degree and nodal efficiency. Decrease in

functional nodal betweenness was primarily located in superior frontal lobe, right occipital

lobe and the global hubs. These brain regions also had both direct and indirect anatomical

relationships with the 14 fiber bundles. A linear age related decreases in the Fractional

anisotropy (FA) value was found in the callosum forceps minor.

Conclusion: These results suggests that age related differences weremore pronounced

in the functional than in structural measure indicating these measures do not have direct

one-to-one mapping. Our study also indicates that the fiber bundles with longer fibers

exhibited a more pronounced effect on the properties of functional network.

Keywords: healthy participants, magnetic resonance imaging, topological properties, fractional anisotropy, white

matter
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INTRODUCTION

Aging is considered as one of the greatest risk factors for
neurodegenerative diseases where there is progressive loss of
either structure or function of the neurons (Morrison and Hof,
1997). It is well-stipulated that marked transformations in white
matter structure occur as early as third trimester (Ball et al., 2014)
which persists throughout childhood and adolescence (Lebel
et al., 2008; Hagmann et al., 2010; Tamnes et al., 2010; Dubois
et al., 2014; van den Heuvel et al., 2015; Wierenga et al., 2016).
These transformations reflects an increase in axonal conduction
speed (Baumann and Pham-Dinh, 2001), thereby resulting in
improvement of information transfer (van der Knaap et al.,
1991). Similarly, functional studies have also investigated the
effects of age on functional brain connectivity showing older
adults to have lower functional connectivity between regions of
the default mode network compared to younger adults (Ferreira
and Busatto, 2013; Dennis and Thompson, 2014). However,
little is known about these transformations beyond the young
adults until the sixth or seventh decades of life, which is more
vulnerable to the effects neurodegenerative diseases that show its
effects abruptly after a possible long preclinical period (Grady
et al., 1988; Berg et al., 1992; Morris et al., 1993). Although
recent advances in network analysis have provided new insights
into both structural and functional connectivity pattern, which
is considered as the core of the brain activity (Sporns et al.,
2005; Bullmore and Bassett, 2011; Sporns, 2012), it is still
not fully understood about the relationships between them
across lifespan, the evaluation of which might help us elucidate
the possible mechanisms behind age related neurodegenerative
diseases.

Among the broad range of network analysis approaches,
graph theory approach is considered one of the favorable
as it applies to both structural and functional connectivity,
which is a natural framework for the exact mathematical
representation of complex networks. In graph theory, a
network is defined as a set of nodes with edges between
them. Some frequently used network measures include: global
network properties such as small-world properties [clustering
coefficient (Cp) and characteristics path length (Lp)]; efficiency
metrics (global efficiency and local efficiency); and regional
nodal properties (nodal betweenness, nodal degree, and nodal
efficiency) (Bullmore and Sporns, 2009). Similarly, patterns
of in vivo structural brain connectivity can be investigated
by using diffusion tensor imaging (DTI), which is a MRI
modality based on principle of water diffusion measures
(Beaulieu, 2002). One of the most frequently examined aspects
of structural connectivity is fractional anisotropy (FA), where
higher FA is interpreted as greater structural connectivity
between regions.

In recent past, increasing number of studies have used
graph theory to describe large scale topological organization
of various structural and functional brain networks such as
small world property, network efficiency, modular structure,
and rich club architecture (Achard et al., 2006; He et al.,
2007; Bassett and Bullmore, 2009; Stam, 2010; van den Heuvel

and Sporns, 2011, 2013). Using a graph theoretical approach
Wierenga and colleagues measured whole brain connectivity
in childhood and adolescence and observed a sequential
maturational model where they observed that connections
between unimodal regions strengthen in childhood, followed
by connection of these unimodal regions to association
regions, adolescence was characterized by the strengthening of
connections between association regions within the frontal and
parietal cortex (Wierenga et al., 2016). In fact, their studies
showed that white matter strengthening was not homogenous
throughout the brain during childhood and adolescence showing
strengthening of short association fibers rather than long
association fibers. Interestingly, Cao and colleagues in their
study (Cao et al., 2014) found an increase in network efficiency
during early adulthood which showed a decreasing trend
with increasing age. They also observed the proportions of
short-distance fibers to be higher than those of long-distance
fibers in older adults did. This was also supported by the
findings of Sala-Lincon and colleagues, who observed higher
average clustering coefficient as well as higher shortest path
length with increasing age (Sala-Llonch et al., 2014). Similarly,
age related differences in structural connectivity have also
observed wide–spread decreases in fractional anisotropy in older
compared to younger adults (Damoiseaux and Greicius, 2009;
Burzynska et al., 2010) which is also supported by other studies
(Gong et al., 2009b; Otte et al., 2015; Zhao et al., 2015).
It can therefore be asserted that, although strong functional
connectivity between brain regions can exist in absence of
strong structural connectivity (Damoiseaux and Greicius, 2009;
Zimmermann et al., 2016), similar patterns of age related
differences in structural and functional connectivity metrics
greatly suggests probable association between these twomeasures
(Andrews-Hanna et al., 2007; Betzel et al., 2014; Fjell et al., 2016;
Zimmermann et al., 2016).

Despite of many advances in neuroscience, there is still
much to learn about the relationship between white matter
integrity and nodal topological properties of structural and
functional network. So far, Cao et al. (2014) has employed graph
theory across life span ranging 7–85 years. However, they have
only used resting state functional fMRI data to examine the
topological age related effects. Other study by Hirsiger et al.
(2016) (n = 165 age range 64–85) have examined the association
of structural and functional connectivity of the cingulum bundle
to probe the cognitive and motor performance, where they
have suggested that only structural connectivity but not resting
state functional connectivity was significantly associated with
age. Since, the characterization on structural and functional
connectivity is essential to determine the relationship between
them. We, therefore have made an effort to ascertain the nature
of functional connections by examining the strength of structural
connections and vice-versa in a large sample of healthy subjects
(n = 458) with an age range of 8–81 years. We hypothesize
that changes in both white matter integrity and functional
connectivity would be observed in certain networks, and these
changes in nodal topological properties of the functional network
would be associated with the changes in FA.
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MATERIALS AND METHODS

Participants
DTI and fMRI data were acquired on 3T MRI systems from
458 healthy Chinese Han subjects (right handed; 229 males,
229 females; age range, 8–81 years) at West China Hospital
of Sichuan University. The subjects were recruited via local
advertising. Among these, 443 participants had fMRI data,
346 participants had DTI data, and 331 participants had both
fMRI and DTI data (Table 1). Participants had no history of
brain injury, neurological, or psychiatric diseases. Informed
written consent was obtained from all participants including
parent/guardian consent for younger participants. Research
protocol was approved by the local ethics committee.

Data Acquisition
All subjects were scanned in a single session without changing
their position and were instructed to remain motionless
as possible and relax their minds with their eyes open.
All participants confirmed they remained awake and alert
throughout the scanning session.

Functional MRI
The subjects underwent a resting-state fMRI scan in one of
two 3T MRI systems [General Electric (EXCITE, Millwaukee,
USA) or Siemens (Trio a Tim, Erlangen, Germany)]. Parameters
of General Electric machine were; repetition time = 2,000ms,
echo time = 30ms, field of view (FOV) = 24 × 24 cm2, flip
angle = 90◦, slice thickness = 5.0mm (no gap), voxel size, 3.75
× 3.75× 5 mm3; matrix, 64×64. Parameters of Siemens machine
were: repetition time= 2,000ms, echo time= 30ms, field of view
(FOV)= 24× 24 cm2, flip angle= 90◦, slice thickness= 5.0mm
(no gap), voxel size 3.75× 3.75× 5 mm3, matrix 64×64.

Diffusion Tensor Imaging
DTI data were also acquired from one of two 3T MRI systems.
Parameters of General Electric machine were: TR = 10,000ms,
TE = 70.8ms, field of view (FOV) = 24 × 24 cm2, resolution
matrix 128×128, flip angle = 90◦, slice thickness = 3.0mm,
A total of 672 slices were acquired for b values of b = 0
and b = 1,000 mm2/s, which were obtained by applying
gradients along 15 non-collinear directions. Parameters of
Siemens machine were; TR = 6,800ms, TE = 93ms, field of
view (FOV) = 24 × 24 cm2, resolution matrix 128×128, flip
angle = 90◦, slice thickness = 3.0mm. 42 slices were acquired
for b = 0 and b = 1,000 mm2/s; these were obtained by applying
gradients along 30 non-collinear directions.

Data Preprocessing
Preprocessing contained both functional and structural
preprocessing steps.

Functional preprocessing was carried out using Statistical
Parametric Mapping (SPM 8) (SPM8, http://www.fil.ion.ucl.ac.
uk/spm) and GRETNA (He et al., 2008). Briefly, preprocessing
was done by (i) discarding first 10 functional volumes for signal
equilibration, (ii) slice timing correction for timing offsets, (iii)
head motion correction by 3D geometrical displacement, and
(iv) normalization to Montreal Neurological Institute (MNI)
space. All data used in this study satisfied the criteria of
spatial movement in any direction <1.5mm or degree. Subjects
demonstrated no significant group differences in head-motion
parameters. Furthermore, linear detrend and band-pass filtering
(0.01–0.08Hz) was performed to reduce the effects of low-
frequency drift and high-frequency noise. Subsequently, several
nuisance signals including head motion, global mean, and signals
from the cerebrospinal fluid and white matter were regressed
from the data. For structural preprocessing, raw DTI images were
preprocessed using the FSL (FMRIB Software Library, FMRIB,
Oxford, UK) (Smith et al., 2004) software package. For each DTI
dataset, all diffusion weighted images were affinely coregistered
to the b0 image using FLIRT (FMRIB’s Linear Image Registration
Tool) (Jenkinson and Smith, 2001) with 12 degrees of freedom
to correct for eddy current-induced distortion and subtle head
motion. Brain mask was created from the b0 image using the BET
(Brain extraction Tool) (Smith, 2002) with a fractional intensity
threshold of 0.2; FDT (FMRIB’s Diffusion Toolbox) (Behrens
et al., 2003) was used to fit the tensor model.

For fiber tract identification, a MATLAB-based open source
software termed “automatic fiber quantification (AFQ),” which
implements both algorithms proposed by Hua and Zhang (Hua
et al., 2008; Zhang et al., 2008) was used. Identification procedure
included three primary steps; firstly, whole-brain fiber trajectory
was performed on the preprocessed tensor images. Secondly,
fiber tract segmentation was performed based on the waypoint
region of interest (ROI) procedure as described by Wakana et al.
(2007). The waypoint ROIs set developed in Mori’s lab was
warped into individual space from the MNI template space via
non-linear transformation. Each fiber was defined as a candidate
to a particular fiber group if it crossed through two-way point
ROIs that were used to define a specific fiber tract. Thirdly,
fiber refinement was accomplished by comparing each candidate
fiber to the fiber tract probability map proposed by Hua et al.
(2008). Fiber tract probability maps were also transformed into
an individual’s native space; candidate fibers for a particular fiber
groups were assigned scores according to the probability values

TABLE 1 | Participant characteristics.

Characteristics Total fMRI DTI fMRI+DTI

Male Female Male Female Male Female Male Female

Number of individuals, n 229 229 219 224 174 172 164 167

Age, y (mean) 27.57 29.54 27.47 29.71 28.75 30.70 28.70 30.97

Education, y (mean) 13.70 12.77 13.73 12.74 13.72 12.71 13.76 12.66
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of the voxels that they passed through. Candidate fibers with
low scores were discarded. Additionally, an iterative procedure
was used to filter fibers that were aberrantly longer than the
mean fiber length or that were distant from the core of the fiber
tract. Fourteen fiber bundles were identified according to the
predefined ROIs and probability maps. These bundles were the
bilateral thalamic radiation, corticospinal tract, inferior fronto-
occipital fasciculus, inferior longitudinal fasciculus, superior
longitudinal fasciculus as well as the uncinate, arcuate, genu and
splenium of the corpus callosum (Figure 1).

Construction of Functional Brain Network
Topological properties of corresponding brain networks were
examined using the GRETNA toolbox. Small world behavior
was assessed by coefficient σ (Humphries et al., 2006) which
uses a ratio of network clustering and path length to contrast
with the same metrics from an equivalent random network.
For σ > 1, a network is considered to have small world
behavior (Yang et al., 2015). Brain areas (except pons and
cerebellum) were parceled into 90 brain regions according to the
Automated Anatomical Labeling atlas (Tzourio-Mazoyer et al.,
2002) and were used to define the nodes of the functional
network. Then, global network properties including small-world
properties, efficiency metrics, and regional nodal properties were
simultaneously calculated. Briefly, small-world network is an
anatomical network containing specialized (segregated) modules
and a robust number of intermodular (integrating) links, that has
clustering coefficient (Cp), and characteristics path length (Lp)
as its properties. Some of the other metrics frequently used are
efficiency metrics such as global efficiency (which represents the
inverse of the average shortest path length between nodes in the
entire network) and local efficiency (which represents the inverse
of the average shortest path length between all nearest neighbors
of a node). Regional nodal properties such as nodal betweenness
(an indicator of a nodes centrality in a network, which is equal

to the number of shortest paths, form all vertices to all others
that pass through a node). Nodal degree (the degree of an
individual node, which is equal to the number of links connected
to that node), and nodal efficiency (the average smallest path
weight between a given node and all other nodes in the network)
(Bullmore and Sporns, 2009).Equations used to calculate these
metrics could be found elsewhere (Rubinov and Sporns, 2010).

Statistical Analysis
All statistical analyses were performed using SPSS (version 19).
Two multiple regressions were performed to investigate the
effects of age on nodal topological properties of the functional
brain network and white matter integrity with nodal topological
properties and mean FA values as dependent variables while;
age, gender, and education kept as independent variables.
Additionally, multiple regression model was also used to explore
the association between nodal topological properties and white
matter integrity by using the value of each nodal topological
property as an independent variable and mean FA value of
each fiber bundle, maintaining age, gender, and education
as dependent variables. Finally, two subgroup analyses were
performed to investigate the interactive effect between gender
and nodal topological properties or white matter integrity.

Linear Regression of Topological Properties in the

Functional Brain Network According to Age

We performed linear regression to analyze the effect of age on the
topological properties (global network properties and regional
network properties as dependent variables with statistical
threshold set as P < 0.05).

Linear Regression of FA Value and Age

At first, 14 fiber bundles from the DTI data and 100 nodal FA
values of each fasciculus (Figure 1), then the mean FA values
for each of the 14 fiber bundles were calculated. Finally, linear

FIGURE 1 | The 14 main fiber bundles.
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regression was performed to explore the effect of age on white
matter integrity with mean FA of each fiber bundle as the
dependent variable.

Linear Regression of Nodal Topological Properties

According to Mean FA Value

Linear regression model was also used to explore the association
between nodal topological properties and white matter integrity.
While, the mean FA value of each fiber bundle was used as
the independent variable, the value of each nodal topological
property was used as the dependent variable.

RESULTS

Linear Regression of the Topological
Properties of the Functional Brain Network
According to Age
Linear age-related changes in the node betweenness were
revealed in 21 brain regions. Positive correlation between age

and node degree and node efficiency was observed in bilateral
middle and inferior frontal gyrus, bilateral anterior and median
cingulated cortex, bilateral postcentral gyrus, superior parietal
gyrus, bilateral superior temporal gyrus, middle temporal gyrus,
bilateral caudate nucleus and left lenticular nucleus (Table 2,
Figures 2B,C, red regions). In addition, negative correlation
between age and node degree and node efficiency was observed
in bilateral inferior temporal gyrus and medial superior frontal
gyrus (Figures 2B,C, blue regions). Likewise, age showed positive
correlation with node betweenness in olfactory cortex, fusiform
gyrus, superior and middle temporal gyrus (Figure 2A, red
regions). However, negative correlation was observed in bilateral
inferior and frontal gyrus; left superior frontal gyrus, bilateral
insula, right superior and middle occipital gyrus (Figure 2A,
blue regions). Figure 3 shows the linear regression results of
the effects of age on the small-world properties and efficiency
metrics wherein, linear positive age-related changes (p < 0.05)
were calculated for global efficiency (β = 0.009, p = 0.004), local
efficiency (β = 0.01, p = 0.002), and the clustering coefficient

FIGURE 2 | Effect of age on regional nodal properties. Significant positive and negative correlations between age and regional nodal parameters are shown in red and

blue, respectively. The node sizes indicate the values of the regional nodal parameters. The distributions of nodes showing altered regional properties were visualized

with the Brain Net Viewer (http://www.nitrc.org/projects/bnv/). (A) Node betweenness, (B) Node degree, and (C) Node efficiency.
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TABLE 2 | Regression models assessing the effect of age on nodal topological

properties.

Brain Regions Betweenness Degree Node efficiency

Beta p-Value Beta p-Value Beta p-Value

Precentral_L 1.462 0.044 0.012 0.038

Precentral_R 2.112 0.006 0.019 0.003

Frontal_Sup_L −11.329 0.003

Frontal_Sup_R 1.889 0.01 0.017 0.004

Frontal_Sup_

Orb_R

0.015 0.014

Frontal_Mid_L 2.071 0.003 0.015 0.007

Frontal_Mid_R 1.901 0.01 0.015 0.016

Frontal_Inf_Oper_L −6.128 0.045

Frontal_Inf_Oper_R −9.171 0.017

Frontal_Inf_Orb_L 1.379 0.042

Frontal_Inf_Orb_R 1.84 0.013 0.014 0.024

Olfactory_L 2.932 <0.001 0.026 <0.001

Olfactory_R 7.877 0.002 2.977 <0.001 0.028 <0.001

Frontal_Sup_

Medial_L

−14.071 <0.001

Frontal_Mid_Orb_L −9.987 0.023 −1.588 0.034 −0.014 0.022

Frontal_Mid_Orb_R −9.746 0.032

Insula_L −13.31 0.012

Insula_R −11.847 0.013

Cingulum_Ant_L 2.654 <0.001 0.02 <0.001

Cingulum_Ant_R 2.738 <0.001 0.02 <0.001

Cingulum_Mid_L 2.175 0.004 0.018 0.003

Cingulum_Mid_R 1.896 0.012 0.016 0.011

Cingulum_Post_L −9.264 0.01

Amygdala_L 1.522 0.026 0.011 0.043

Amygdala_R 1.497 0.026 0.011 0.048

Cuneus_L 1.525 0.046 0.012 0.046

Lingual_L 2.133 0.01 0.015 0.033

Lingual_R 7.06 0.024 1.789 0.029 0.011 0.045

Occipital_Sup_R −10.133 0.005

Occipital_Mid_R −6.322 0.029

Occipital_Inf_L 6.374 0.012 2.711 0.001 0.021 0.003

Occipital_Inf_R 2.433 0.004 0.019 0.009

Fusiform_L 9.026 0.016

Postcentral_L 2.813 0.001 0.025 <0.001

Postcentral_R 3.376 <0.001 0.029 <0.001

Parietal_Sup_L 1.421 0.005

Parietal_Sup_R 1.834 0.008 0.013 0.024

SupraMarginal_R −13.633 0.002

Precuneus_L 1.632 0.014 0.012 0.024

Paracentral_

Lobule_L

2.499 0.002 0.023 0.001

Paracentral_

Lobule_R

4.849 0.014 3.673 <0.001 0.032 <0.001

Caudate_L 2.569 <0.001 0.021 <0.001

Caudate_R 5.111 0.047 3.109 <0.001 0.027 <0.001

Putamen_L 1.738 0.014 0.015 0.01

Pallidum_L 2.243 0.002 0.019 0.002

Thalamus_L 1.991 0.013 0.019 0.006

(Continued)

TABLE 2 | Continued

Brain Regions Betweenness Degree Node efficiency

Beta p-Value Beta p-Value Beta p-Value

Thalamus_R 1.942 0.017 0.016 0.022

Temporal_Sup_R 13.414 <0.001 2.384 <0.001 0.021 <0.001

Temporal_Pole_

Sup_L

1.637 0.022 0.013 0.03

Temporal_Pole_

Mid_L

1.495 0.037 0.014 0.025

Temporal_Pole_

Mid_R

7.891 0.005 1.74 0.022 0.017 0.014

Temporal_Inf_L −11.084 0.001 −1.483 0.024 −0.013 0.019

Temporal_Inf_R −1.407 0.034 −0.012 0.032

(β = 0.011, p = 0.002). A linear age-related reduction in path
length was also observed (β =−0.074, p= 0.004).

Linear Regression of FA Value and Age
Linear age-related decreases in the FA value were observed in
callosum forceps minor (β = −0.001, p < 0.001) (Figure 4).
However, the mean FA values of other fiber bundles did not
demonstrate linear relationship with age.

Linear Regression of Nodal Topological
Properties and Fasciculus Structure
Connectivity
As observed in Supplementary Table 1, all of the mean FA values
had either positive or negative association with node betweenness
of 49 brain regions. Among these, only 14 showed direct positive
anatomical relationship with fiber bundles, which were mainly
located in the frontal and occipital lobes. Likewise, the mean FA
values of 13 of the fiber bundles had either positive or negative
linear relationship with node degree of 52 brain regions, while
14 of the fiber bundles had either positive or negative linear
relationship with node efficiency in 60 brain regions. Among
these regions, the node degree of 14 and the node efficiency of
16 had a direct anatomical relationship with the fiber bundles
(Supplementary Table 2); these relationships were primarily
negative, and located in the frontal and occipital lobes. We also
observed that the long fiber bundles had significant relationships
with more brain regions than the short fiber bundles.

DISCUSSION

In this study, we investigated age related changes in topological
properties of brain functional network and structural
connectivity. We observed that the nodes and topological
properties that changed with increasing age were limited to
specific regions, and FA values of most fiber bundles did not alter
with increasing age, suggesting that age related changes are more
pronounced in functional rather than structural connectivity
measures indicating these measures do not have a direct one-to-
one mapping. It was also noted that fiber bundles with longer
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FIGURE 3 | Effect of age on global network properties. Age is positively correlated with normalized global efficiency (Eglob) (β = 0.009, p = 0.004), local efficiency

(Eloc) (β = 0.01, p = 0.002), and clustering coefficient (Cp) (β = 0.011, p = 0.002). Age is negatively correlated with path length (Lp) (β = −0.074, p = 0.004).

FIGURE 4 | Change with age in the callosum forceps minor fasciculus fractional anisotropy (FA) values. Age is negatively correlated with the mean FA values for the

callosum forceps minor (β = −0.001, p < 0.001).

fibers exhibited more pronounced effect on the properties of
functional network rather than structural network.

For regional characteristics of functional properties, we
observed that age related decreases in node betweenness were
primarily located in the superior frontal lobe, right occipital lobe
and global hubs. Among 21 brain regions that had significant
relationship with age, 11 global hubs identified crucial to efficient
communication (Achard et al., 2006; Chen et al., 2008; Iturria-
Medina et al., 2008; Gong et al., 2009a; He et al., 2009; Wu et al.,
2012) were mostly association cortices (13 out of 44) with no
identifiable primary regions. This result supports the hypothesis
that age-related changes are characteristics of association cortices
as opposed to primary cortices (Albert, 1994). Decreases in local

betweenness were primarily located in the superior frontal lobe
and right occipital lobe, which is consistent with previous studies
(Wu et al., 2012, 2013). Association regions contribute to the
integrity of multiple functional systems, such, as memory and
attention systems, and are mainly involved intelligent processing
and maintenance of superior spiritual activity (Mesulam, 1998).
Vulnerability of frontal regions with advancing age might explain
the reason behind the cognitive function decline in many elderly
populations (Jernigan et al., 2001). Moreover, identification
of association cortex supports the hypothesis that age-related
changes are the characteristics of association cortex but primary
cortices (Park et al., 2008), which also in consistent with “last –in-
first-out” hypothesis indicating that late-maturing regions (such
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as heteromodal association cortices) have damaging effects of
aging (Kalpouzos et al., 2009; Terribilli et al., 2011). Age related
increases in node degree and node efficiency were predominantly
located in the posterior frontal lobe and parietal lobe. The
alteration in nodal degree and nodal efficiency were very similar
to each other. Nearly half of the 90 brain regions were observed to
have changes with regard to these two nodal properties. Among
these regions, alteration ratio of sub cortical (8 of 10), limbic (2
of 4), primary (4 of 8), and paralimbic (10 of 24) were similar,
but alteration ratio of the association regions (16 of 44) in nodal
degree was slightly larger than that of nodal efficiency (15 of 44),
suggesting a tight relationship between these two regional nodal
properties.

On the contrary to the functional studies, we found that the
relationship between nodal topological properties and fasciculus
structures were primarily positive for nodal betweenness, and
negative for nodal degree and nodal efficiency. These brain
regions also had both direct and indirect anatomical relationships
with the 14 fiber bundles. Since, the normalized betweenness
measures the ability of a node relative to information flow
between other nodes within the network, a positive relationship
between the fasciculus FA and node betweenness in most regions
suggests that increased structural connectivity of the fasciculus
may improve communication between a node and other nodes
in the network. Likewise, both direct and indirect relationships
with the 14 fiber bundles might be due to the co-activation of
the regions even when there is no direct structural connection
between them (Rubinov and Sporns, 2010), which is also
shown by previous studies indicating strong relationship between
structural integrity and functional connectivity in resting state
networks direct one-to-one relationship between structural and
functional connectivity (Bullmore and Sporns, 2009; Damoiseaux
and Greicius, 2009).

Other finding of our study was that the FA values of most
of the fiber bundles did not alter with increasing age except
that of callosum forceps minor. This age-dependent decrease
in FA in the callosum forceps minor was in accordance with
findings from several recent studies on the age-related alterations
in the white matter microstructure (Park et al., 2004; Salat et al.,
2005; Ardekani et al., 2007). This alteration in the organization
of the corpus callosum during the aging process may explain
the reason behind aging to be vulnerable to neurodegenerative
disorders such as in Alzheimer’s disease, as there might be
an interruption of information from the sensory neocortex to
the prefrontal neocortex. However, a study by Voineskos et al.
(2012), healthy individuals (n = 48) age ranging from 18 to 85
indicated an anterioposterior gradient of age related decline in
corpus callosum fibers, where a potential role of regional white
matter damage (i.e., posterior fibers of the corpus callosum) in
influencing different cognitive performances in healthy subjects
was noted. One of the reasons for different findings might be
due to difference in sample size, where a larger sample size
might have permitted retention of more paths in their study.
In addition, larger number of sample subjects between the age
group 20 and 40 in our study might also play its role in different
findings between these two studies. Other reason includes the
methodological differences in these studies where Voineskos

and colleagues did not study all white matter tracts (focusing
primarily on cortico-cortical white matter tracts). The current
study also indicates that the FA value of the most of the fiber
bundles did not substantially change with age. However, a direct
inference on anatomical connectivity differences cannot be based
on this observation alone. The unchanged FA value might also be
due to a balance created among alterations in fiber size, density,
and myelination or fiber coherence. However, these differences
in findings also suggest that white matter alterations are variable
throughout the brain.

Apart from the findings above, functional brain network
exhibited economical small-world properties in all healthy
individuals. In this study, we demonstrated that there was
increase in global efficiency (β = 0.009, p = 0.004), local
efficiency (β = 0.01, p = 0.002), and clustering coefficient
(β = 0.011, p = 0.002) (Figure 2) in functional brain network
with the advancing age. An economical small-world offers a
topological substrate for specialized or modular processing in
local neighborhoods and distributed or integrated processing
over the entire network with the combination of both high
clustering and low characteristic path length (Sporns and Zwi,
2004; Stam, 2004; Achard et al., 2006; Achard and Bullmore,
2007). Small-world properties have been demonstrated by the
studies using fMRI in the human brain functional networks
(Eguiluz et al., 2005; Salvador et al., 2005; Achard et al., 2006;
He et al., 2007)and have also demonstrated that these properties
are the characteristics of large-scale anatomical networks of the
human cerebral cortex. Thus, our findings also support the
notion that there is the presence of an efficient network structure
across the development process.

LIMITATIONS

Several issues must be addressed while considering the results
of our study. First, the population distribution of our study was
not uniform. Proportions of subjects between 20 and 40 year was
larger than that of other age groups. Second, we used a DTI-based
streamline tractography approach (Mori et al., 1999; Basser et al.,
2000) to define the edges of the structural network. Although, this
is the most widely applied tractography method primarily due to
its simplicity, robustness, and speed (Cheng et al., 2012; Griffa
et al., 2013), such tractographymethod, should be used cautiously
in order to resolve crossing fiber bundles (Tournier et al., 2011;
Jones et al., 2013). Third, due to limited number of subjects with
neuropsychological assessment in our study, we were restricted
in determining the relationship between white matter tracts and
cognitive ratings in our findings. Further studies will benefit from
the use of assessment scales to quantify the association between
white matter integrity and cognitive performance. Finally, we
adopted Automated Anatomical Labeling (AAL) template as
a parcellation scheme. The AAL template is based on sulcal
patterns from only one subject. Primary advantage of using AAL
template for nodal parcellation is that, it can support a direct
comparison of results to previous connectome studies using
the same AAL template in healthy adults (Gong et al., 2009a)
and patient populations (Zalesky et al., 2011). It is important
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to consider that although the atlas that we used was carefully
checked for registration errors, a probabilistic atlas of the human
brain might be better for obtaining regional parcellation or
defining individual brain regions through a combination of DTI
with fMRI due to the inter-individual variability of anatomical
structures (Sporns et al., 2005).

CONCLUSION

Current study indicates that, age related changes are more
pronounced in the functional than in structural measure
indicating these measures do not have a direct one-to-one
mapping. Frontal regions aremore vulnerable with advancing age
and fiber bundles with longer fibers exhibited pronounced effect
on the functional network properties. Future longitudinal studies
would be useful to investigate the changes in the functional and
anatomical neural networks that occur with normal aging.
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