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Abstract: Recurrent implantation failure (RIF) and recurrent pregnancy loss (RPL), collectively
referred to as recurrent reproductive failure (RRF), are both challenging conditions with many
unanswered questions relating to causes and management options. Both conditions are proposed to
be related to an aberrant endometrial microenvironment, with different proposed aetiologies related
to a restrictive or permissive endometrium for an invading embryo. The impressive regenerative
capacity of the human endometrium has been well-established and has led to the isolation and
characterisation of several subtypes of endometrial stem/progenitor cells (eSPCs). eSPCs are known
to be involved in the pathogenesis of endometrium-related disorders (such as endometriosis) and
have been proposed to be implicated in the pathogenesis of RRF. This review appraises the current
knowledge of eSPCs, and their involvement in RRF, highlighting the considerable unknown aspects
in this field, and providing avenues for future research to facilitate much-needed advances in the
diagnosis and management of millions of women suffering with RRF.

Keywords: endometrium; stem/progenitor cells; adult stem cells; implantation; pregnancy loss;
recurrent implantation failure; recurrent pregnancy loss; miscarriage; recurrent reproductive failure

1. Introduction

The endometrium is a highly dynamic, complex, and critical organ for successful hu-
man reproduction [1]. A multitude of harmonious processes allow for menstrual shedding,
repair, and remodelling of the endometrium on a monthly basis, throughout a female’s re-
productive lifespan, with receptivity of an embryo occurring for a finite time period in each
cycle [1–3]. During this ‘window of implantation’ (WOI), the human endometrium, and
viable blastocyst, must undergo an elaborate and tightly orchestrated crosstalk to achieve
successful implantation, and for the endometrium to support an ongoing pregnancy [4].

Recurrent reproductive failure (RRF) encompasses two separate but related conditions,
recurrent implantation failure (RIF), and recurrent pregnancy loss (RPL) [3,5–7]. RIF affects
around 10% of women undergoing embryo transfers (ETs) during in vitro fertilisation
(IVF) treatment [8], and the generally accepted definition is three or more failed ET at-
tempts [9,10]. RPL has a prevalence of 1–2% [11,12], with around 50% of unexplained
aetiology [13]. RPL has no universally accepted definition when referring to the number
of pregnancy losses; however, the loss of either two [11,12] or three [14] consecutive preg-
nancies are most widely accepted. Both conditions pose major challenges for clinicians
who are left with no clear definitive or effective management options, causing extreme
distress for patients who may also have many unanswered questions [6,7,15]. The causes of
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RRF are multifactorial [16,17]; however, the proposed pathophysiological mechanisms vary
according to both maternal age and gestational age when the pregnancy loss occurs [18].
Risk factors associated with both RIF and RPL include uterine abnormalities [19,20], tubal
pathology [21], acquired and hereditary thrombophilia [22], endometriosis [23], suboptimal
endometrial thickness [24,25], metabolic and autoimmune disorders [26–28], chronic infec-
tion and immunological and lifestyle factors, etc. [12,29–33] (Figure 1A). RIF is thought
to be related to decreased endometrial receptivity [18,34,35] and RPL to an unselective or
permissive endometrium with an impaired decidualisation, leading to disrupted embryo-
endometrial dialogue, with a consequential lack of natural embryo selection and subse-
quent inappropriate implantation of a non-viable embryo [12,36,37]. Increasing evidence is
now emerging that suggests a strong endometrial cause for RRF, with reports suggesting
that two-thirds of RIF is secondary to inadequate endometrial receptivity [3,6,18,38], and
many other studies also propose an association between unexplained RPL and a defective
endometrium [3,6,17,32,39] (Figure 1B).
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Figure 1. Aetiology of recurrent reproductive failure. (A) Risk factors for recurrent reproductive
failure (RRF). (B) Demonstrable causes of recurrent implantation failure and recurrent pregnancy
loss. The contribution of basalis-resident stem/progenitor cells and glandular architecture to RRF
pathophysiology has yet to be fully explored.

Endometrial glands are essential for the establishment of a pregnancy, with glandu-
lar topography and secretions integral to embryo attachment, and thus, are vital for the
subsequent establishment of the decidua [40–44]. So far, studies of epithelial endometrial
stem/progenitor cells (eSPCs) have been based on the long-accepted presumption that the
human endometrial glandular architecture arise from single blunt-ended tubes within the
basalis, similar to the architecture of the intestinal crypts [45–49]. Recent three-dimensional
(3D) reconstruction of the endometrium has altered our understanding of the glandular
microarchitecture, showing mycelium-like, horizontal branching networks within the deep
basalis layer [48,50–52]. This newly discovered glandular architecture is important to con-
sider in light of pathologies such as RRF. Endometrial glands and stroma are thought to arise
and regenerate from SPC populations that are located within the relatively static basalis
layer, which is undisturbed at menstrual shedding [50,53–57]. Aberrant eSPCs have been
associated with endometrial proliferative disorders such as endometriosis and endometrial
carcinoma [54,58–61]. It is possible that RRF may also arise from an abnormal glandular
network, secondary to aberrant eSPCs. Dysfunctional endometrial repair may present in
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women with infertility, RIF, or RPL, and may be implicated in the aetiology of clinical con-
ditions such as Asherman’s syndrome (AS) and a persistently thin endometrium [62]. AS is
a condition whereby intrauterine adhesions result in a thin or defective endometrium, due
to probable extensive destruction of the basalis glands (usually protected from external in-
fluence), thereby impacting the functionalis, and consequentially embryo implantation and
pregnancy [48,63]. Evidence is emerging that RPL is associated with a depletion of highly
proliferative mesenchymal cells that act as decidual precursors and are likely to originate
from bone marrow-derived mesenchymal stem/stromal cells (BMDMSCs) [64]. The use of
exogenous, autologous, or allogenic stem cells has been proposed in regenerative medicine,
including the treatment of atrophic or scarred endometrium [62,65]. These have shown
promise for the clinical application of SPC therapy in endometrium-related gynaecological
pathologies and fertility, with reports of BMDMSCs used to improve endometrial thickness
and vascularity, restore menses, and aid conception in patients with AS or endometrial
atrophy [65–69].

Although evidence is now emerging on the possible link between non-eSPCs and RRF,
little is known about the resident eSPCs and their association with these pathologies [62,70].
Evidently, much work is required in the characterisation and clinical application of eSPCs
in such disorders. However, their key role in the regeneration of endometrial glands and
luminal epithelium (LE) [50,71], and their role in stromal decidualisation [72,73], would
suggest that they are likely to have an important function in endometrial receptivity,
embryo implantation, and the support of an ongoing pregnancy.

2. Scope of This Review

This review sought to examine and summarise the current knowledge base for eSPCs
and their potential involvement in RRF, to identify important voids in the literature, and to
highlight avenues for future research.

Non-resident endometrial SPCs (including BMDMSCs) and non-endometrial MSCs
(such as umbilical cord-derived, amniotic-derived, or adipose-derived MSCs) are other
additional stem cell populations that have been previously explored in relation to endome-
trial regeneration [62], and lie beyond the scope of this review. Only those SPCs derived
from the endometrial cell types (e.g., epithelial and stromal) will be included in this review
with regards to the aetiology of RRF.

3. Materials and Methods

An extensive literature search was performed across multiple databases, including
PubMed, Web of Science, EMBASE, and Scopus, and spanned publications from inception
to February 2022. Studies were selected using keywords associated with eSPCs, RRF, RIF,
and RPL. Additionally, all references cited within other relevant publications were screened.
Publications related to all keywords were included, and this included both human and
animal studies.

4. Endometrial Stem/Progenitor Cells

The remarkable regenerative capacity of the endometrium is widely believed to arise
from SPCs residing within the deeper basalis layer, which remains intact following men-
struation and the menopause [48,54,56,57,74–78]. The functionalis layer can re-grow from
a thickness of 1–2 mm, following menstruation, to 14 mm during the secretory phase
of the cycle [79]. Remarkable restoration is also seen following parturition, iatrogenic
surgical destruction of the endometrium (such as endometrial ablation), and within the
post-menopausal endometrium following exposure to oestrogen hormone replacement
therapy [77,80–82]. eSPCs are thought to be the key players in driving this impressive
proliferative capacity and cell turnover [48,54,56,57,83,84].

Since the existence of endometrial adult stem cells (ASCs) was first postulated [74,75],
much work has been invested into identifying and characterising eSPCs in both human
endometrium and in mouse models [50,53,54,71,85–96]. In 2004, rare populations of clono-
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genic epithelial and stromal cells were first reported [53]. Identifying and examining human
eSPCs is challenging due to their scarcity within the tissue, their lack of specific markers
allowing for their isolation, and their change in phenotype when taken out of their highly
unique endometrial microenvironment [57,97]. Studies attempting to identify these cells
have mainly explored their distinguishing functional properties, such as their clonogenic
ability, self-renewal capacity, proliferation and differentiation capacity, label retention, and
tissue reconstitution assays [50,54,56,71,87–90,98–101].

Work identifying endometrial stromal ASCs (also known as endometrial mesenchymal
stem cells (eMSCs)) was first initiated by Gargett and colleagues, who examined cells dis-
playing higher clonogenic colony-forming capacity in vitro [53]. Endometrial stromal ASCs
are seen to show similar properties to BMDMSCs and are multipotent, displaying the capa-
bility to differentiate into fat, bone, cartilage, skeletal muscle, and smooth muscle [100–103].
Endometrial stromal ASCs have been well characterised, with CD146+ platelet-derived
growth factor receptor beta (PDGFRβ+) [93,102] and sushi domain containing-2 (SUSD2+),
as specific markers for their enrichment [96]. More recently, nucleoside triphosphate diphos-
phohydrolase 2 (NTPDase2) has been detected in just the perivascular SUSD2+ cells and not
the rest of the stromal fraction, and thus has been proposed as a marker for eMSCs located
in the endometrial basal layer [104]. SUSD2+ cells (also referred to as W5C5+) are found to
increase during the proliferative phase, suggesting their involvement in regeneration of the
functional stroma [96]. They are also seen within postmenopausal endometrium treated
with oestrogen, and reconstitute endometrium under the kidney capsule of xenografted
mice [96]. Their location is now widely accepted to be within the pericyte and perivascular
cells of the endometrial basalis and functionalis, with transcriptomics and secretomics of
SUSD2+ cells confirming their perivascular phenotype [56,93,96,104].

Unlike endometrial stromal ASCs, epithelial eSPCs are yet to be conclusively defined,
with specific universal markers remaining elusive [57]. Work focused on characterising the
epithelial eSPC population was first initiated within our laboratories, with the breakthrough
discovery of cell surface marker stage-specific embryonic antigen-1 (SSEA-1) to demarcate
the basalis epithelial cells [54]. The proposed SSEA-1+ epithelial eSPCs show higher
telomerase activity and longer telomere lengths, a greater propensity to generate spheroids
in 3D cell culture, and low expression of steroid hormone receptors [54,61]. Subsequent
work has also suggested N-cadherin to be an epithelial eSPC marker. It enriches for
clonogenic epithelial cells showing greater self-renewal capacity and quiescence, with the
ability to generate large gland-like spheroids [105] (Figure 2). These characteristics correlate
with a more primitive or SPC phenotype. With in vivo immunostaining of SSEA-1+ and
N-cadherin+ endometrial epithelial cells in full thickness endometrium, Nguyen et al. have
proposed that there is a spatial relationship between the two cell types, with SSEA-1+

cells located closer to the basalis–functionalis interface, whilst N-cadherin+ cells situated
deeper in the basalis. With this observation, the authors proposed a possible differentiation
hierarchy amongst the epithelial eSPCs [105]. Prior to these findings, Musashi-1 (an ASC
marker) had also been immunolocalised to single epithelial cells within endometrial glands,
and small clusters of stromal cells [94]. Musashi-1+ cells were found mainly within the
basalis of the proliferative phase endometrium, supporting its possible SPC role; however,
no functional data is available for these cells, thus the evidence for Musashi-1 as an eSPC
marker is limited [94]. Nuclear WNT signalling pathway molecules, axis inhibition protein
2 (AXIN2) [106,107], SRY-box 9 (SOX9) [54], and nuclear ß-catenin [54] are also seen to be
expressed by basalis glands; however, nuclear markers are not useful for the prospective
isolation of epithelial eSPCs for important functional assessment, and therefore surface
markers for their identification are required. More recently, leucine-rich repeat-containing
G protein-coupled receptor 5 (LGR5) (a surface marker for intestinal epithelial stem cells)
has been demonstrated to be expressed by a subset of epithelial cells within the LE, as well
as in the glands of the basalis layer. However, due to the lack of reliable antibodies for
immunology-based sorting, functional data for these cells are not yet available [71]. The
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proposed current understanding of eSPCs is summarised within the pictorial representation
below (Figure 2).
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Figure 2. Proposed stem cell niches of the human endometrium. Stromal stem cells reside throughout
the superficial and deep endometrial tissue as CD146+, sushi domain containing-2 (SUSD2+), and
platelet-derived growth factor receptor β positive (PDGFRβ+) perivascular cells. Putative epithelial
stem cell populations have been described in the basalis layer, a region characterised by expression of
progenitor markers, including leucine-rich repeat-containing G protein-coupled receptor 5 (LGR5),
SRY-box 9 (SOX9), axis inhibition protein 2 (AXIN2), and nuclear β-catenin. Specific cells within
the deeper basalis glands express N-cadherin, whilst stage-specific embryonic antigen-1 (SSEA-1) is
characteristic of more superficial basalis regions.

eSPCs have been postulated to be involved in the pathogenesis of proliferative gynae-
cological disorders such as endometriosis [61,74,84,108,109]. Studies have demonstrated
the expression of proposed epithelial stem cell markers SSEA-1 and nuclear SOX9, nuclear
ß-catenin, and Musashi-1 in ectopic endometriotic lesions [54,61,94], which has shed light
on the pathogenesis of the disease [61]. Endometriosis is associated with infertility [110],
suggesting that the presence of atypical endometrial ASCs may be a possible common
aetiology between these disorders, resulting in abnormal eutopic endometrium, as well as
giving rise to the ectopic endometriotic lesions in endometriosis patients. In addition to
the proliferative disorders of the endometrium, it is therefore likely that other disorders,
associated with aberrant regeneration and remodelling of the functional layer of the en-
dometrium, including infertility, RIF, and RPL [70], arise from abnormalities within the
endometrial ASC population. Similar detailed examination of the involvement of eSPCs in
RRF is expected to enhance our understanding of the pathogenesis of the disease.
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5. Endometrial Stem/Progenitor Cells and Recurrent Reproductive Failure (RRF)

Two studies have identified the role of eSPCs in RRF (RIF and RPL), with current
knowledge limited to eMSCs. To date, eMSCs have been suggested to play a role in en-
dometrial receptivity and regeneration, both of which are essential to successful pregnancy.

5.1. Recurrent Implantation Failure (RIF)

Considering the well-established endometrial contribution to RIF, eSPC abnormalities
are expected to be involved in generating a persistently abnormal functionalis layer. Unlike
in RPL, the endometrium of women with RIF is proposed to be hostile and less receptive
to embryo-attachment [18,34,35]. Studies have suggested that eMSCs express markers
of endometrial receptivity, such as adhesion molecules. Endometrial stromal cells are
known to express receptivity markers HoxA11 and Noggin during the WOI [111]. In 2020,
five markers of receptivity (ITGβ1 [112], RAC1 [113], HOXA11 [111], ITGβ3 [112,114], and
NOGGIN [111]) were compared between menstrual blood samples taken from women with
RIF, versus fertile controls, revealing different patterns of expression. This observation led
the authors to propose that aberrant eMSCs contribute to altered endometrial receptivity
in women with RIF [115]. eMSCs from menstrual blood were isolated and characterised
based on their morphology and behaviour, expression of specific surface markers (CD44,
CD31, CD34, CD73, CD90, and CD105), and capacity to differentiate, all of which was
based on the International Society for Cellular Therapy statement [115,116]. Notably, sig-
nificantly higher expression levels of both HOXA11 and ITGβ3 were seen in the eMSCs of
women with RIF [115]. HOXA11 encodes a transcription factor and is involved in prolifera-
tion, differentiation, and embryologic development of the endometrium [117], therefore,
HOXA11 is thought to be important in establishing pregnancy [111,118]. Rac1 expression
is necessary for eMSC migration and is associated with increased cell motility at the site
of implantation [113]. Integrins are adhesive molecules also highly expressed by MSCs
and were found to play a role in embryo implantation and development [39,112,114,119].
Integrins play a vital role in extracellular matrix adhesion and therefore are vital in embryo
implantation [112,120], with integrin β3 proposed as a useful tool to predict the success rate
of assisted reproductive technology (ART) [112]. In agreement with this manuscript, recent
work from another group also identified an increased expression of HOXA11 antisense
RNA in the endometrium of women with RIF, leading to downregulated decidualisa-
tion [121]. Contradictory to this, Hoxa11 knockout mice are known to be associated with
uterine factor infertility [117]. As for integrin β3, the available evidence is conflicting:
higher expression has been shown in eMSC from RIF endometrial tissue samples [115],
but, in a larger study, low expression in endometrial tissue has been associated with lower
pregnancy rates [122]. It is apparent that HOXA11 and integrin β3 contribute to uterine
receptivity and are therefore relevant to RIF. Hoxa11 is expressed in mouse uterine stromal
cells during the receptive phase and during post-implantation decidualisation, suggesting
a possible role in receptivity, implantation, and decidualisation [118]. Hoxa11-/- mice have
hypoplastic uteri, fewer endometrial glands, and do not express Lif, which is essential for
the progression of a normal pregnancy [111,123]. However, the mechanisms behind how
specific eSPCs contribute to the observed abnormal endometrial HOXA11 and integrin β3
levels, remains undefined. The results from Esmaeilzadeh et al. (the only study concen-
trating on eMSCs and RIF) should be interpreted with caution as the number of women
who participated in the study was very small (n = 5) and the control group utilised (n = 3)
was extremely heterogenous, almost overlapping with the RIF group (history of less than
three miscarriages and at least one live birth after ART cycle(s) (two of the controls had a
child after their second ART cycle and the other after their third cycle) [115]. In addition,
the technique used to isolate and identify the eMSCs is questionable as they did not use
the previously characterised eMSC markers (CD146+PDGFRβ+, SUSD2+, or NTPDase2),
raising concerns regarding the appropriateness of the methodology and reliability of only
eMSCs being isolated.
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5.2. Recurrent Pregnancy Loss (RPL)

Similarly to RIF, aberrant endometrium is expected to contribute to the pathology of
RPL. RPL is proposed to be associated with a hyper-receptive endometrium, permissive
to even a sub-optimal blastocyst [124], with possible eSPC aberrations in the LE and
functionalis, which are the first layers of contact for an incoming embryo [48]. To explore
the eMSC population in women with RPL, Lucas et al. (2016) isolated perivascular and
non-perivascular human endometrial stromal cells (W5C5+ and W5C5−, respectively) from
luteinising hormone (LH) timed mid-luteal phase endometrial biopsies [125]. W5C5 was
identified in 2012 as a single marker capable of purifying eMSCs possessing MSC properties
and reconstituting endometrial stromal tissues in vivo [96]. No differences in the number
of W5C5+ perivascular cells between the women with RPL and control samples were noted.
However, there was a significant decrease in the clonogenicity of W5C5+ and W5C5− cell
populations from RPL samples when compared to fertile controls. No clonogenic W5C5−

cells were recovered from 42% of the RPL sample versus 11% of the control samples. In
the cohort studied, the presence of clonogenic W5C5+ or W5C5− cells were adversely
associated with the number of previous miscarriages [125]. This means that controlling an
eMSC deficiency could be considered a possible approach to prevent RPL. However, the
contribution of the epithelial eSPCs to RPL has not yet been examined.

The discovery that a deficiency of eMSCs is connected to RPL has revealed new
insights into pregnancy failure mechanisms. This has posed new questions concerning the
pathways that control the maintenance of eMSCs from one pregnancy to another pregnancy.

6. Applications in Clinical Management of RRF

eSPCs have been found to play a crucial role in the regeneration and repair of the
endometrium [54,126,127]. We therefore would envisage eSPCs to be involved in the
persistent aberrations in the functionalis layer of each successive cycle, associated with
the implantation process and subsequent pregnancy establishment in RRF. However, the
available evidence for detailed knowledge from basic science studies on functional or
phenotypic abnormalities of these specialised cells is still lacking to guide their safe clinical
translation. It is therefore unsurprising that trials of eSPC therapies for women with RRF are
currently not available. Therefore, studies are urgently required to explore the fundamental
role of eSPCs in the pathogenesis of RIF and RPL, as well as to assess their therapeutic
potential in the management of these conditions. Furthermore, common and challenging
clinical conditions that are related to RRF include thin endometrium and AS, for which
studies have been undertaken to aid clinical management with the use of eSPCs [62,126].

Persistently thin endometrium is a major challenge within the fertility setting [128–131],
exemplified by the findings that, with each millimetre of decrease in endometrial thickness
under 8 mm, a significant decrease in clinical pregnancy and live birth rates and dramati-
cally increased pregnancy loss rates after achieving a clinical pregnancy occur [132–134].
The causes of persistently thin endometrium are unknown, with no studies to report if
the deficiency is of the functionalis or basalis, epithelial eSPC or eMSC. However, the
malfunctioning of eSPCs is postulated to have a role [135], and many studies exist targeting
SPCs as a possible treatment avenue [136–140]. Exogenous oestradiol supplementation
and various adjuvant therapies have been proposed to promote endometrial regeneration
(such as aspirin, sildenafil, tamoxifen, vitamin E, pentoxifylline, L-arginine, or platelet-rich
plasma) presumably by influencing eSPC activity; however, they all lack robust evidence
and definitive efficacy for their proposed use [24,141]. A thin endometrium is known
to be associated with RRF [24] and it may be idiopathic in nature [142,143] or possibly
associated with inflammatory/iatrogenic causes such as intrauterine adhesions after a
surgical procedure [24]. Post-surgical thin endometrium may be due to the removal of
the stem cell rich basalis during extensive curettage, or following ablation [135]. The use
of eSPCs to enhance regeneration of the thin endometrium can be expected to provide
a novel solution to the ongoing dilemma of ‘thin endometrium’ by encouraging more
efficient regrowth. We postulate that the eSPC would provide a stock of eSPCs able to
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integrate into the endometrium, thus increasing the resident eSPC pool. Alternatively, it
may provide the appropriate niche for the existing eSPCs to function more efficiently, with
the desired end point being the availability of the appropriate bulk of functional eSPCs,
and provision of a sufficient amount of their progeny, on a monthly basis. In 2019, Hu et al.
investigated the effect of menstrual blood-derived stem cells (MenSCs) on endometrial
repair following mechanical injury in mice [144]. They found that mice treated with MenSC
exhibited significantly higher expression of endometrial keratin, vimentin, and vascular
endothelial growth factor, with an increased endometrial thickness, and increased preg-
nancy rates [144]. This was potentially due to the MenSC providing a better scaffold for
cells with improved blood supply, cellular integrity, and resistance to cell damage. This
evidence supports the notion that MenSC therapy improves the eSPC niche. Zhao et al.
and Jing et al. also demonstrated that injecting BMDMSCs into the endometrial cavities of
rats, resulted in increased endometrial thickness [137,145]. Injecting primitive MenSC or
BMDSC cells seem to be beneficial with an intriguing mechanism of action that is yet to be
clarified. We could hypothesise that the injected cells cause activation of quiescent resident
eSPCs, enhancing the important support from the stem cell niche, or they may promote
recruitment of new SPCs to the endometrium, rectifying a postulated deficient eSPC pool.

Currently, treatment for AS is usually surgical, with hysteroscopic adhesiolysis [146,147].
In severe cases, however, surgical treatments often fail, requiring multiple repeat hystero-
scopic procedures, a 29% risk of recurrence, and a low post-treatment pregnancy rate of a
mere 25% in these severely affected cases [148,149]. In 2021, the phenotypic and biological
characteristics of eMSCs (co-expression of CD140b and CD146) from healthy fertile women,
and women with intrauterine adhesions was compared [150]. The number of eMSCs in
women with intrauterine adhesions was reported to be significantly lower compared with
healthy fertile women [150]. Furthermore, the colony-forming capacity, migration, invasion,
angiogenic/capillary formation, and immunosuppressive abilities of the eMSCs was also
significantly lower, possibly affecting their ability to migrate and regenerate at the site
of injury [150]. No evidence is available regarding the loss of eSPC stem cell niche being
a reason for the deficient endometrium, and additional work needs to be done on this
plausible theory. Although Min et al.’s study showed a significant decrease in the number
and biological function of eMSCs in women with intrauterine adhesions, whether these
disorders can be treated by eMSC supplementation requires further validation. Due to
the main features of AS being the lack of basalis stem cell niche and fibrotic adhesions
between the opposing uterine myometrial surfaces, the number of cells available to be
harvested from AS women are likely to be low. Since the functional assays used in the
experiments presented in the above study are directly relevant to the number of cells that
can be harvested and used in in vitro assays, the expected reduction in number of cells
harvested from AS endometrium could directly affect the assay data. In 2016, Zhang et al.
applied human eMSCs derived from menstrual blood into mouse models. The authors
concluded that stem cells derived from menstrual blood may have a role in repairing the
damaged endometrium, which could be due to the engagement of angiogenesis mediated
by stem cells derived from menstrual blood [151]. Therapy with autologous eMSCs derived
from menstrual blood has also shown promise, accelerating the healing process of damaged
endometrium by inducing self-renewal, differentiation, angiogenesis, anti-inflammation,
and immunomodulation [127]. Numerous issues must, however, be addressed before
treatments can be introduced to clinical practice, such as transplanted cell dosage, and
administration route.

RPL has been associated with the loss of eMSCs [125]. In 2020, Tewary et al. con-
ducted a randomised, double-blind, placebo-controlled feasibility trial, administering
either sitagliptin or placebo to women with RPL, proposing to target BMDMSCs and eM-
SCs [152]. Sitagliptin is a dipeptidyl peptidase 4 (DPP4) inhibitor, which may encourage
the migration and engraftment of BMDMSCs to the site of tissue injury. DPP4 inhibitors
are commonly used oral hypoglycaemic medications, which work by blocking the action
of DDP4, thereby increasing concentrations of active incretin hormones, and improving
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glycaemic control [153,154]. They have been seen to promote tissue regeneration following
injury [152,155]. Their aim was to determine the impact of sitagliptin on the abundance of
eMSCs and on endometrial decidualisation in women with RPL. By using colony forming
unit assays, the authors concluded that sitagliptin increases eMSCs and decreases decidual
senescence in women with RPL during the mid-luteal phase [152]. Decidual cells, but not
senescent decidual cells, are required for a continuing pregnancy, and are dependent on
continuous progesterone signalling, therefore, the decreased decidual senescence would
lead to increased promotion of decidualisation by progesterone, successful implantation,
and potentially an increased ability to maintain a pregnancy. Although further work is
required, these findings have shown promise that eSPCs could be a potential target for
treatment in women with RRF. The available evidence that endometrial plasticity can be
pharmacologically enhanced through improving the number of eMSCs is encouraging.

7. Avenues for Future Research

Although we strongly believe that eSPCs have a critical role to play in the pathology
of RRF, evidence for direct eSPCs involvement in RRF is currently lacking. Available
data is limited, sometimes contradictory, and of varying quality. Furthermore, the lack of
clarity on the precise phenotypical and functional properties, origin, and location of eSPCs
contributing to normal endometrial regeneration, hinders progress in the identification of
eSPC aberration, specific to RRF, and thus, impedes the advancement of potential eSPC-
based therapeutic avenues.

The importance of understanding the critical role of the endometrium in the implan-
tation and success of ongoing pregnancy is acutely apparent by the knowledge that only
50% of euploid embryos accomplish implantation [156]. In addition, 1–2% of women who
do conceive (either spontaneously or using ART methods) are found to experience an
unexplained loss of a karyotypically normal early pregnancy [12].

Currently, the majority of research exploring stem cells in unexplained infertility,
RRF, or endometrial regenerative medicine is mainly restricted to non-endometrial stem
cells [62]. This primarily includes MSCs derived from the bone marrow [67,68,157,158],
umbilical cord [140,159–161], placenta [162–166], or adipose tissue [167–170]. Very limited
data exists on eMSCs and their relationship to RRF, with no current evidence for the role of
human epithelial eSPCs in this devastating condition. Whilst it is important to understand
the role of all types of stem cells within the endometrium of women with RRF, it is essential
to understand the role of resident eSPCs from which the two primary endometrial cell types
arise [100]. Further work is required to investigate the role of human stromal and epithelial
eSPCs in both RIF and RPL, to aid in diagnosis and provide translatable treatment options.

The LE (the endometrial layer that communicates first with the incoming blastocyst)
and endometrial glands (which provide an abundance of secretions to enable successful
implantation) have been proven to be essential for pregnancy establishment [40,41]. The
LE and endometrial glands are both thought to originate from epithelial eSPCs within the
basalis layer [50,54,57,71]. More work is evidently required to identify and characterise
the epithelial eSPC population within the normal endometrium of fertile women, which
will allow, in the future, further study on their, possibly, aberrant role in women with RIF
and RPL. If/when robust epithelial eSPC surface markers can be identified, a possibility to
selectively isolate these eSPCs, and use them in diagnostic and therapeutic technologies,
would become apparent. Our new understanding of the endometrial glandular microar-
chitecture [48,50–52] supports the theory that primitive, quiescent eSPCs reside in the
mycelium-like basalis glands and give rise to the functional glands that grow vertically
from these branches. Characterisation and localisation of epithelial eSPCs should be re-
considered and re-examined in light of this new discovery. It may be that patients who
experience RIF and RPL have an aberrant or underdeveloped horizontal network of basalis
glands, and therefore an abnormal eSPC population, leading to defective regeneration of
the functional endometrium and LE [48,51,52].
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There are many technical and ethical challenges to overcome in defining the intrica-
cies of human embryo implantation, and there are still many aspects that are not fully
understood. Much of our knowledge of embryo implantation has stemmed from animal
studies and in vitro two-dimensional (2D) monolayer culture systems, neither of which ac-
curately represent the in vivo endometrial or embryo physiology, or environment [48,171].
3D investigation of the human endometrium and embryo implantation is an important
avenue for future research [48,51,52]. The advent of ‘organoids’ has led to huge advances
in in vitro 3D modelling techniques [171–173]. Endometrial organoids arise from single
or small clusters of cells and resemble endometrial tissue ex vivo [174]. They are grown
in a supportive hydrogel droplet (such as Matrigel), which acts to mimic the extracellular
matrix in vivo, alongside complex growth media designed to recapitulate the endometrial
niche [172,174]. This 3D culture system has been successfully adapted to derive embryo-
like organoids (known as blastoids) [175–177], trophoblast organoids modelling placental
development [178,179], and gland-like organoids originating from endometrial epithelial
cells [54,172,180–183]. Future research can utilise these 3D modelling systems in order to
study endometrial glandular development and embryo implantation in patients with RIF
and RPL.

8. Discussion

RIF and RPL are devastating and challenging conditions, with many unanswered
questions remaining. Evidence is now starting to emerge that eSPCs may be implicated in
the aetiology of these conditions, giving rise to an abnormal endometrium, and therefore
a suboptimal environment to support an ongoing pregnancy. Advances in endometrial
stem cell biology and novel seminal discoveries, such as the 3D histoarchitecture of hu-
man endometrial glands [50,51], have allowed us to start to identify and isolate different
eSPC populations. More work is, however, required in order to fully characterise them
in vivo and establish the stem cell hierarchy. In particular, new highlights on the 3D
microarchitecture of the human endometrium have provided novel insights into the accu-
rate structure and arrangement of the endometrial glands [48,50–52]. This may provide
new insight and explanations for the location, mechanisms and possible aberrations of
endometrium-associated conditions, such as RRF.
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