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For the extraction of spatially important regions from mass spectrometry imaging (MSI) data, 
different clustering methods have been proposed. These clustering methods are based on certain 
assumptions and use different criteria to assign pixels into different classes. For high-dimensional 
MSI data, the curse of dimensionality also limits the performance of clustering methods which are 
usually overcome by pre-processing the data using dimension reduction techniques. In summary, the 
extraction of spatial patterns from MSI data can be done using different unsupervised methods, but 
the robust evaluation of clustering results is what is still missing. In this study, we have performed 
multiple simulations on synthetic and real MSI data to validate the performance of unsupervised 
methods. The synthetic data were simulated mimicking important spatial and statistical properties of 
real MSI data. Our simulation results confirmed that K-means clustering with correlation distance and 
Gaussian Mixture Modeling clustering methods give optimal performance in most of the scenarios. 
The clustering methods give efficient results together with dimension reduction techniques. From all 
the dimension techniques considered here, the best results were obtained with the minimum noise 
fraction (MNF) transform. The results were confirmed on both synthetic and real MSI data. However, 
for successful implementation of MNF transform the MSI data requires to be of limited dimensions.

Mass spectrometry imaging (MSI) is a valuable molecular imaging technique that provides a spatial distribution 
of several molecular ions present in a biological  sample1. High-dimension MSI data provides an unprecedented 
opportunity to understand the molecular changes in the biological system in association with their spatial 
 locations2–4. Depending upon the ionization mode and mass spectrometer used, MSI can analyze small to very 
large molecules which makes it a desirable technique in  biology5–9 and  medicine10–13.

MSI data are often organized in a three-dimensional cube where the spatial (x, y) dimensions correspond 
to the sample dimensions, while a spectral (z) dimension corresponds to the m/z (mass-to-charge ratio) values 
measured by the mass spectrometer. Most commonly, MSI data is produced or analyzed either to get knowledge 
about spatial localization of important and known molecular  ions5,7–9,14, in a so-called “targeted” approach or 
to identify spatially relevant  regions15–21. For the identification of spatially relevant regions, the complete MSI 
data need to be analyzed simultaneously with little or no prior information about a biological sample. Therefore, 
unsupervised data analysis methods, such as clustering, provide a good solution to extract hidden patterns in 
the data. A variety of clustering methods has already been implemented on MSI data and has been proven to 
efficiently extract relevant clusters equivalent to biological  structures17–19,22–25. All these clustering methods are 
based on certain assumptions regarding data structure and use different criteria to group the mass spectra into 
different classes.

In the last few years, MSI technology has gone through constant development in terms of spatial 
 resolution26–28, mass  accuracy26,29,30, sample  preparation31,32, etc. to produce high-quality and reproducible 
 data33–35. The performance of clustering methods decreases as data size increases in spectral dimension due to 
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curse-of-dimensionality. To overcome this problem, clustering methods are usually combined with dimension 
reduction  techniques23. Dimension reduction is important in cluster analysis because it not only makes the high 
dimensional data addressable but can also provide users with a clearer picture and visual examination of the data 
of interest. Mc Combie et al.16 were efficiently able to cluster the MSI data using hierarchical clustering on the 
reduced space obtained after principal component analysis (PCA). t-SNE is another popular multidimensional 
data visualization  technique36,37 that is frequently combined with clustering methods on MSI data, especially in 
cancer research to find intra-tumor heterogeneous  subpopulations18,23. In addition to this, several other dimen-
sion reduction techniques were proposed for MSI  data38. In summary, there are several unsupervised methods 
suggested to extract spatially important regions from MSI but it is still unclear which method gives the optimal 
performance. Only one single study tries to validate the performance of k-means clustering with different similar-
ity/dissimilarity  measures39 on MSI data. Unfortunately, this study focuses on one type of clustering method and 
the synthetic data used only reflect a difference in metabolic profile between the different clusters. This simplified 
structure is not able to capture the characteristics of “real” MSI data which show correlation both in the spectral 
and spatial domain, Therefore, in this paper we compare the state-of-art clustering methods in combination with 
dimension reduction techniques taking into account possible spatial characteristics, to find the most appropriate 
method for clustering MSI data and hence for the identification of spatial patterns. Multiple simulations were 
performed on synthetic and real MSI data to validate the performance of the various clustering methodologies.

Material and methods
MSI datasets were used for the evaluation of clustering methods obtained from online published research.

Mass spectrometry imaging data1. The MSI data were obtained from a tissue section of a mouse uri-
nary  bladder29 and are publicly available from the  PRIDE40 repository (PXD001283) managed by the Euro-
pean Bioinformatics Institute (EBI). The mouse urinary bladder was sectioned in 20 µm thickness slices with 
a cryotome (HM500, Microm, Walldorf, Germany) and transferred to a conductive ITO-coated glass slide. 
DHB (2, 5-dihydroxybenzoic acid) matrix was applied using a pneumatic sprayer and an AP-SMALDI imaging 
source was used. The imaging source was attached to a linear ion trap/Fourier transform orbital trapping MS 
(LTQ Orbitrap Discovery, Thermo Scientific GmbH, Bremen, Germany). A UV laser with a repetition rate of 
60 Hz (LTB MNL-106, LTB, Berlin, Germany) was used for desorption/ionization. The mass resolving power 
was 30 000 at m/z 400 in positive-ion mode. Matrix-assisted laser desorption/ionization (MALDI) images were 
acquired using a pixel size of 10 µm in both x and y directions and an m/z range of 400–1000 Da. The dataset 
comprises 34,840 spectra acquired within the slice area (260 × 134 pixels). The experimental details regarding 
sample preparation and data acquisition for particular MSI data are given  in29.

Mass spectrometry imaging data2. The MSI data is publicly available in the GigaScience repository, 
 GigaDB41. The MSI data were derived from tumor-bearing mice treated with paclitaxel drug. A matrix-assisted 
laser desorption/ionization (MALDI) 4800 TOF-TOF (AB SCIEX, Framingham, MA) was used. The mass spec-
tra were recorded over a limited mass range (m/z 199–500). The mass spectra were collected from a glass slide 
of dimension 106 × 85. More details regarding sample preparation and MSI data acquisition are given  in41,42.

MSI data preprocessing. All data preprocessing steps were performed in  R43 free software version 3.1. 
The original MSI data file was read in R using the  MALDIquant44 package and organized in a two-dimension 
matrix where the row represents the complete mass spectrum collected from individual spatial locations. The 
preprocessing of MSI data was done following the steps mentioned in  article41. Briefly, the binning of the m/z 
dimension (bin of size 0.1 Da) was performed to compensate for misalignment on the m/z scale. The peak detec-
tion was performed inside each bin per mass spectrum. In the case of multiple peaks detection inside the bin, 
the peak with maximum intensity is stored. The peak detection was performed using a local maxima search. The 
identification of tissue over the glass slide was performed by constructing a mask of the ion signal selected after 
visual inspection The matrix-associated peaks were identified from the spectra collected outside the tissue and 
removed before further analysis. Total ion current normalization was performed to compensate for analytical 
pixel-to-pixel variability and make mass spectra comparable with each other. In addition, median filtering per 
mass ion image was performed to reduce pixel-to-pixel variability.

In the Mouse Urinary Bladder MSI data, the final data dimension achieved after all preprocessing steps was 
260 × 134 × 169. And, for the tumor tissue was 106 × 85 × 173.

Synthetic spatially auto-correlated data. The spatial data were simulated to evaluate the performance 
of clustering methods. In our simulated data, the spatial autocorrelation was induced using a variogram or spa-
tial covariance  function45.

Theory. Variogram A variogram is a plot of semi-variance versus spatial lag distance that describes the 
degree of spatial dependence between measurements at sample locations. An experimental variogram is calcu-
lated based on the sample data as:

r(h) =
1

2N(h)

N(h)
∑

i=1

[Z(xi)− Z(xi + h)]2
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where r(h) = the variogram for a lag distance h between observations Z(xi) and Z(xi + h) , h = the distance between 
sample intervals, N(h) = the number of data pairs separated by lag distance h , Z(xi) = the value of variable Z at 
the location of xi , Z(xi + h) = the value of Z located at a lag distance of h from xi.

A standard variogram is shown in Fig. 1A. Three key parameters are estimated from an experimental vario-
gram to fit a theoretical variogram: nugget, sill, and range. The nugget is the spatial variability at the origin or zero 
sampling interval. The range indicates the maximal distance at which the variable is spatially autocorrelated. As 
the distance lags increase, the semi-variance values rise continuously until it reaches a certain value called the sill.

The covariance function is another statistical measure to show spatial autocorrelation. In our paper we used 
the term variogram and covariance function interchangeably due to the simple relationship between  them45:

 C(0) is the value at the origin of the covariance function. C(h) is the value at distance h of the covariance function.
The commonly used variogram or covariance functions for modeling are spherical, gaussian, and exponential. 

In our study, we used the spherical covariance function:

In the above formula, parameter a is the range, b is the sill, and h is the lag distance. In our simulations 
described below, parameters a and b are modified to generate spatial data with different structures. h is calculated 
from the Euclidean distance matrix of observations spatial coordinates.

Anisotropy The spherical covariance function mentioned above will generate the isotropic spatial data, i.e. the 
covariance between variables at two locations depends only on the distance between them and not on the direc-
tion. The geometric  anisotropy46 can be introduced by rotating and rescaling the spatial coordinates (Fig. 1B).

c : input matrix of coordinates in the isotropic space. c∗ : output matrix of coordinates in the anisotropic space. 
R : Rotation matrix.

θ is the angle of rotation. T : Scaling matrix.

amax , amin are a major and minor range of anisotropy ellipse.

Synthetic spatial data generation. For the evaluation of clustering methods, two types of spatial data 
were generated, i.e., with two and four clusters. The spatial data of dimension 80 × 80 × 100 was simulated where 
80 pixels in both x and y directions, and 100 variables. The dimensions of the individual cluster in the synthetic 
data with two clusters were 80 × 40 × 100 and in four clusters data  were  80 × 20 × 100 .

The initial 100 variables with a mean of zero and standard deviation of one were derived from different 
distribution types: normal, non-normal, and bimodal. To add correlation among those independent variables, 
a cluster-wise correlation matrix was generated using the  MixSim47 R package. In our correlation matrix, the 
range of correlation varied between 0.4 and 0.7. The correlation matrix was decomposed into a triangular matrix 

r(h) = C(0)− C(h)

Csph(h) =

{

b
(

1− 3
2
|h|
a + 1

2
|h|3

a3

)

for 0 ≤ |h| ≤ a

0 for |h| > a

c∗ = c(RT)−1

R =

[

cos(θ) sin(θ)

−sin(θ) cos(θ)

]

T =

[

amax 0

0 amin

]

Figure 1.  (A) Variogram plot derived from spatial data. A variogram shows the amount of spatial 
autocorrelation in the data where the parameter ‘Range’ indicates the distance between two observations beyond 
which observations appear independent. The ‘sill’ is the point at which semi -variance reaches an asymptote. 
The nugget is the spatial variability at the origin. The variogram plot is created using R-package  gstat62. (B) 
The conversion of isotropic spatial coordinates to anisotropic spatial coordinates. The isotropic spatial data 
has the same amount of spatial autocorrelation in all directions while in anisotropic data particular direction 
has stronger autocorrelation than other directions. Isotropic data can be converted into anisotropic data using 
rotation and scaling matrix (see “Material and methods”).
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using the Cholesky method and the upper triangular matrix was then used to add the correlation among inde-
pendent variables.

A spatial covariance matrix was designed and used to convert multivariate correlated data into spatially 
autocorrelated data. A single large spatial covariance matrix is made up of multiple spatial covariance matrices 
equal to the number of clusters in spatial data. Inside the spatial covariance matrix, the parameters for the 
spherical covariance function were modified to get unique clusters. Before, creating a spatial covariance matrix 
an anisotropic effect was added using the above-mentioned formula to avoid randomness in the data. For the 
anisotropic effect, the parameters used were the rotation angle of 45o and, the major and minor range of one 
and 0.5 in the scaling matrix.

A single complete spatial covariance matrix was generated by arranging the spatial covariance matrices from 
the individual clusters using the process described  here48. Similar to the metabolic correlation, for the spatial 
correlation effect the spatial covariance matrix was decomposed using the Cholesky method, and the upper 
triangular matrix is multiplied with multivariate correlated data. The schematic workflow of the data generation 
steps is summarized in Supplementary Fig. 1.

Unsupervised methods. Four clustering and dimension reduction techniques were selected in our study 
to test on synthetic and real MSI data. The clustering methods selected were K-means with Euclidean distance 
(k-means (E)), K-means with correlation distance (k-means(C)), Spatially aware structurally adapted (SASA)25, 
and Gaussian mixture  modeling49 (GMM).

All clustering methods were selected based on their frequency of usage on MSI data and/or ability to iden-
tify clusters of different shapes. The performance of clustering methods was validated using the adjusted rand 
 index50 (ARI). An ARI evaluates the association between actual cluster class labels and the one obtained from 
the clustering methods. Clustering methods are implemented using different R libraries:  stats43,  amap51,  mclust50, 
and  cardinal52.

The dimension reduction techniques tested in our study were: Principal component  analysis38 (PCA), Spatial 
principal component  analysis53 (sPCA), Minimum noise  fraction54 (MNF) transform, and t-Distributed Sto-
chastic Neighbor  Embedding55 (t-SNE). t-SNE is a non-linear multidimensional data visualization technique 
but in our paper, we referred to it under the dimension reduction technique since we used few dimensions 
for clustering. The dimension reduction techniques were performed using the following R packages:  stats43, 
 adegnet56,  mzImage54, and  Rtsne57. A brief description of clustering and dimension reduction techniques is 
given in Supplementary Text S1.

Simulation study. The performance of the clustering methods and dimension reduction techniques was 
investigated using a simulation study. In synthetic data, both spectral and spatial properties of variables were 
modified for the evaluation of clustering methods. In total 100 different simulations are performed in all possible 
combinations under the following three main categories (Fig. 2):

1. The type of spatial structure.

Three different types of spatial data were simulated by changing the value of range and sill parameters in the 
spatial covariance function. In spatial data type 1, both clusters are with same range (= 20) but with different 
sill value (sill1 = 0.1, sill2 = 0.3). In spatial data type 2, range in cluster is different (range 1 = 20, range2 = 10) 
but the sill is constant (sill = 0.1). And, in spatial data type3, both clusters are with different range (range1 = 20, 

Figure 2.  The three main categories for synthetic data generation in a simulation study. (1) The synthetic 
data with different spatial structures were generated using different input in variogram function (spatial data1: 
range1 = 20, range2 = 20, sill1 = 0.1, sill2 = 0.3; spatial data2: range1 = 20, range2 = 10, sill1 = 0.1, sill2 = 0.1; spatial 
data3: range1 = 20, range2 = 10, sill1 = 0.1, sill2 = 0.3). (2) The variables in synthetic data are derived from 
different statistical distributions: normal, non-normal, bimodal, and all combined. (3) The synthetic data was 
modified by increasing the mean value for a certain number of variables and adding the noise.
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range1 = 10) and sill (sill1 = 0.1, sill2 = 0.3) values. The range and sill for synthetic data with four clusters are 
mentioned in Supplementary Table S1.

2. The type of statistical distribution.

Four different scenarios are tested where variables in synthetic data are derived from different distribution 
types:

• scenario1 (normal distribution): all the variables follow a standard normal distribution with a mean of zero 
and a standard deviation of one.

• scenario2 (non-normal): all variables follow non-normal distribution simulated following Fleishman’s power 
method using  SimMultiCorrData58 R package.

• scenario3 (bimodal): all variables follow bimodal distribution, i.e. approximately 20% of observations are 
from normal distribution1(N(0,1)) and remaining derived from normal distribution2 (N(1,0.2)).

• scenario 4 (all combined): out of 100, 60 variables follow a standard normal distribution, 20 variables follow 
the bimodal distribution, and the remaining 20 variables follow the non-normal distribution.

3. The variation in the mean value of variables.

There is a total of seven scenarios discussed under this category. The original variables in spatial data are 
derived from certain distributions with a mean of zero and a standard deviation of one. In the first scenario, there 
is no change in the variable mean. Afterward, the mean of a certain number of variables (5,10) increased by 0.5 
first only in cluster 1 and then in both clusters. In addition, two more scenarios were tested with noise variables 
(5), i.e., variables without any spatial structure.

Results
Clustering results from the simulation study on synthetic data. Several simulations were per-
formed to evaluate the performance of different clustering methods with and without data preprocessing meth-
ods. For simulation purposes, the synthetic spatial data was simulated after visualizing the spatial and statistical 
properties of different variables from the real MSI data (Fig. 3).

The variograms for a single molecular ion from different spatial regions show a different range of sill and 
range parameters (Fig. 3A top right). Similar patterns were observed for other ions. The conventional statistical 
properties of the data were explored via density plots for certain molecular ions. They show skewed, bimodal, 
non-normal, etc. types of distribution (Fig. 3A third-row). Finally, the standard benchmark synthetic data 
were simulated based on these observations. For example, the applied range and sill values are similar to those 
observed in real MSI data variograms (Fig. 3A). The conversion of non-spatial data into spatial data slightly 
modifies the original population density structure (Supplementary Fig. S2), but the density plots and the vari-
ograms for example variables show overall statistical properties (distribution type, spatial structure) are preserved 
(Fig. 3B). Below the simulations under different scenarios are discussed. All these simulations were performed 
to investigate the limitations of the different clustering and dimension reduction methods. The performance of 
the clustering methods was measured with the help of the adjusted rand index (ARI). A high ARI value for a 
clustering method implies that the method can recover the true underlying cluster structure. The median ARI 
value from different clustering methods over 100 simulations is shown in Figs. 4 and 5. The input parameters 
used with different dimension reduction techniques are mentioned in Table 1.

First, the synthetic data with two cluster classes were investigated (Fig. 4). In scenario one (first row in 
Fig. 4) with normally distributed variables, GMM and k-means(C) give the optimal performance for spatial 
data one and two and selectively for spatial data type three, i.e. for Var_Mod_10. Overall poor performance of 
k-means(E) and SASA was observed. In scenario two, where all variables follow a non-normal distribution, only 
GMM is efficiently able to identify the clusters. For spatial data with all variables following bimodal distribu-
tion, k-means(C) gives the most consistent and high performance on all spatial data types. The performance 
of k-means(E) and SASA were improved for spatial data types- one and two, because of the large difference in 
cluster means (Supplementary Fig. S1). Finally, in the last scenario, in which the synthetic data contain variables 
of all three types of distributions, all clustering methods give acceptable performance for spatial data types one 
and two. For spatial data type three, GMM and k-means(C) give optimal performance when data contains at 
least 10 variables with a mean larger than zero.

The effects of the various dimension reduction techniques were investigated for two clustering methods 
(GMM and k-means(E)). k-means(C) has not been investigated since in the reduced dimension space original 
variables are represented by orthogonal bases, therefore a proper correlation matrix can not be derived. The 
SASA clustering method is similar to k-means(E), except for the spatial part, and will give approximately similar 
results (this has been tested; results not provided). Hence, it is not included. In the majority of scenarios, the ARI 
values obtained from the clustering methods applied to the reduced data are higher than the ones obtained from 
the raw data (Fig. 5). The highest ARI values are observed when clustering methods are applied after the MNF 
transform. MNF transform improved the identification of the cluster even for complex data types, such as spatial 
data type three and scenario 2, in which the variables follow a bimodal distribution (for GMM). PCA and its 
spatial version improved the identification of the cluster, but not in all possible scenarios. The poor performance 
of clustering methods was observed after dimension reduction by t-SNE.
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A similar analysis was repeated for the synthetic data with four clusters (Supplementary Fig. S3 and S4). The 
clustering results obtained from original and reduced data are quite similar to the ones obtained with two cluster 
problems. GMM gives optimal performance in most situations, followed by k-means(C). The k-means(E) and 
SASA give optimal results for very few scenarios. Finally, the GMM and k-means(E) clustering methods are 
applied to the reduced data obtained from different dimension reduction techniques. Similar to the two clusters 
problem, the highest ARI values are observed when clustering methods are applied to the MNF reduced space.

Clustering results from the real MSI data. Results from MSI data1: The real MSI data were clustered 
similarly to the synthetic data, i.e. the complete and reduced datasets. Both the Calinski-Harabasz  index59 (CH) 
and the Davies-Bouldin index (DBI)60 internal cluster validity index suggested six/seven clusters for different 
combinations of clustering and dimension reduction methods. The six clusters were confirmed based on the 
observed anatomically different regions in the histology image (Fig. 6). All four clustering methods identified 
approximately similar types of clusters from the raw MSI data, except k-means(E) which further splits one par-
ticular cluster (4, (red). GMM and k-means(E) were applied to the reduced data obtained with the different 
dimension reduction methods. The clusters identified in the reduced dimensional space obtained by the MNF 
transform are smooth and continuous. The clustering methods give sub-optimal results after PCA since it misses 
certain important clusters such as cluster 4 which is observed in the MNF space (and corresponds to the lamina 
propria). The identified clusters in the sPCA space are approximately similar to the ones identified in the PCA 
space, but sPCA has over smoothened the data, resulting in an overlap of the clusters from different regions. The 
clusters identified in the tSNE space are over-segmented and heterogeneous.

The above-discussed results were obtained from MSI data binned with size 0.1 and preprocessed which results 
in data dimension 260 × 134 × 169. To see the impact of the increase in data dimension on clustering results, we 
analyzed similar MSI data in two different scenarios. In the first scenario, MSI data were binned with size 0.01 

Figure 3.  Comparison of statistical (distribution) and spatial (variograms) properties of variables from real 
MSI (a) and synthetic spatial data (b). (A) Top row: The variograms (right) of an example single ion (middle) 
from different regions are shown in its histology image (left). Middle row: the 2D image of a few molecular ions 
from real MSI data and their density plot in the bottom row. (B) The synthetic spatial data image (left), density 
plot (middle), and the variograms (right) from synthetic data. The variograms (left column) and density plots 
(middle column) from synthetic data.
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and preprocessed in a similar fashion which results in final data dimensions of 260 × 134 × 738. All clustering 
and dimension reduction methods are implemented on this newly processed MSI data. Overall, the clustering 
results and conclusions are similar (Supplementary Fig. S5) in low- and high-dimensional spaces except for the 
t-SNE. The clusters identified in the t-SNE space are better when we used low mass binning size or more molecu-
lar ions in our data. In the second scenario, MSI data were preprocessed using another peak-picking method 
called “simple” from the R-Cardinal package. Together with peak-picking, the remaining pre-processing steps 
(peak alignment, peak filter, mz alignment, mz bin, and filter) are performed using the Cardinal R package. The 
tolerance value for peak and mz alignment is set to 50 (in ppm). The total ion current (TIC) was performed to 
adjust the difference between spectra. A total of 9029 peaks were identified from the MSI data. The final data 
dimension is 260 × 134 × 9029. Unfortunately, all the results are not reproducible on this dataset. MNF transform 
failed on the MSI of very high dimensionality. On performing PCA and GMM clustering on a new dataset, the 
clustered image obtained is a slightly improved version of the image obtained with low-dimensional MSI data 
(Supplementary Fig. S8).

Results from MSI data2: The results are produced using the same set of clustering and dimension reduction 
techniques (Supplementary Fig. S7). The MSI data was clustered with five clusters (as proposed in the original 

Figure 4.  A plot of simulation results for the two clusters problem. All four clustering methods (GMM, 
K-means(C), K-means(E), and SASA) were tested on synthetic data with two clusters. The performance of 
clustering methods is monitored based on their adjusted rand index (ARI) value. In the above figure, the 
‘Scenarios’ represent the number of variables with updated mean values in synthetic data, such as VarMod_0, 
all variables in synthetic data with zero mean; VarMod_10, 10 variables in synthetic data with mean value 0.5; 
VarMod_5, 5 variables in synthetic data with mean value 0.5. And the ‘Type’ represents the nested conditions 
with scenarios (0, all variables with mean 0; 1, variables with updated means in single cluster (VarMod_0_5, 
VarMod_0_10); 2, variables with updated means in both clusters (VarMod_5_5, VarMod_10_10); 3, simulation 
with added noise (VarMod_5_5_addnoise, VarMod_10_10_addnoise). The details of the statistical and spatial 
parameters modified are given in Fig. 2.
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Figure 5.  A plot of simulation results from the combination of dimension reduction techniques and clustering 
methods. Four different dimension reduction techniques (MNF, PCA, sPCA, and t-SNE) were implemented 
on synthetic data before cluster analysis. Cluster analysis was performed with (A) GMM and, (B) Kmeans(E) 
methods. The performance of clustering methods is monitored based on their adjusted rand index (ARI) 
value. In the above figure, the ‘Scenarios’ represent the number of variables with updated mean values in 
synthetic data, such as VarMod_0, all variables in synthetic data with zero mean; VarMod_10, 10 variables in 
synthetic data with mean value 0.5; VarMod_5, 5 variables in synthetic data with mean value 0.5. And the ‘Type’ 
represents the nested conditions with scenarios (0, all variables with mean 0; 1, variables with updated means 
in single cluster (VarMod_0_5, VarMod_0_10); 2, variables with updated means in both clusters (VarMod_5_5, 
VarMod_10_10); 3, simulation with added noise (VarMod_5_5_addnoise, VarMod_10_10_addnoise). The 
details of the statistical and spatial parameters modified are given in Fig. 2.

Table 1.  Input parameter for different statistical methods.

Statistical methods Type of input parameter Input parameter value

PCA Number of dimensions 4

sPCA Number of dimensions 4

Lag distance for spatial weight matrix 5

MNF Number of dimensions 6

t-SNE Number of dimensions 2

Perplexity parameter 10

Number of PCA dimensions 10
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article). In this case, we do not have any stained image to compare the identified clusters, but overall clustering 
results and conclusions are similar as derived from previous MSI data.

Impact of number of dimensions on clustering results. The clustering analysis was performed on a 
reduced number of dimensions derived from different unsupervised methods. In our research, all the simula-
tions were performed with the fixed input parameter value (Table 1). The reduced data obtained from PCA and 
sPCA have a dimension of size four, as in the majority of scenarios, this number of components explains more 
than 80% of the total variance. This is also confirmed by a method developed to select the number of compo-
nents from  PCA61. In the case of the MNF transform six components were selected following the exact approach 
used in the original  publication54. However, in a small simulation study (results are not shown here), we noticed 
similar results can be achieved using four components from the MNF transform. The two t-SNE dimensions 
were used for cluster analysis. This was a choice made since there is no intuitive way to select t-SNE dimensions.

The poor clustering results were observed with t-SNE, both for synthetic and real MSI data. To cross-validate 
the impact of t-SNE dimensions and perplexity parameter value on clustering, in real MSI data we repeat the 
analysis where GMM clustering was performed on t-SNE space consisting of a different number of dimensions 
and perplexity parameter value (Supplementary Fig. 6). The results showed clustering on t-SNE two-dimension 
space with perplexity equal to 5, and 50 give similar results as clustering on MNF space. And, if we consider t-SNE 
three-dimensional space, similar results were obtained with perplexity parameters 10 and 30. In t-SNE three-
dimensional space, the over-segmented clustered image is obtained when perplexity parameter is equal to 5 and 
the over-smooth image when the perplexity parameter is equal to 10. The results from t-SNE are quite sensitive 
to input parameters used and how one can select the right parameter for cluster analysis required further analysis.

Discussion
Very often a clustering method works well on some datasets but may perform poorly in other datasets, owing 
to different data structures and characteristics. In this paper, the performance of four clustering methods was 
investigated on simulated and real MSI data. To our knowledge, this is the first time, the evaluation of cluster-
ing methods was performed by simulated multivariate spatially autocorrelated data. Our simulation results on 

Figure 6.  Clustering results from real MSI data. (a) A mouse urinary bladder image as published in the original 
publication. An overlay of three different molecular ions (blue: muscle tissue, green: urothelium, red: lamina 
propria) (left). An annotated optical image of a measured section stained with toluidine (right). (b) MSI data 
clustering using different clustering methods (second row). (c) MSI data clustering using GMM and Kmeans(E) 
cluster methods after reducing the original data dimension with different dimension reduction techniques.
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synthetic data show that each clustering method has its limitations and with an increase in data complexity, the 
performance of clustering methods gradually decreases.

The real MSI data have multiple spatial structures and variables with different distributions and intensities 
(Fig. 3). Therefore, our simulation results from spatial data type three, mixture distribution, and VarMod_10 
must be most representative of real MSI data. However, all simulations shown are equally important to better 
understand the performance of these methods on a variety of datasets. For example, to understand how easily 
these methods can identify the clusters with different spatial structures irrespective of the difference in cluster 
means, we start with a scenario where all variables have zero mean and gradually increase the mean of vari-
ables’ intensity per cluster. This simulation was designed considering MSI data from low- and high-resolution 
instruments or sometimes due to the ion suppression effect ions from certain tissue have relatively low intensity. 
Our simulation results are shown for complex spatial data, clustering methods GMM and k-means (C) give 
good performance if at least 10 variables in the data are modified. In addition, we also tested the performance 
of clustering methods in the presence of noisy/non-spatial variables. Here, we tried to mimic the matrix peaks 
in MSI data which does not follow any spatial structure. In our study, we did not any difference in the results in 
the presence of those variables. However, the simulation was performed only with 5 noisy variables, probably 
with more noisy variables in the data clustering results get affected. All simulations were repeated with synthetic 
data with two and four clusters, to understand the impact of cluster size on clustering results. And we found our 
clustering results were quite consistent on both types of synthetic data.

It is not uncommon to perform clustering of MSI data after preprocessing the data using dimension reduc-
tion or transformation  techniques16,18,54. The dimension reduction or transformation techniques represent the 
data in a few dimensions space which makes cluster identification easy. However, this also makes clustering 
results dependent on the type of dimension reduction technique and the number of final dimensions used in 
cluster analysis. In our paper, the performance of four different dimension reduction techniques in combina-
tion with clustering methods was tested. The t-SNE is one most frequently used data transformation techniques 
with MSI data. In our simulation study, poor results were obtained with t-SNE. There are certain limitations or 
disadvantages regarding t-SNE which make it less feasible for cluster analysis. The results obtained from t-SNE 
are highly dependent on random data generation points and the right perplexity parameter (also shown with 
real MSI data Supplementary Fig. S6). And there is no easy way to find the right perplexity parameter. Another 
main challenge with the t-SNE is computational complexity. In our paper, we used the R package Rtsne for the 
implementation of the t-SNE method. The following R-package uses reduced PCA dimensions as an input to 
make the process computationally faster and returns the maximum t-SNE three dimensions. The analysis using 
Rtnse makes our simulation study slightly sub-optimal as we can not use more than three t-SNE dimensions. 
However, the original t-SNE algorithm produced results with data of the size used in this paper in many hours 
which makes the simulation study even harder.

Apart from the type of dimension reduction technique, the clustering results are also found to be sensitive 
to the dimensions of the MSI dataset. The clustering results from PCA and GMM on high-dimension MSI are 
close to the clustering results from MNF and GMM. Overall, the best clustering results were obtained after 
preprocessing the data with MNF transform before clustering analysis. However, the results apply to the MSI 
data of restricted dimensions. The MNF transform cannot be performed with data of very high dimensions. In 
the original article, the author used the signal to noise ratios to limit the number of dimensions for a reasonable 
covariance matrix calculation.

Conclusion
In this study, we had shown the limitations and strengths of different unsupervised methods for the extraction 
of spatially relevant patterns from MSI data. The simulation results from synthetic data have shown that the 
performance of clustering methods declined with an increase in complexity in the spectral and spatial domain. 
The dimension reduction techniques help clustering methods to identify relevant clusters. The clustering methods 
GMM and k-means(E) give high adjusted rand index values with reduced data obtained after MNF transforma-
tion. However, the results shown in this paper are only applicable to the preprocessed MSI data with a restricted 
number of dimensions.

Data availability
The MSI datasets used in this study are publicly available from PRIDE repository (PXD001283) and GigaScience 
Repository (see above “Material and Methods” section).
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