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Vegetation-based climate mitigation in a warmer
and greener World
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The mitigation potential of vegetation-driven biophysical effects is strongly influenced by the

background climate and will therefore be influenced by global warming. Based on an

ensemble of remote sensing datasets, here we first estimate the temperature sensitivities to

changes in leaf area over the period 2003–2014 as a function of key environmental drivers.

These sensitivities are then used to predict temperature changes induced by future leaf area

dynamics under four scenarios. Results show that by 2100, under high-emission scenario,

greening will likely mitigate land warming by 0.71 ± 0.40 °C, and 83% of such effect

(0.59 ± 0.41 °C) is driven by the increase in plant carbon sequestration, while the remaining

cooling (0.12 ± 0.05 °C) is due to biophysical land-atmosphere interactions. In addition, our

results show a large potential of vegetation to reduce future land warming in the very-

stringent scenario (35 ± 20% of the overall warming signal), whereas this effect is limited to

11 ± 6% under the high-emission scenario.
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Earth system models (ESMs) project a progressive increase in
leaf area index (LAI; the amount of leaf area per unit of
ground area) in a large part of the planet over the 21st

century1. This emerging greening signal has also been detected
from satellites in the last three and half decades and attributed to
the increase in atmospheric CO2, nitrogen deposition, climate
change, and land cover change2. Variations in plant physiology,
phenology, and structure associated with the greening of the
Earth are affecting surface temperatures by altering the water and
energy exchanges between land and atmosphere3–5. This type of
plant biophysics impact on climate is increasingly recognized,
given its potential role in enhancing or counteracting the climate
benefits of land-based carbon sequestration6–9. On the other
hand, such effects of vegetation are largely ignored in climate
treaties because biophysical effects are uncertain and inconsistent
on their sign and magnitude10–13. For instance, the resulting net
warming or cooling effect of greening patterns largely depends on
the climate background, generally leading to local warming at
northern latitudes and cooling in tropical and temperate
regions3,14. An additional layer of complexity to this over-
simplified scheme is represented by the projected increase of
vegetation density1 and the concurrent changes in climate, which
could potentially amplify or dampen such land-atmosphere
interactions and substantially change the sign and magnitude of
the net global biophysical effect in the coming decades3,14.

Given the increasing relevance of nature-based solutions in
countries’ pledges to meet climate targets15, it is of foremost
importance to quantify in a robust and credible manner the
evolution of biophysical and biochemical mitigation potentials of
vegetation under future climate conditions. Previous assessments
suggest that the ongoing increasing trend in LAI contributed to
an overall evaporation-driven cooling effect, particularly pro-
nounced in water-limited environments like the arid Tropics3,4,16.
Conversely, observation-derived estimates indicate that increases
in LAI led to a reduction in surface albedo over boreal areas with
extended snow cover, ultimately resulting in a local warming
signal3. However, the net effect of vegetation and snow cover
changes in boreal regions is still controversial17,18 as model
simulations have shown an opposite signal4. Besides these dif-
ferences, observational evidence and model experiments agree on
the key role that background climate conditions play in the
modulation of biophysical processes mediated by vegetation and,
in particular, on the relative importance of radiative versus non-
radiative processes3,14. The projected decline of key environ-
mental drivers, like snow cover and soil moisture, are therefore
expected to influence substantially such land-atmosphere inter-
actions as we move into future climate conditions19.

Based on the current understanding of the phenomena, it can
be speculated that the progressive warming of climate should lead
to an enhancement of non-radiative biophysical effects over an
increasing share of the Earth20, thus resulting in amplified miti-
gation associated with vegetation greening. However, the con-
comitant rise in atmospheric CO2 concentration could play an
opposite influence on land biophysics by reducing water loss
during transpiration and producing an increase in the ratio of
carbon gain to water loss (i.e. water-use efficiency, WUE)21,22 via
partial closure of stomata23. The expected rise in WUE could
dampen—or even offset—the cooling associated with the
increases in evaporative surfaces related to the greening, and the
changes in climate leading to an increase in vapour pressure
deficits. Furthermore, robust experimental evidence on the sen-
sitivities of biophysical effects from the background climate are
not available yet to support predictions on how these effects will
evolve in the future and to improve their uncertain representation
in dynamic vegetation models24. Due to these complex and
contrasting processes and the weaknesses of current vegetation

models, the net effect of future combined changes in vegetation
density and climate is still rather uncertain and yet to be quan-
tified in a robust manner.

In this study, by fusing Earth observations and Earth system
modelling, our analysis shows that the mitigation potential of
vegetation-based solutions (afforestation, reforestation, and forest
restoration) increases in absolute term, thanks to the amplifying
effect of concurrent climate change and increasing plant CO2

sequestration, but declines in relative magnitude, compared to the
overall future warming, especially under the more extreme
warming scenarios. Half of the biophysical mitigation effect is due
to the forecasted increase in vegetation density. The other half is
driven by changes in the background climate that amplifies the
mitigation potentials of vegetation, thanks to the reduction of
radiative warming, mediated by the decrease of snow cover, and
the parallel enhancement of non-radiative cooling, due to the
increase of evapotranspiration. Altogether, we expect our analysis
to add significant value in the ongoing discussion about the role
of vegetation on the future climate trajectories, because it pro-
vides novel results that heavily rely on Earth observations.

Results
To address the knowledge gap discussed in the introduction, here we
use a combination of Earth observations and Earth system modelling
to investigate the global biophysical impacts of future changes in LAI
on surface temperature (T) under different scenarios of climate
warming and atmospheric CO2 concentration. For this purpose, we
first use satellite retrievals to quantify the baseline (2003-2014)
monthly sensitivity of T to LAI changes (see methods and data
section), as a function of the concurrent variations in snow cover,
solar radiation, and evaporation rates. This baseline starts in 2003,
which corresponds to the year of the first complete MODIS AQUA
records of land surface temperature, used to derive air temperature
in this study25, and ends in 2014, the last year of the historical
Coupled Model Intercomparison Project 6 (CMIP6)26 simulations.
We express the sensitivity dT/dLAI as a function of evaporation,
solar radiation, and snow cover in order to account for future
adaptation of the ecosystem. We have to note here that future
evaporation comes from CMIP6 simulations that already account
for the adaptation of plants to a changing climate, as for example to
an increasing atmospheric CO2.

Historical sensitivity dT/dLAI. Results show that the sensitivity
of T to LAI changes in the presence of snow is dominated by
radiative processes driven by the contrast in albedo between
vegetation and snow, with a signal that is switching from cooling
to warming with the increase of the snow cover fraction (Fig. 1a).
In the absence of snow, non-radiative effects mediated by eva-
porative cooling are dominating the process, with higher sensi-
tivity in arid regions (i.e. with low evaporation rate) (Fig. 1a, b).
As expected, the sensitivity dT/dLAI for both radiative and non-
radiative processes is enhanced at high radiation levels since it is
controlled by the partitioning of solar radiation at the surface.

In order to map the climate sensitivities of biophysical effects
from Earth observations, the large scale climate signal on surface
temperature first needs to be disentangled from the local effect of
vegetation dynamics, following a methodology designed to assess the
climate impacts of land cover change27. To this aim, for every grid
cell, we identified adjacent areas within a 50 km radius where the
vegetation cover is stable (i.e. showing less than 0.1m2/m2 variation
in LAI during the observation period). Temporal changes in
temperature observed at these reference areas can be fully attributed
to climate variability since the contribution of greening is negligible.
The variations in T due to LAI changes are then obtained by
subtracting the large-scale T signal derived from the reference areas
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from the total signal observed at the target grid cell, where both
climate variability and vegetation dynamics are at play. The
remaining signal reflects the unidirectional control of vegetation
on surface temperature for the baseline period (Fig. 1c) and show a
clear pattern of warming at northern latitudes and cooling elsewhere,
with the largest values in Tropical arid regions, consistently with the
results of previous studies3,4,28.

As a second step, we applied the observed sensitivity dT/dLAI
shown in Fig. 1a, b to snow cover, solar radiation, and
evapotranspiration predicted by an ensemble of historical simula-
tions (2003–2014) from CMIP626. The resulting map shows that dT/
dLAI based on CMIP6 simulations (Fig. 1e, f) compares well
(r= 0.78, RMSE= 0.13, Supplementary Fig. 1) with observations in
terms of both spatial patterns and zonal means (Fig. 1c, d), thereby
giving confidence to the application of model outputs for the
predictions of future trends in land biophysical processes.

Future dT under four SSPs scenarios. To assess the future evo-
lution of the biophysical mitigation driven by vegetation, we com-
bined the data-driven estimates of dT/dLAI with different trajectories
of vegetation, snow cover, solar radiation, and evapotranspiration,

consistent with four Shared Socioeconomic Pathways (SSP126,
SSP245, SSP370, and SSP585)29 simulated from 2015 up to the year
2100 from an ensemble of CMIP6 ESMs26.

All these simulations show a significant increase in LAI by 2100.
Moderate increases are simulated under the SSP126 scenario, which
depicts the most ambitious mitigation plan (Supplementary Fig. 2a,
b). The largest increase in LAI is simulated under SSP585, which
assumes continuity of the high-emission scenario (Fig. 2a, b). We
have to note here that future SSPs scenarios with larger increases in
atmospheric CO2 show larger LAI trends, thanks to both the direct
CO2 fertilization effect2,30 and the indirect effects of warming over
Boreal regions31,32. The LAI increase is generally associated with an
increase in evaporation, except over tropical arid and Mediterra-
nean regions (Fig. 2c, d), where evaporation is limited by water
scarcity33,34, and in the Amazon, likely due to scenarios of
widespread deforestation35. These climate scenarios also predict a
reduction in snow cover that, consistently with warming levels, are
strongest in the SSP585 scenario (Fig. 2e, f), followed by SSP370
(Supplementary Fig. 2e, f), SSP245 (Supplementary Fig. 3e, f), and
SSP126 (Supplementary Fig. 4e, f). Climate models show a future
increase in solar radiation everywhere in SSP126 (Supplementary
Fig. 4g,h) and SSP245 (Supplementary Fig. 3g, h), while a decrease

Fig. 1 Temperature sensitivity to leaf area index over 2003-2014. Temperature sensitivity to LAI (ln(LAI) in b, where ln is Napierian logarithm) derived
from satellite retrievals as a function of downwelling solar radiation (SWdown) and a snow cover (where and when snow cover exists) and b land
evaporation (in absence of snow cover). Mean annual sensitivities derived from Earth observations (OBS) by using all combinations of pairs of years in
2003–2014 for each month of the year c and median (solid line) of zonal mean ± first and third quartile from the ensemble of years couples d. e Estimated
T sensitivity to LAI for 18 CMIP6 climate models based on modelled values of the drivers (LAI, solar radiation, evaporation and snow cover) and the climate
sensitivities derived from space observation in a, b, while f shows the median (solid line) and the min and max zonal mean of the model ensemble (orange
envelope).
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in boreal and arid regions are simulated in SSP370 (Supplementary
Fig. 2g, h) and SSP585 (Fig. 2g, h). As a consequence of future
change in background climate conditions, the variation in dT/dLAI
sensitivity shows a larger change in the boreal zone (Fig. 2i, j).
Indeed, the large decrease in dT/dLAI is linked to the reduction in
snow cover. Elsewhere, the trend in the sensitivity is more complex.
For example, Fig. 1 shows clearly that areas with higher
evaporation, such as the tropical rainforests in the Amazonian
basin, experience lower dT/dLAI compared to vegetation in a dry
climate. This may explain why in India, parts of Africa and South
America, the sensitivity is getting weaker (Fig. 2i), but the
evaporation is getting stronger.

Spatially speaking, the increased dT/dLAI is mostly observed in
the regions where evaporation is increasing, while decreases in
dT/dLAI are linked to the reduction in snow cover and/or
evaporation.

In response to the projected LAI dynamics, all scenarios show a
progressive cooling that is larger for the case with stronger
greening trends (SSP585, Fig. 3). Spatially, limited changes in T
occur over tropical humid regions, likely due to the low dT/dLAI
sensitivity in well-watered, densely vegetated canopies that are
characterized by high evapotranspiration rates (Fig. 1b). On the
contrary, greening drylands shows the largest reduction in T due
to the high sensitivity of dT/dLAI in condition of high radiation
and low evaporation rates (Fig. 1b). At the seasonal scale, Fig. 3b,
d, f, h shows maximum cooling during summer, especially over
high latitudes. At northern latitudes and for the SSP85 scenario,
this temperature mitigation induced by greening between 2015
and 2100 reaches up to 0.55 ± 0.1 °C during the boreal summer.
However, this large summer cooling is partially compensated by a
slight warming effect during boreal winter due to radiative effect
of winter greening over high latitudes.

Fig. 2 Trends derived from an ensemble of 18 climate models over 2015-2100. Trends in LAI, evaporation, snow cover averaged over the year, surface
downwelling shortwave solar radiation (SWdown) and dT/dLAI from and ensemble of 18 Coupled Model Intercomparison Project 6 (CMIP6) models under
Shared Socioeconomic Pathways SSP585 scenario. The median is shown in the left panel (a, c, e, g, i) while the right panels (b, d, f, h, j) shows the median
(solid line) and the min and max zonal mean of the model ensemble (orange envelope).
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Future greening under the SSP585 scenario has a biophysical
cooling effect almost everywhere, with a larger magnitude over
African savanna (Fig. 4a). Half of this cooling effect is driven by
the greening itself (case with future LAI and current climate
conditions, Fig. 4c), while the other half is due to the synergic
changes in future climate conditions that amplify the biophysical
cooling (estimated from the difference between “all effects” minus
“LAI effect” Fig. 4b method and data section 7).

These results highlight how the predicted changes in climate
will amplify the cooling effect of land greening in all climate zones
for two different mechanisms, both leading to the enhancement
of biophysical land mitigation (Fig. 2b, d, e, f, g). The first
mechanism is the future reduction of snow cover, which will
reduce the radiative warming of plant canopies during the winter/
spring in the Boreal, Temperate and cold Arid zones, driven by
the low albedo of green canopies compared to snow-covered
fields (Fig. 4d, e, f). The second mechanism is linked to the
enhancement of non-radiative cooling20 driven by the stronger
coupling between LAI and evaporation under future climate
condition of increased temperature and atmospheric evaporative
demands. At the global scale, future changes in evaporation and
snow cover will contribute about equally to the enhancement of
vegetation-based biophysical cooling. These mechanisms of
actions are also valid for the more ambitious mitigations
scenarios, such as SSP126, SSP245 and SSP370 (Supplementary
Figs. 5, 6 and 7), albeit with a lower magnitude. We have to note
here that, for better consistency between the two hemispheres, we
shifted by 6 months the seasonal cycle of the southern
hemisphere in Fig. 4d, e, f, g, so that seasonality matches with
the solar cycle of the northern hemisphere.

Discussion
The authors acknowledge the limitations of this study, especially
the fact that the non-local biophysical effects driven by large-scale
teleconnections are probably not fully captured by our method,
despite the role that they can play in the case of large-scale land
cover changes36–38. Non-local effects are known to originate
mainly from changes in large scale circulation that impacts on
cloud cover, precipitation and ultimately on incoming solar
radiation, snow cover and evaporation. In our analysis, by
expressing the sensitivity as a function of these latter three climate
drives, we somehow accounted for non-local effects mediated by
changes in these variables. However, we estimated the sensitivity
of air temperature to LAI over a relatively short time period
(2003–2014), thus with limited changes in LAI that were likely
not sufficient to trigger relevant non-local effects. Another lim-
itation of this study may come from the use of passive satellite
observations at high latitude in the winter. Indeed, additional
uncertainties may be in these regions caused by a lack of daylight
hours and high solar zenith angles during this period. In order to
increase the robustness of our estimates, we used all possible
combinations between two years from 2003 to 2014 period,
resulting in 66 paired samples. We then excluded grid cells with
standard deviation of dT/dLAI, from the 66 samples, larger than
0.2. Despite that, Fig. 1d shows large spread in high latitudes
variations across longitudes but the general patterns still similar
to the two other products (GLOBMAP and COPERNICUS,
Supplementary Figs. 13 and 14). In addition, CMIP6 models do
not simulate natural shifts in plant species due to climate change
which may introduce uncertainties on predicted LAI.

Fig. 3 Temporal and spatial trend of the latitudinal pattern over 2015–2100. Temporal and spatial trend of the latitudinal pattern of the land temperature
variations (°C) induced by the biophysical effect of LAI change under the four future Shared Socioeconomic Pathways (SSP126, SSP245, SSP370, and
SSP585) scenarios: (aceg) time series of annual zonal means, (bdfh) seasonal (December-January-February DJF and June-July-August JJA) and annual
latitudinal mean of temperature trends.
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We have to note here that the future projection of LAI
increases may be overstated in ESMs39–41. This would result in an
increasingly warmer world with slowing LAI increases and
increasing moisture constraints. In such a case, the medians
shown in Fig. 5a are probably an overestimation, and models
showing lower mitigation estimates are probably a better
approximation of the truth.

In conclusion, we believe that the robustness of our results,
which are stemming from evidence-driven analysis, is sub-
stantially improving the understanding of present and future
biophysical climate impacts of vegetation dynamics under sce-
narios of combined Earth greening and warming.

Despite the limited mitigation achievable with the predicted
LAI dynamics, it is important to consider that the increasing
climate mitigation potentials of vegetation may become more
relevant if supported by afforestation and restoration programs
that may increase the area and density of vegetation. In addition
to the biophysical mitigation effects described and quantified
before, increasing plants density may also mitigate climate

warming via absorbing some of the CO2 emitted by fossil fuels
into the atmosphere. Such effects are known as biochemical
effects. Biophysical effects take are mainly driven by the inter-
actions between leaves (LAI) and the atmosphere, while bio-
chemical effects depend mostly in changes in vegetation biomass,
which is dominated by woody biomass. This is the reason why we
used LAI to study the biophysical effect, while we use total
vegetation carbon instead to assess the biochemical effect. Overall,
our analysis shows that the mitigation of biochemical processes
related to the greening of the Earth (Fig. 5b, method and data
section 5) is about five times larger than the biophysical mitiga-
tion (Fig. 5a, b). However, the magnitude of biophysical mitiga-
tion effects due to greening has a heterogeneous pattern,
depending on the combined dynamics of LAI and background
climate. Remarkably, the biophysical mitigation signal maximizes
during the warmest months and in arid regions, when and where
future warming will likely be more challenging for society. In
absolute values, both biophysical and biochemical processes dri-
ven by LAI show a larger cooling effect in the warmer SSPs,

Fig. 4 Mean annual and seasonal cycle of averaged temperature change over 2015-2100. Mean annual and seasonal cycle of averaged temperature
change over the four climate zones induced by the combined change in LAI and climate under Shared Socioeconomic Pathways SSP585 scenario. The
median of Coupled Model Intercomparison Project 6 (CMIP6) ensembles is shown in a, b, and c while the distribution of the entire CMIP6 ensemble is
shown in the boxplots, in which the box represents the first, second (median) and third quartiles (whiskers indicate the 99% confidence interval). Black
lines in d, e, f, and g are the medians of CMIP6 model ensemble when accounting for both LAI and climate change (All effects), whereas brown lines
represent the impact of future greening under current climate conditions (LAI effect). The impact of changing the climate conditions at constant LAI is
shown by the green line (Climate change effect). Grey, green and brown envelopes show the min and max temperature change in the CMIP6 model
ensemble. In the All effects b, the impact of incoming solar radiation (Solar), evaporation (Evap), and snow cover (Snow) are shown by boxplots.
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characterized by higher atmospheric CO2 concentration. How-
ever, in relative (compared to global land warming) rate (Fig. 5c),
the opposite is found with a larger relative importance of land-
based climate mitigation for the more ambitious mitigation plans.
Ultimately, these results suggest that the mitigation driven by the
greening of the Earth may play an important role in the portfolio
of actions to achieve the most ambitious climate mitigation
targets.

Methods
To estimate the plant biophysics in response to the future climate we first estimate
the temperature sensitivity to LAI from observations over 2003–2014 under dif-
ferent combination of key environmental drivers such as snow cover, solar
radiation, and evaporation. Such datasets are used at 0.05 degree spatial resolution.
We then used this sensitivity with future LAI values and climate conditions as
simulated by an ensemble of CMIP6 experiments under different SSPs at their
common 2 × 2 degree spatial resolution, in order to estimate the future evolution of
plant biophysical impacts on climate. To account for the relationship between
water use efficiency and atmospheric CO2 concentration, we used evaporation rates
rather than soil moisture as a driver of dT/dLAI. In fact, plant evaporation
simulated in climate models already includes the effect of CO2 fertilization on
stomatal conductance.

Estimation of the local biophysical variation in land air surface temperature
due to LAI change. The goal of this part of the work is to quantify the local climate
impacts of observed changes in vegetation density over the period 2003–2014, for
which combined observation of leaf area index (GLASS42) and air temperature
(inferred from satellite observations by Hooker et al. 201825) are available. For this

purpose, the variation of air surface temperatures induced by the change in LAI has
been factored out from the natural climate variability using the temperature signal
from neighbouring areas with stable LAI.

Our methodology is similar to the one presented in Alkama and Cescatti
201643, based on Eq. 1, which assumes that, for a given grid cell, the difference in
temperature between two years is equal to the sum of the temperature variation
induced by LAI change (ΔTlai) plus the residual signal (ΔTres) due to the natural
inter-annual climate variability.

ΔT ¼ ΔTlai þ ΔTres ¼¼ >ΔTlai ¼ ΔT � ΔTres ð1Þ
From Eq. 1 it follows that the land use signal ΔTlai can be quantified as the

difference between the observed temperature variations (ΔT) and the natural
climate variability (ΔTres). This latter term is estimated from nearby reference grid
cells located within 50 km distance (dk) and with stable LAI (i.e. less than 0.1 m2/
m2 variation in LAI during the observation period). For these grid cells, we can
assume ΔTlai ’ 0 and consequently ΔT ’ ΔTres . The residual temperature signal
(ΔTres) is therefore the temporal variation in temperature observed in the
surroundings of the target grid cell in areas with stable land cover. We used an
inverse distance weighting to estimate ΔTres from the n reference grid cells,
according to Eq. 2.

ΔTres ¼
∑n

k¼1
ΔTk
dk

∑n
k¼1

1
dk

ð2Þ

From Eqs. 1 and 2, we estimate ΔTlai for all grid cells where we observe LAI
change larger than 0.1 m2/m2. This calculation of these differences is repeated
between two years for each individual month, for all the 66 pairs of years available
for the period 2003–2014.

Sensitivity of air surface temperature to LAI change under climate conditions.
Once the monthly local sensitivity is estimated as described above (section 1.1), we

Fig. 5 Mean land annual temperature change over 2015–2100. Mean land annual temperature change (ΔT) under the four future Shared Socioeconomic
Pathways (SSP126, SSP245, SSP370 and SSP585) scenarios c and their associated vegetation mitigation effects due to biophysical a and biochemical
b processes. The Coupled Model Intercomparison Project 6 (CMIP6) simulations are represented by the grey box plots, in which the box represents the
first, second (median) and third quartiles (whiskers indicate the 99% confidence interval and grey markers (plus) show outliers).
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split the data in two regions (with and without snow using 1% monthly snow cover
as threshold). The snow-covered areas are known to be dominated by the radiative
effect (i.e. due to the contrast in albedo between vegetation and snow), while the
snow-free areas are dominated by the partitioning of the available energy in tur-
bulent fluxes44 (i.e. evaporation versus sensible heat). The sensitivity dT/dLAI in
the first areas are then expressed as a function of monthly snow cover (SC in %)
estimates from MODIS (MYD10CM.006) and solar radiation (SWdown in W/m2)
from the ERA545 reanalysis using the bivariate quadratic least square regression
and the resulted function is as follow.

dT=dLAI ¼� 1:66 10�5SC2 � 2:14 10�7SWdown
2 þ 1:56 10�5SC SWdown

þ 2:9 10�3SC � 8:23 10�4 SWdown � 0:011
ð3Þ

Similarly, for snow-free conditions, the sensitivity is formulated as a function of
land evaporation (E in mm/day) fluxes coming from Global Land Evaporation
Amsterdam Model (GLEAM version 3.1a product46) and solar radiation. However,
in order to account for the variation of the sensitivity dT/dLAI as a function of
absolute LAI (lower sensitivity with high LAI) as shown in Fig. 1c, we used
naperian logarithm of LAI to fit our bivariate quadratic function as follow.

dT=dðlnðLAIÞÞ ¼ 3:64 10�3E2 þ 1:17 10�5SW2
down�5:80 10�5E SWdown

þ 8:51 10�2E � 6:74 10�3 SWdown þ 0:42
ð4Þ

In both Eqs. (3) and (4), the left side “d” represent the difference between two
years while the right members of the equation (E, SWdown and SC) are the average
between the two years.

We have to note here that this sensitivity (Fig. 1) is computed with the
assumption of a 1 m2/m2 LAI change during all months of the year. However, over
some climate regions (e.g. the boreal zone), the observed greening is mainly driven
by the growing season when snow cover is absent. Consequently, in those regions
the annual signal is dominated by summer values and may lead to a mean cooling
effect4,28 despite the winter warming.

Climate zone map. In this study, climate zones were defined according to the latest
digital Köppen-Geiger World map of climate classification for the second half of
the 20th century47. This map is based on data sets from the Climatic Research Unit
(CRU TS2.1) at the University of East Anglia and the Global Precipitation Cli-
matology Centre (GPCC) at the German Weather Service.

The Köppen-Geiger World map contains 31 climate zones on a regular 0.5
degree lat/lon grid for the period 1951 to 2000 (http://koeppen-geiger.vu-
wien.ac.at/present.htm). We merged the 31 climate zones into 5 major zones
(Equatorial, Arid, Temperate, Boreal, Polar) as defined in the classification
system47 (Supplementary Fig. 8). The polar zone was not analysed since it does not
include relevant vegetated areas. We have to note here, that the climate zones are
kept constant when doing statistics by climate zone even for future climate.

LAI product. We evaluated five (GLASS42, GLOBMAP48, GIMMS3g49,
Copernicus50, and LTDR51) LAI datasets derived from Earth Observations against
air surface temperature25 at monthly time step over 2003–2004 (see section 4). We
finally selected the GLASS42 product for multiple reasons. First, all products, except
GLASS and GLOBMAP, are produced using an ensemble of different satellites/
sensors in time over 2003–2014, which may introduce inconsistencies in the time
series52. Direct validation to ground LAI observations both globally and over China
demonstrates that GLASS LAI shows the best performance over 2000–201753. In
addition, GLASS is gap-free and shows robust dT/dLAI signals (Supplementary
Figs. 9 to 12). Copernicus50 and LTDR51 LAI were excluded because they present
gaps especially in snow-covered regions, which make them inadequate for the
assessment of temperature sensitivity in cold climates. GIMMS3g49 and
GLOBMAP48 were excluded because they show less clear signals compared to
GLASS and have a coarser spatial resolution (0.083 and 0.073 degree, respectively)
compared to other LAI products (available at 0.05 degree). Thus, interpolating air
surface temperature from 0.05 to coarser resolution would have introduced further
uncertainties.

Another independent validation study also showed that the GLASS LAI product
has the lowest uncertainty, followed by GEOV1 and MODIS for all the biome types
tested54. The GLASS LAI product is robust, particularly over the snow-covered
regions, mainly due to the novel inversion algorithm and surface reflectance
preprocessing technique (Liang, et al., DOI:10.1175/BAMS-D-1118-0341.1171).
Unlike other methods that use only satellite data acquired at a specific time to
retrieve LAI, the GLASS algorithm uses an entire year of surface reflectance to
estimate the one-year LAI profile for each pixel. Furthermore, the surface
reflectance data from atmospheric correction is frequently contaminated by clouds,
the GLASS team uses an effective pre-processing method55 to generate temporally
continuous and smoothed surface reflectance time series in eliminating the impacts
of this source of “noise”.

To test the robustness of our analysis, we performed additional tests using
Copernicus LAI, which is one of the three (GLASS, Copernicus and LTDR) high
spatial resolution products, and find similar results (Supplementary Figs. 13-14).
We choose to use Copernicus instead of LTDR because this latest shows strange
patterns for LAI values around 4.5 m2/m2 (Supplementary Figs. 10-11). We also

tested GLOBMAP at its native spatial resolution and find similar results
(Supplementary Figs. 13–14).

Because of the use of neighbouring grid cells, the calculation process is
computational demanding. For this reason, we limited the test of the 5 different
existing LAI products to two consecutive years (2003–2004) before taking a
decision about the LAI product to be used for the whole period 2003–2014.

We then proceeded as follows. For a given area, the ΔTlai values derived with
Eqs. 1 and 2 are summarized in a plot (Supplementary Figs. 10–13) where each cell
i shows the average ΔTlai;i observed for a given combination of LAI in the two
observation years (here 2003 and 2004) reported on the X and Y axis, respectively,
where the axes are discretized with 1% bins. Supplementary Figs. 9–12 can be
interpreted as the difference between similar graphs drawn for the temperature
variation (ΔT) and the residual signal (ΔTres) according to Eq. 1. Because of the
regular latitude/longitude grid used in the analysis, the area of the grid cells ðamÞ
varies with the latitude. The temperature signal (ΔTlai;i) is therefore computed as
an area-weighted average (Eq. 5).

ΔTlai;i ¼
∑M

m¼1amΔTlai;m

∑M
m¼1am

ð5Þ

All vegetated grid cells were classified in one of the four major zones according
to the Köppen-Geiger classification (Supplementary Fig. 8).

CMIP6 climate simulations. Historical (2003-2014) and the four SSPs (SSP126,
SSP245, SSP370, and SSP585) scenarios (2015–2100) of simulated LAI, incoming
solar radiation, snow cover, evapotranspiration, and vegetation carbon stock
coming from 18 (CanESM5, CESM2, CESM2-WACCM, CNRM-ESM2-1, EC-
Earth3-Veg, GFDL-CM4, GFDL-ESM4, GISS-E2-1-G-CC, GISS-E2-1-G, GISS-E2-
1-H, HadGEM3-GC31-LL, IPSL-CM6A-LR, MIROC6, MIROC-ES2L, MPI-ESM1-
2-HR, MRI-ESM2-0, SAM0-UNICON, UKESM1-0-LL) climate models from
CMIP6 archive, are used in the current study. The SSPs scenarios are used to derive
greenhouse gas emissions scenarios with different climate policies. In the SSP126
the world shifts gradually, but pervasively, toward a more sustainable path. In the
SSP245 the world follows a path in which social, economic, and technological
trends do not shift markedly from historical patterns. In the SSP370 the economic
development is slow, consumption is material-intensive, policies shift over time to
become increasingly oriented toward national and regional security issues and
inequalities persist or worsen over time. While in the SSP585, we assume the
continuity of high emissions. The historical simulations of the CMIP6 archive were
used to assess how climate models compare with observations, while the future
simulations were used to investigate the future impacts of LAI dynamics on the
climate system under different future climate trajectories. All climate models use
land cover change scenarios from land use harmonization datasets56 (https://
luh.umd.edu/) and simulate tree mortality and fires. However, natural shifts in
plant species due to climate change is not simulated. All CMIP6 model outputs are
bilinearly interpolated to a common 2 × 2 degree spatial resolution.

Biochemical effect of LAI on air temperature. A previous study57 shows a strong
linear relationship between atmospheric carbon concentration and regional surface
air temperature. Here, we combined the strong linearity of the regional climate
response over most land regions presented from Leduc et al.57 and the simulated
variation in vegetation carbon stock by CMIP6 climate models, to drive the global-
scale biochemical climate impacts. Basically, Leduc et al. 2016 find an increase of
land temperature of 2.2 ± 0.5° per 1 Terra ton of carbon (Tt C) in the atmosphere.
In our case we used the total increase of carbon in plants (ΔB in Tt C) between
2015 and 2100 coming from the CMIP6 archive to estimate the biochemical effect
as shown by Eq. (6).

ΔT ¼ 2:2ΔB
1

ð6Þ

Air temperature. Air temperature product used in the present study is produced
by combining MODIS day and night land surface temperature (LST) and
observed in-situ air temperature58 using a statistical model that incorporates
information on geographic and climatic similarity. One of the reason for the use
of LST day and night is to account for the landscape differences between land
cover types. It is, for example, well known that the daily temperature amplitude
is lower over dense vegetation compared to lower density or bare soil27,59,60.
Since many of the meteorological sites used in the development of this product
occur in low-elevation, homogenous and developed areas, climatic similarity
statistics are done using the WorldClim_v1.461 data that is mainly built to
overcome this kind of problem by, for example, the use elevation statistics. In
addition, in order to account for the climate drivers (eg. solar radiation), the
geographically weighted regression is used within the in-situ air temperature.
Despite the fact this product uses some complex statistics to overcome the issues
described here and also the fact that this product is validated58 against ERA5
reanalysis data, we cannot exclude that part of the uncertainties found in this
study originates from the use of this product itself especially over elevated land
where the difference with ERA5 is larger.
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Generating Fig. 4. “LAI effect” is estimated from the multiplication of current
sensitivity dT/dLAI by LAI trend. In “all effects”, we first estimate new dT/dLAI
from simulated future solar radiation, evaporation and snow cover, and then
multiplied the new sensitivity by LAI change. While, “climate change” effect is the
difference between the two. The individual terms of climate change are estimated
by subtracting “all effects” from “all effect except individual term that was kept
constant”.

We have to note here that this method of separation is used to have an
approximated numbers of each driver. However in the real world the interactions
between the different climate drivers makes difficult to separate them precisely.

Data availability
The data that support the findings of this study are openly available. GLASS LAI is
accessible at http://www.glass.umd.edu/index.html. Air temperature is accessible at
https://figshare.com/collections/A_global_dataset_of_air_temperature_derived_from_
satellite_remote_sensing_and_weather_stations/4081802/1. ERA5 surface incoming solar
radiation is accessible at http://climate.copernicus.eu/climate-reanalysis. GLEAM
evaporation accessible at https://www.gleam.eu/. MODIS snow cover is accessible at
https://nsidc.org/data/MYD10CM/versions/6. CMIP6 simulations are accessible at
https://esgf-node.llnl.gov/search/cmip6/. COPERNICUS LAI is accessible at https://
land.copernicus.eu/global/products/lai. GLOBMAP LAI is accessible at https://
zenodo.org/record/4700264#.YParmqaxVUQ. GIMMS LAI is accessible at http://
cliveg.bu.edu/modismisr/lai3g-fpar3g.html. LTDR LAI is accessible via google earth
engine at https://developers.google.com/earth-engine/datasets/catalog/NOAA_CDR_
AVHRR_LAI_FAPAR_V5#description.

Code availability
The programs used to generate all the results are made with Python and Fortran.
Analysis scripts are available at https://github.com/RamAlkama/FutureVegBioph.
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