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Lack of Offspring Nrf2 Does Not
Exacerbate the Detrimental
Metabolic Outcomes Caused by
In Utero PCB126 Exposure
Brittany B. Rice, Sara Y. Ngo Tenlep, Obadah Tolaymat , Attaas T. Alvi , Fallon R. Slone,
Claire L. Crosby, Stevi S. Howard, Cecile L. Hermanns, Nishimwe P. Montessorie ,
Hollie I. Swanson and Kevin J. Pearson*

Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, United States

Human environmental exposures to toxicants, such as polychlorinated biphenyls (PCBs),
increase oxidative stress and disease susceptibility. Such exposures during pregnancy
and/or nursing have been demonstrated to adversely affect offspring health outcomes.
Nuclear factor erythroid-2-related factor 2 (Nrf2) regulates the antioxidant response and is
involved in the detoxification of coplanar PCBs, like PCB126. The purpose of this study
was to investigate glucose tolerance and body composition in PCB-exposed offspring
expressing or lacking Nrf2. We hypothesized that offspring lacking Nrf2 expression would
be more susceptible to the long-term health detriments associated with perinatal PCB
exposure. During gestation, whole-body Nrf2 heterozygous (Het) and whole-body Nrf2
knockout (KO) mice were exposed to vehicle or PCB126. Shortly after birth, litters were
cross-fostered to unexposed dams to prevent PCB exposure during nursing. Offspring
were weaned, and their body weight, body composition, and glucose tolerance were
recorded. At two months of age, PCB exposure resulted in a significant reduction in the
average body weight of offspring born to Nrf2 Het dams (p < 0.001) that primarily arose
from the decrease in average lean body mass in offspring (p < 0.001). There were no
differences in average body weight of PCB-exposed offspring born to Nrf2 KO dams (p >
0.05), and this was because offspring of Nrf2 KO dams exposed to PCB126 during
pregnancy experienced a significant elevation in fat mass (p = 0.002) that offset the
significant reduction in average lean mass (p < 0.001). Regardless, the lack of Nrf2
expression in the offspring themselves did not enhance the differences observed. After an
oral glucose challenge, PCB-exposed offspring exhibited significant impairments in
glucose disposal and uptake (p < 0.05). Offspring born to Nrf2 Het dams exhibited
these impairments at 30 min and 120 min, while offspring born to Nrf2 KO dams exhibited
these impairments at zero, 15, 30, 60 and 120 min after the glucose challenge. Again, the
interactions between offspring genotype and PCB exposure were not significant. These
findings were largely consistent as the offspring reached four months of age and
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demonstrate that the lack of offspring Nrf2 expression does not worsen the metabolic
derangements caused by in utero PCB exposure as we expected. Future directions will
focus on understanding how the observed maternal Nrf2 genotypic differences can
influence offspring metabolic responses to in utero PCB exposure.
Keywords: developmental programming, diabetes, DOHAD, mice, nuclear factor erythroid-2-related factor 2 (Nrf2),
obesity, pregnancy, polychlorinated biphenyals (PCBs)
INTRODUCTION

Polychlorinated biphenyls (PCBs) are persistent halogenated
organic pollutants that were synthesized for a host of
commercial and industrial applications and products which
include but are not limited to casting waxes, carbonless copy
paper, paint, plastics, and inks (1). However, upon the realization
of the health hazards posed from PCB exposure, production of
the toxicants were halted but did not extinguish the presence of
the detrimental pollutants as their lipophilic nature perpetuates
their bioaccumulation and biomagnification (2). Thus, PCB
exposure still occurs and health complications continue to
persist (3). Environmental contamination from PCBs result
from spills, leaks, and improper storage and disposal (4, 5).
Once released, the environmental fates of PCBs are largely
determined by their chlorination pattern (5) - as the
chlorination pattern of the compound increases, so does its
weight, viscosity, and lipophilicity (4). Routes of PCB exposure
include inhalation, dermal contact, ingestion, and placental
transfer (3, 6). Additionally, PCBs have been detected in
umbilical cord and breastmilk and have been demonstrated to
be transferred from mother to child during the perinatal period
(6). It has been stated that the primary route of PCB exposure
within the general population is primarily a result of the
consumption of fatty foods such as dairy, animal products, and
fish (7). Population studies demonstrate associations between
coplanar PCBs and diabetes prevalence (8–10), incidence (11–
13), and risk (14–16). In animal studies, such exposure has been
shown to initiate and drive the development and progression of
diabetes (17–23), and obesity (19, 22, 24–26). Existing evidence
describing the contribution of early-life PCB exposure to
diabetic-like phenotypes observed in mammalian offspring
demonstrate sex-specific alterations in body composition (26)
and metabolic parameters (27) as well as alterations in pro-
inflammatory cytokines and hormones implicated in glucose
regulation (28). However, such evidence fails to demonstrate the
critical window of exposure during development that drives the
long-term negative health outcomes or the genetic basis of
observed phenotypes in mammalian species.

The harmful effects of coplanar PCBs, like 3, 3’, 4, 4’, 5-
pentachlorobiphenyl (PCB126), are mostly elicited through its
activation of the aryl hydrocarbon receptor (AhR) (29). This
receptor is responsible for initiating the oxidation, reduction, and
hydrolysis of xenobiotics in the detoxification pathway (30). The
initial phase of reducing the toxicity of xenobiotics often results
in the production of reactive oxygen species, which if not
neutralized, can give rise to oxidative stress and damage (31).
n.org 2
During the second phase of the detoxification pathway,
xenobiotics and their respective metabolites are conjugated to
increase their water-solubility for excretion (31). Genes involved
in the second phase of detoxification are linked to the nuclear
factor erythroid-2-related factor 2 (Nrf2) gene, which regulates
antioxidant response by inducing the transcription of reactive
oxygen species-detoxifying enzymes (32). Although the
developmental role of Nrf2 in PCB-induced toxicity has been
reported in zebrafish (33), these findings do not explain how
Nrf2 allelic expression impacts diabetic-like phenotypes
observed in mammalian offspring as a result of perinatal
PCB exposure.

In the present study, we exposed Nrf2 heterozygous (Het) and
Nrf2 knockout (KO) dams to PCB126 prior to and during
pregnancy in an effort to delineate how both maternal and
offspring Nrf2 genotype influences PCB-induced diabetic
health outcomes in offspring. Dams were mated with sires of
opposing Het and KO genotypes. Offspring body weight and
body composition as well as glucose tolerance were monitored.
Data collected from the offspring were analyzed from the
perspective of offspring and maternal Nrf2 genotype and
treatment, not paternal genotype. We hypothesized that PCB-
induced detriments in offspring would be exacerbated by the lack
of Nrf2 expression in offspring. We found that gestational
PCB126 exposure precipitates adverse offspring metabolic and
phenotypic responses but that offspring responses were
modulated by maternal Nrf2 genotype, not offspring genotype.
MATERIALS AND METHODS

Animals Care, Husbandry, Cross-
Fostering, and Weaning
All experimental procedures were approved by the University of
Kentucky Institutional Animal Care and Use Committee.
Throughout the study, housing conditions included a 14:10
light/dark cycle, temperature ranging from 20 – 22.2˚ Celsius,
and humidity ranging from 30% to 70%. All mice were given ad
libitum access to chow (24% kcal from protein, 6.2% kcal from
fat, and 44.2% kcal from carbohydrate; #2918; Teklad Diets;
Envigo, Madison, WI) and water. Additionally, nesting material
(Nestlet; Ancare Corporation; Bellmore, NY) was placed in
animal caging throughout the duration of the study. Animals
were singly housed during the acclimation period. Whole-body
Nrf2 Het and KO dams and sires used in this experiment were
generated from repeated in-house breeding of Nrf2 Het mice on
an ICR background generously gifted by Dr. Viviana Perez upon
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permission from Dr. Masayuki Yamamoto who originally
developed the line as previously described (34). The use of the
Het mice was based on rationale from our preliminary work
where whole-body Het and wild-type (WT) non-pregnant
females exposed to 1 µmole of PCB126 per kg body weight or
vehicle did not differ in glucose response upon an intraperitoneal
glucose challenge (see Supplementary Figure 1). At 18 weeks
old, whole-body Nrf2 Het (n = 28) and KO (n = 52) female ICR
mice were mated with whole-body Nrf2 Het or KO male ICR
mice of opposing genotype. Simultaneously, foster dams were
created by breeding WT male and female (n = 80) ICR mice
(Envigo-Harlan; Indianapolis, IN). Breeding schemes consisted
of mating pairs and/or trios. All dams were exposed to male
bedding 48 hours prior to mating to stimulate estrus. Sires were
allowed to mate with dams for one week. On postnatal day 0, all
offspring of WT dams were culled, while offspring of Het and KO
dams were cross-fostered to WT dams. See Figure 1 for an
illustration of animal husbandry and cross-fostering. Larger
litters were reduced to eight pups and pup sex ratios per litter
were kept equal when possible. Offspring weaning occurred at
three weeks of age. After weaning, mice were housed two to five
animals per cage per sex and, in most cases, per litter.

Chemicals and Exposure
Using weight matching, Het and KO dams were assigned to
treatment groups. Three days prior to mating and on gestation
Frontiers in Endocrinology | www.frontiersin.org 3
day ~10 (this is an estimate as breeding pairs were allowed to
mate for one week), Het and KO dams were orally administered
vehicle (tocopherol-stripped safflower oil, Dyets; Bethlehem, PA)
or 1 mmole of PCB126 per kg body weight (AccuStandard Inc.;
New Haven, CT) dissolved in vehicle according to their
groupings (Het Veh, n = 14; Het PCB, n = 14; KO Veh, n =
26; KO PCB, n = 26). The rationale for this dosing paradigm is
based upon our previous work (26) where we conducted a dosing
study to establish a mouse model in order to study the
mechanism(s) of and interventions to protect against perinatal
exposures to PCB126 in future experiments. Further, it is
important to note that human exposure to toxicants, like
PCB126, occur at low levels over the life course. Thus, our
mouse model attempts to recapitulate their effects in a
relatively short exposure study.

Offspring Genotyping
Ear punches were collected from pups, and DNA was isolated,
washed, and purified according to the manufacturer’s
instructions (Maxwell® 16 Mouse Tail DNA Purification Kit;
Promega; Madison, WI). Polymerase chain reaction was
performed (C1000™ Thermal Cycler; Bio-Rad; Hercules, CA)
using 1 ml of each eluted DNA sample, 10 ml of GoTaq® Master
Mix (Promega; Madison, WI), deionized water, and the
following three primers (Integrated DNA Technologies, Inc.;
Coralville, IA): (1) Nrf2-5, 5’ TGG ACG GGA CTA TTG AAG
FIGURE 1 | Breeding, Exposure, and Cross-Fostering Scheme. Whole-body Nrf2 heterozygous (+/-) and Nrf2 knockout (-/-) female ICR mice were exposed to 1
µmol/kg of PCB126 or safflower (vehicle) three days prior to mating and on gestation day ~10. For breeding, female mice were housed with male mice of opposing
Nrf2 genotype for a week. Shortly after birth, litters containing more than eight pups underwent culling to ensure postnatal food availability. Remaining offspring were
then cross-fostered to unexposed Nrf2 wild-type dams to prevent PCB exposure during nursing. The figure denotes 50% Het and 50% KO (as well as male and
female) offspring as an example for each litter, but actual litters did not always have this breakdown of sex/genotypes.
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GCT G 3’; (2) Nrf-LacZ, 5’ GCG GAT TGA CCG TAA TGG
GAT AGG 3’; (3) Nrf2 AS, 5’ GCC GCC TTT TCA GTA GAT
GGA GG 3’. The cycling conditions were as follows: initial
denaturation at 94°F for 5 minutes, followed by 35 cycles at
94°F for 30 seconds, 61°F for 30 seconds, and 72°F for 30
seconds. PCR products as well as 100 bp DNA ladder
(Invitrogen; Waltham, MA) were then loaded into a 1.2% gel
consisting of UltraPure™ Agarose (Invitrogen), SYBR™ Safe
DNA Gel Stain (ThermoFisher Scientific; Waltham, MA), and
TBE Buffer 10x (Promega; Madison, WI). Subsequently, gel
electrophoresis was performed at 100 V for 30 minutes
(Powerpac HC; Bio-Rad; Hercules, CA). Nrf2 KO mice-derived
PCR products showed one band of 400 base pairs, while Nrf2 Het
mice-derived PCR products showed two bands at 400 and 734
base pairs.

Offspring Phenotypic and
Metabolic Assessments
Offspring body weight was recorded weekly. Total fat tissue, lean
tissue, and water were measured in live, conscious offspring by
nuclear magnetic resonance (EchoMRI; Echo Medical Systems,
Houston, TX) at two and four months of age. Animals that
underwent body composition analyses were initially selected at
random and used for both assessments when possible.
Specifically, two Het and two KO offspring per sex of each
litter were selected and the average of the two offspring are
presented when possible. In the infrequent event that an animal
was excluded from the assessment for treatment-independent
health concerns, a littermate of that animal of the same genotype
was selected to take the place of the excluded animal.

For oral glucose tolerance testing, animals were fasted for
three hours then administered 2 g of dextrose solution
(VetOne, Nova-Tech, Inc.; Grand Island, NE) per kg body
weight at both two and four months of age. A subset of
offspring, one Het and one KO offspring per sex per each dam
of each experimental grouping (Het Veh, Het PCB, KO Veh, and
KO PCB) were selected when possible. Glucose levels were
measured from blood collected from the tail vein at fasting and
at 15, 30, 60, and 120 minutes after the glucose challenge. AUC
for blood glucose measurements were calculated in SigmaPlot
14.0 (Inpixon; Palo Alto, CA) using the ‘Area Below
Curves’ function.

Statistics
All analyses were completed using SigmaPlot 14.0. Chi-square
tests were performed to determine if associations between dam
experimental groupings and the number of litters born or
weaned existed. Contingency tables for Chi-square analyses
were modified slightly from Table 1 and are described below.
In testing associations between dam groupings and number of
litters, categorical variables of no litter and litters were assigned.
Values for no litters were obtained by subtracting values for
litters born from females bred respective to each dam
experimental grouping in Table 1. Initial testing of associations
between dam groupings and litters weaned used values from
litters born and values from litters weaned shown in Table 1.
Frontiers in Endocrinology | www.frontiersin.org 4
However, due to low incidence of litter death, Chi-square
analysis was not completed because at least one of the expected
values in our contingency table was less than one and over 20%
of the values were less than five. Thus, we determined
associations between dam experimental groupings and litters
weaned by using females bred and litters weaned as categorical
variables. The effects of sex, genotype, and/or treatment were
individually and collectively evaluated. Litter size was assessed
using two-factor ANOVA. Offspring body weight, body
composition, glucose tolerance, and AUC were assessed using
three-factor ANOVA. When interactions were detected, Fisher’s
Least Significant Difference post-hoc testing was employed.
Statistical significance for all comparisons was set at 0.05. The
distribution of the data was measured using Shapiro-Wilk
normality test, while Brown-Forsythe equal variance test was
used to measure the spread of the data. Data that did not present
normal distributions and/or spreads were transformed to values
of natural log. When appropriate, transformations were used to
improve assessment of normality and equal variance.
RESULTS

Maternal Pregnancy and Rearing
The number of litters born and weaned from each dam
experimental grouping was recorded on postnatal day 0 and
21, respectively. Because p-values for litters born (p = 0.604) and
litters weaned (p = 0.462) obtained were greater than the
significance level of 0.05, no associations between dam
genotype and treatment and the number of litters born and
weaned were detected (Table 1). Neither dam genotype nor
treatment influenced litter size (Table 1; p = 0.842 and 0.255,
respectively). Further, no interactions between genotype and
treatment were observed in regards to litter size (Table 1;
p = 0.353).

Offspring Body Weight and
Body Composition
At two and four months of age, male offspring weighed
significantly more than female offspring irrespective of
maternal Nrf2 genotype (Figures 2A–D; p < 0.001). A main
effect of offspring genotype in average body weight was only
observed in offspring born to Het dams (Figures 2A, p = 0.047;
TABLE 1 | Pregnancy and rearing information.

Group Females
Breda

Litters
Borna

Litters
Weaneda

Mean Litter Sizeb

(SEM)

Het Veh 14 8 8 11 (0.78)
Het PCB 14 10 10 11 (0.93)
KO Veh 26 13 12 12 (0.63)
KO PCB 26 16 13 10 (0.64)
Decembe
r 2021 | Volum
aNo associations detected between Females Bred and Litters Born or Litters Weaned
using Chi Square Test of Independence.
bUsing two-factor ANOVA, no differences in or interactions between genotype and
treatment detected in Mean Litter Size.
e 12 | Article 777831
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2C, p = 0.003), where KO offspring weighed significantly less
than Het offspring (Figures 2A, C). Additionally, a main effect of
PCB treatment in average body weight was only observed in
offspring born to Het dams (p < 0.001), where offspring exposed
to PCB126 during gestation weighed significantly less than
vehicle exposed offspring (Figures 2A, C). No interactions
between groups were detected (Figures 2A–D; p > 0.05);
suggesting that outcomes in offspring exposed to PCBs did not
differ depending on their genotype. Male offspring had
significantly elevated average lean mass when compared to
female offspring (Figures 3A–D; p < 0.001), while no sex
differences were observed in offspring fat mass (Figures 4A–D;
p > 0.05). At two months of age, offspring genotype did not
influence body composition profiles (fat and lean mass, p > 0.05).
However, at four months of age, offspring genotype did alter
offspring fat deposition (Figures 4C, D; p < 0.05), where Het
offspring had significantly elevated fat mass profiles when
compared to KO offspring. At two and four months of age,
exposure to PCB126 during gestation caused a significant
decrease in the lean mass of offspring born to Het dams
(Figures 3A, C; p < 0.001) and KO dams (Figures 3B, D; p <
0.001) while producing an increase in fat mass only in offspring
born to KO dams (Figures 4B, D; p < 0.05).

Offspring Glucose Tolerance
Glucose tolerance tests were performed to assess offspring glucose
homeostasis. At two months of age, adult offspring of Het dams
exposed to PCB126 during pregnancy had significantly elevated
blood glucose levels at 30 min and 120 min (Figure 5A, p < 0.05
Frontiers in Endocrinology | www.frontiersin.org 5
in both comparisons) when compared to offspring from vehicle
exposed dams, whereas offspring of KO dams exposed to PCB126
during pregnancy presented higher glucose levels at each time
point during testing when compared to offspring from vehicle
exposed dams (Figure 5B, p < 0.05 in all cases). At four months of
age, significant elevations in the blood glucose levels of adult
offspring of Het dams exposed to PCB126 during pregnancy
persisted only at 30 min (Figure 6A, p < 0.05) when compared to
offspring from vehicle-exposed dams, while significant elevations
in the blood glucose levels of offspring of KO dams exposed to
PCB126 pregnancy remained at 30, 60, and 120 min (Figure 6B,
p < 0.05) when compared to offspring born to vehicle-exposed
dams. Analyses revealed significant sex differences in blood levels
of glucose following the glucose challenge. Specifically, male
offspring of Het dams exhibited significantly impaired glucose
tolerance when compared to female offspring of Het dams at 15
min (p < 0.05), 60 min (p < 0.001), and 120 min (p < 0.001)
(Figure 5A). Male offspring of KO dams exhibited significantly
impaired glucose tolerance when compared to female offspring of
KO dams at each time point beyond fasting (p < 0.05)
(Figure 5B). Interactions between sex and treatment were only
detected at two months of age. In adult offspring born to Het
dams, at 120 min, males exposed to PCB126 during gestation had
significantly higher glucose levels than females exposed to
PCB126 during gestation or males exposed to vehicle (p < 0.01)
(Figure 5A). The fasting blood glucose levels of adult male
offspring born to KO dams exposed to PCB126 during
pregnancy was more pronounced than adult female offspring
exposed to PCB126 during gestation or males exposed to vehicle
A B

C D

FIGURE 2 | Adult offspring born to Nrf2 heterozygous dams exposed to PCB126 during pregnancy are more sensitive to the adverse effects of PCB126 on body
weight. Offspring body weight was recorded weekly. Displayed are the body weights of offspring at two and four months of age that were born to Nrf2 heterozygous
(A, C) and knockout (B, D) dams exposed to PCB126 or vehicle during pregnancy. Average offspring body weight values are representative of the mean of litter
means (n = 8 – 13 per group) ± SEM. Data were analyzed using three-factor ANOVA. Significance was set at a = 0.05.
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A B

C D

FIGURE 3 | PCB126 exposure during gestation adversely influences lean mass profiles in adult offspring. Displayed average lean mass measurements of offspring of
Nrf2 heterozygous (A, C) and knockout (B, D) dams at two and four months of age were taken using EchoMRI. Values are representative of the mean of litter
means (n = 8 – 13 per group) ± SEM. Three-factor ANOVA was used to analyze data. Significance was set at a = 0.05.
A B

C D

FIGURE 4 | Adult offspring born to Nrf2 knockout dams exhibit significant elevations in fat deposition as a result of gestational PCB126 exposure. Shown are the fat
mass measurements of offspring born to Nrf2 heterozygous (A, C) or knockout (B, D) dams at two and four months of age. Data were obtained using EchoMRI and
the values shown are indicative of the mean of litter means (n = 8 – 13 per group) ± SEM. Offspring fat mass data were analyzed using three-factor ANOVA.
Significance was set at a = 0.05.
Frontiers in Endocrinology | www.frontiersin.org December 2021 | Volume 12 | Article 7778316

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Rice et al. PCB126 and Detrimental Offspring Health
(p < 0.05) (Figure 5B). Of note, there were no significant
interactions between PCB and offspring genotype.

The AUC was used to summarize the glucose disposal over the
120 minute time course of the glucose tolerance test. While PCB
treatment caused a trend toward impaired glucose disposal in two-
month-old offspring born to Het dams (Figure 5C, p = 0.065), the
PCB treatment caused a significant difference in glucose disposal
in offspring born to KO dams at both two and four months of age
(Figures 5D, 6D; p < 0.05). Of note, there was no significant
interaction between PCB treatment and offspring genotype in
either comparison (Figures 5C, D, 6C, D). There were sex
differences where male offspring present significantly elevated
AUCs compared to female offspring (Figures 5C, D, 6C, D; p <
0.001), but there were no significant differences in offspring
genotype (Figures 4C, D; p > 0.05).
DISCUSSION

Nrf2 has been identified as an integral regulator of redox
homeostasis, and therefore its associated signaling pathway has
been widely explored as a therapeutic target towards the
prevention of a host of diseases (35, 36), including diabetes
(37). Emerging data implicates the involvement of PCB exposure
in the development and progression of diabetes (14–16).
Unfortunately, literature insufficiently details the role of Nrf2
Frontiers in Endocrinology | www.frontiersin.org 7
expression in PCB-induced diabetes. The current study focused
on delineating the effects of Nrf2 allelic expression on offspring
phenotypic and metabolic responses to gestational PCB126
exposure. Unpublished data from our laboratory demonstrates
that PCB treatment during the nursing period did not
significantly affect offspring body weight, body composition, or
long-term glucose intolerance. Here, using a cross-fostering
strategy, we provide additional evidence that the in utero
period is the critical window that precipitates long-term
negative developmental programming of altered body
composition and impaired glucose tolerance in offspring. To
our surprise, we found that maternal rather than offspring Nrf2
genotype impacted long-term PCB-induced developmental
programming in offspring where offspring born to KO dams
seemed to be more sensitive to PCB126.

Although little is known about PCB-induced diabetes and
obesity resulting from developmental exposure, we expected
offspring body weight and composition as well as glucose
tolerance would be adversely affected by gestational PCB
exposure. Our anticipation was largely based on studies in
which direct PCB exposure occurred. Animals directly exposed
to PCBs exhibit pronounced elevations in body weight as a result
of exposure (22, 38–40). Moreover, limited data detailing the
effects of direct PCB exposure on body composition demonstrate
conflicting results and utilize diet as a means to understand the
influence of PCB exposure on fat and lean mass (20, 39).
A B

C D

FIGURE 5 | Two-month-old offspring exposed to PCB126 during gestation exhibit impairments in glucose tolerance. At two months of age, glucose was measured
in Nrf2 heterozygous and knockout offspring exposed to PCB126 or vehicle during gestation in response to an oral glucose challenge (A, B). Glucose measurements
were then used to determine area under the curve (AUC; C, D). Offspring glucose and AUC values are representative of the mean of litter means (n = 8 per group) ±
SEM. Three-factor ANOVA at each time point was used to detect differences between groups. Significance was set at a = 0.05. For simplicity, only significant main
effects of PCB treatment (*) and sex (#) are shown at each time point.
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Nonetheless, PCBs have been demonstrated to alter adipocyte
development (21, 24, 25, 41) and death (25), and as a result have
been deemed as obesogens. Further, direct PCB exposure has
been shown to induce impairments in glucose (17, 18, 21, 23, 39,
40, 42) and insulin (21, 22, 39) tolerance. Previously, in seven-
week-old offspring exposed to PCB126 during pregnancy and
nursing, we observed that toxicant exposure did not influence
offspring body weight but did alter offspring body composition in
a sex- and dose-dependent manner (26). Furthermore, our
unpublished data demonstrates that exposure to PCB126
exclusively during nursing does not affect offspring body
weight or body composition but does affect offspring early-life
glucose tolerance in a sex-dependent manner. Mennigen et al.
(43) reported that gestational exposure to Aroclor 1221, a
commercial PCB mixture, did not influence offspring pre-
weaning and adolescent body weights. Dioxin exposure during
pregnancy was reported to not affect offspring body weight or
offspring later-life glucose and insulin tolerance (44). Perinatal
PCB153 exposure has been shown to alter offspring glucose
homeostasis in a sex-dependent manner, where male offspring
experience elevated blood glucose levels and female offspring
experience elevated glucagon levels (27). Although findings
regarding the perinatal influence of PCB exposure on offspring
body weight differ and evidence scantly describes the effects of
such exposure on offspring body composition and glucose
Frontiers in Endocrinology | www.frontiersin.org 8
homeostasis, our current findings support and extend our
earlier work (26) and reiterate the importance of timing of
exposure in regards to offspring diabetes and obesity risk. Our
current results demonstrate that gestational PCB126 exposure
alters offspring body weight and composition as well as impairs
glucose tolerance.

Interpretations of our aforementioned findings slightly vary
when taking Nrf2 genotype into consideration. Nrf2 acts as an
endogenous defense whose downstream mechanisms combat
and reduce excess oxidants produced from xenobiotic insults,
such as PCB exposure. Specifically, Nrf2 regulates the chemical
induction of a number of detoxification pathway Phase II
enzymes, which include but are not limited to glutathione
peroxidase, heme oxygenase 1, and NAD(P)H dehydrogenase
quinone 1 (NQO1) (45, 46). While we did not measure the gene
expression of Nrf2 target genes in PCB-exposed offspring of the
current study, we observed pronounced elevations in the hepatic
mRNA expression of NQO1 in six-week-old WT and whole-
body Nrf2 Het mice directly exposed to PCB126 in a separate
study. Further, NQO1 levels were significantly reduced in both
male and female KO mice compared to WT mice
(Supplementary Figure 2). Because of the aforementioned
findings in addition to the known importance of Phase II
response in the detoxification of PCBs, in the current study, we
hypothesized that offspring lacking Nrf2 expression would be
A B

C D

FIGURE 6 | PCB126 gestational exposure perturbs offspring glucose homeostasis profiles at four months of age. At four months of age, glucose was measured in
Nrf2 heterozygous and knockout offspring exposed to PCB126 or vehicle during gestation in response to an oral glucose challenge (A, B). Glucose measurements
were then used to determine area under the curve (AUC; C, D). Values reported represent the mean of litter means (n = 8 per group) ± SEM. Differences between
groups were detected by three-factor ANOVA. Significance was set at a = 0.05. For simplicity, only significant main effects of PCB treatment (*) and sex (#) are
shown at each time point.
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more susceptible to the long-term health detriments associated
with in utero PCB exposure. Rather, we observed that there were
no significant interactions between offspring genotype and
perinatal PCB exposure. Instead, we found that offspring of
KO dams exposed to PCB126 during gestation are more
sensitive to the long-term negative consequences of PCB
exposure than offspring of Het dams that were exposed to
PCB126 during gestation. PCB-exposed offspring born to KO
dams had increased fat mass and significantly impaired glucose
disposal whereas PCB-exposed offspring born to Het dams did
not (Figures 4–6). The developmental role of Nrf2 in PCB-
induced toxicity has been previously described in zebrafish (33);
however, this does not extend to rodent models. To our
knowledge, the present study is the first to report the
developmental role of Nrf2 in PCB-induced toxicity in rodents.
Previously, mice have been utilized to delineate the
developmental role of Nrf2 in neural function and/or behavior
in response to pharmaceutical (47) and recreational drugs (48),
antioxidants (49), as well as heavy metals (49). Diet studies have
been used to better understand the role of Nrf2 expression in
obesity and diabetes. Studies investigating the effects of Nrf2
deficiency on body weight and composition report divergent
results. Nrf2 deficiency in animals on standard or chow fed diets
have been shown to have comparable body weights (50–53) and
body fat compositions (50) to WT and/or Nrf2 mice with
enhanced activity, as well as lower early-life body weights
when compared to their WT littermates (54). Differences in
body weights reported by Pi et al. (54) are likely due to the
decreased adipose tissue mass possessed by Nrf2 KO animals as
they also report the ability of Nrf2 deficiency to impair
adipogenesis and reduce susceptibility to diet-induced obesity.
Similarly, conflicting results have been reported about the
influence of Nrf2 deficiency in the presence of a high fat diet
(HFD). It has been stated that deficient animals fed a HFD have
lower body weight and less weight gain than WT mice (51), as
well as no differences in body weight and body fat composition
(50). In diabetic mice, Nrf2 deficiency worsens hyperglycemia
(55). However, in the presence of a HFD, Nrf2 deficiency
improves glucose tolerance when compared to WT and/or
Nrf2 mice with enhanced activity (51, 53). Conversely, it has
been reported that a HFD impairs glucose tolerance in both WT
and KO animals, where the deficiency worsens the observed
impairment (52). The findings from the aforementioned studies
demonstrate the dual roles of Nrf2 in obesity and insulin
resistance. While the present study did not investigate the
influence of Nrf2 expression on diabetes and obesity from a
dietary standpoint, PCB126 exposure could be considered a
‘second-hit’ similar to HFD feeding. Our findings demonstrate
the ability of Nrf2 genotype, maternal genotype in this case, to
modulate PCB-induced diabetes and obesity.

We were surprised to find that the influence of maternal Nrf2
genotype on offspring metabolic and phenotypic responses to
gestational PCB exposure supersedes that of the offspring Nrf2
genotype. To better understand this finding, we conducted a
literature search on the effects of maternal genotype on offspring
response respective and irrespective to environmental
Frontiers in Endocrinology | www.frontiersin.org 9
contaminant exposure. Obtained search results were not
relevant and further demonstrate the need to investigate the
influence of the maternal gene-toxicant exposure interactions on
offspring response. Thus, we propose that our future studies
examining this phenomenon will measure PCB126 parent
compound levels in dams throughout pregnancy, in fetuses,
and in offspring throughout the lifecycle with the hopes of
understanding more about placental PCB transfer respective to
Nrf2 genotypes and its short- and long-term effects on offspring
response. Our preliminary findings in non-pregnant females
with varying Nrf2 genotypes (WT, Het, and KO) showed no
differences in sera and liver PCB126 parent compound
measurements (data not shown). These data suggest that
genotype does not influence PCB126 levels; however, this does
not account for potential hormonal differences, placental effects,
or hepatic Nrf2 expression changes a result of pregnancy. Thus,
we propose the need to examine the placental transport of
PCB126 parent compound in pregnant females with varying
Nrf2 genotypes to assess the influence of placental oxidative
stress and inflammation on offspring responses as a result of
gestational PCB exposure. Ahmed et al. (28) reported that
PCB126 gestational exposure disrupts placental tissues.
Moreover, the current study would have benefited from an
analysis of the glucose tolerance of Het and KO dams prior to
and during pregnancy +/- PCB exposure. Further, one could
argue that our experiments should have included WT
comparisons or a Het/Het breeding scheme. We chose not to
go this route because it would allow for us to look for maternal
genotype differences, and the Het/Het breeding scheme would
have produced many mice that were unnecessary. Our rationale
for this study design is based on our preliminary analyses; we
performed PCB exposure experiments in non-pregnant female
WT and whole-body Het and KO mice and found that (1)
PCB126 parent compound levels within the sera and livers of
WT and Het animals were not significantly different, (2) AUC
for blood glucose measurements did not differ between WT and
Het animals (Supplementary Figure 1). It is important to note
that our decision to eliminate WT animals from this study did
not influence our ability to obtain sufficient data to answer our
research question. Furthermore, the present study was designed
to assess PCB-induced detriments in offspring using body
composition analyses and glucose tolerance testing. This study
could have benefited from employing insulin tolerance tests and
serum measurements in addition to glucose stimulated insulin
secretion assays to further validate the observed detrimental
metabolic outcomes in offspring resulting from gestational
PCB exposure. Lastly, future experiments should include a
prolonged fasting period before glucose tolerance testing as
well as utilize intraperitoneal administration of the glucose
bolus to respectively tease out differences between groups and
eliminate any potential effects of incretin hormones on insulin
function and glucose homeostasis. In conclusion, this study
demonstrates that in utero PCB exposure caused long-lasting
alterations in offspring body weight, body composition, and
glucose tolerance. This result reaffirms the importance of the
timing of exposure and suggests that maternal interventions
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during the gestational period should be explored to lessen the
negative effects of toxicant-induced health complications in
offspring. Further, data from the current study show the
influence of the maternal genotype on offspring response to
early-life toxicant exposure. Although the developmental role
of Nrf2 in PCB-toxicity is poorly understood, our work
demonstrates that maternal allelic expression should not
be ignored.
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