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ABSTRACT In order to gain insight into the genetic architecture of economically important traits in pigs
and to derive suitable genetic markers to improve these traits in breeding programs, many studies have
been conducted to map quantitative trait loci. Shortcomings of these studies were low mapping resolution,
large confidence intervals for quantitative trait loci-positions and large linkage disequilibrium blocks. Here,
we overcome these shortcomings by pooling four large F2 designs to produce smaller linkage
disequilibrium blocks and by resequencing the founder generation at high coverage and the F1 generation
at low coverage for subsequent imputation of the F2 generation to whole genome sequencing marker
density. This lead to the discovery of more than 32 million variants, 8 million of which have not been
previously reported. The pooling of the four F2 designs enabled us to perform a joint genome-wide
association study, which lead to the identification of numerous significantly associated variant clusters on
chromosomes 1, 2, 4, 7, 17 and 18 for the growth and carcass traits average daily gain, back fat thickness,
meat fat ratio, and carcass length. We could not only confirm previously reported, but also discovered new
quantitative trait loci. As a result, several new candidate genes are discussed, among them BMP2 (bone
morphogenetic protein 2), which we recently discovered in a related study. Variant effect prediction
revealed that 15 high impact variants for the traits back fat thickness, meat fat ratio and carcass length
were among the statistically significantly associated variants.
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Mappingexperiments in livestockgenerally serve twopurposes:Thefirst
is to understand the genetic architecture of quantitative traits, and to
derive and prove new hypotheses of trait expression. The second is the

identification of genetic markers that may be useful for livestock
breeding. There have been many quantitative trait loci (QTL) mapping
experiments carried out over the last decades (see review article by
(Rothschild et al. 2007)), mainly in experimental F2 crosses established
from two outbred founder pig breeds. In early studies, genotyping was
mainly achieved using microsatellite markers and mapping was
achieved through linkage analysis (see overview in (Knott 2005)). These
designs were set up to enable QTL detection with high power, but they
suffered from a low mapping resolution and large confidence intervals
for QTL-positions. This was partly due to the limited number of mei-
osis cycles exploited in these designs in conjunction with typically small
numbers of 300 to 500 F2 individuals. Furthermore, this approach
assumes the divergent fixation of the QTL alleles in the founder breeds,
and highly different gene frequencies and variation within these breeds
were not considered (Nagamine et al. 2003). The breed Piétrain, for
instance, has been selected for growth and meat yield for many
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generations and still exhibits a large genetic variation for these traits
(Wellmann et al. 2013). More recent QTL-mapping experiments uti-
lized genome-wide association studies (GWAS), which in contrast to
linkage analyses, exploit historical meiosis and rely on linkage disequi-
librium (LD) requiring high marker densities. The precision of GWAS
is then a function of LD block lengths and the number of individuals
analyzed, which in turn limits the usefulness of its application in F2
designs (Hayes and Goddard 2001). However, enormous efforts have
been made in the establishment of these mapping populations, usually
including extensive phenotyping far beyond what would be available in
field populations. It would thus be desirable to revisit these resources
using current genotyping and sequencing technologies, which would
require an increase in the number of individuals and a decrease in the
LD block lengths. In a recent simulation study, it was shown to be
possible by pooling F2 designs, particularly when founder breeds are
closely related and QTL are segregating in one founder breed (Schmid
et al. 2018). This approach has already been successfully applied based
on medium density SNP chip data (Blaj et al. 2018; Stratz et al. 2018).

With the aim to overcome the aforementioned limits in mapping
resolution and to fully exploit the potential of the resource populations,
we pooled four well-characterized F2 designs (Table 1), three of them
having the founder breed Piètrain in common. Twenty four founder
animals were genotyped by high coverage whole genome sequencing
(WGS) and 91 of the F1 animals were sequenced at a low coverage for
subsequent imputation to a high coverage WGS level. A total of 2,657
F2 animals that were genotyped with the 62K Illumina PorcineSNP60
BeadChip (Ramos et al. 2009) were imputed to WGS levels with ped-
igree information and analyzed in a joint GWAS (see workflow in
Figure 1). As a proof of concept four relevant production traits were
analyzed: Average daily gain (ADG), back fat thickness (BFT), meat to
fat ratio (MFR), and carcass length (CRCL).

MATERIAL AND METHODS

Description of resource populations and phenotypes
Four well characterized experimental populations were pooled for this
study. Detailed descriptions of the resource populations were done by
Borchers et al. (Borchers et al. 2000) and Rückert et al. (Rückert and
Bennewitz 2010), hence they will only be described briefly. The largest
population was obtained from five purebred Piétrain boars and one
LargeWhite and six crossbred sows Landrace x LargeWhite. The other
three populations stemmed from a Meishan boar or Wild boar crossed
with either Piétrain or Meishan females. The Wild boar and three
Piétrain females were common founders in three of the crosses. The
F2 generation was the result of repeatedly crossing F1 boars with F1
sows in order to obtain large full-sib families. From the crosses, a total
number of 2772 animals were chosen (24 F0-generation pigs, 91 F1-
generation pigs, 2657 F2-generation pigs) and blood samples were used
to extract genomic DNA for genotyping purposes (Table 1). The F0 and
F1 animals selected for sequencing were generally chosen according to
the number of F2 individuals, i.e., we prioritized individuals fromwhich
large families were derived. Four phenotypic traits were considered:
ADG, BFT, MFR, and CRCL. The phenotypes were pre-corrected for
systematic effects (e.g., stable, slaughter month) and for the effect of
RYR1 gene (Fujii et al. 1991) using a general linear model. Trait defi-
nition, descriptive statistics and information about the pre-adjustment
and the fixed effects used per cross can be found in (Blaj et al. 2018).

Sequencing
A total number of twenty four founder animals were sequenced with an
average 19x coverage at the sequencing facility University Hohenheim.

Out of 17 F1 families, 91 animals were sequenced with an average 0.9x
coverage. All paired-end sequencing (read length 2 · 100 bp) was done
on an Illumina HiScan SQ using TruSeq SBS v3 Kits. For the library
construction, the DNA samples were fragmented on a Covaris S220
ultrasonicator. Parameters were adjusted to yield 350 bp inserts. Frag-
ment length was measured with High Sensitivity DNA Chips on an
Agilent Bioanalyzer. Sequencing adapters and indexes were ligated
using Illumina’s TruSeq DNA PCR-Free Library Prep Kits. Quantifi-
cation of libraries was done by qPCR using KAPA Library Quant Kits.
Flow cells were prepared using an Illumina cBot and TruSeq PE v3
Cluster kits. Raw sequencing data were demultiplexed and converted
into FASTQ files using Illumina’s CASAVA software.

Mapping and variant detection
Mapping and variant calling of the F0 generation was performed
according to the GATK best practice pipeline using GATK v. 4.0
(McKenna et al. 2010) and genome assembly Sus scrofa 11.1 (GCA_
000003025.6 provided by Swine Genome Sequencing Consortium on
NCBI). Base quality score recalibration was performed with dbSNP
build 150 as the knownSites dataset. Truth datasets used for Variant
Quality Score Recalibration (VQSR) were as follows. SNPs: Illumina
Infinium PorcineSNP60 v2 BeadChip and Affymetrix Axiom
PorcineHD. INDELs: High confidence fraction (filter settings: QD
15.0, FS 200.0, ReadPosRankSum 20.0) of the PigVar database. Train-
ing dataset for SNP VQSR was also a high confidence fraction of
the PigVar database (filter settings: QD 21.5, FS 60.0, MQ 40.0,
MQRankSum 12.5, ReadPosRankSum 8.0, SOR 3.0) (Zhou et al.
2017). A truth sensitivity of 99.0 was chosen for SNPs and INDELs.
The known dataset for SNP and INDEL VQSR was dbSNP build
150. Since SNPs were filtered with two truth datasets a Ti/Tv free
recalibration according to the GATK best practice guidelines was
applied to the data. Low coverage sequencing reads of F1 animals
were processed according to the GATK best practice guidelines with
the following deviations. SNP Calling was performed using GATK
HaplotypeCaller v. 3.8 in joint mode with the settings minPruning
1 and minDanglingBranchLength 1 as well as BCFtools mpileup v 1.9
(Li et al. 2009), respectively. INDELs in the F1 variant call dataset were
neglected due to low sequencing depth. An intersection variant call set
between HaplotypeCaller, mpileup and the founder SNPs was created
and stringently filtered with the following settings: QD 30.0, FS 60.0, MQ
40.0, QUAL 300.0.

Haplotype construction and imputation
Tomake use of the most recent phasing algorithms Beagle 5.0 was used
for all phasing operations (Browning et al. 2018). Beagle 4.0 was applied
for genotype imputation since it is the latest version that supports the

n Table 1 Per cross information of the sequenced individuals
(F0 and F1) and SNP array genotyped individuals (F2). F0 and F1
animals served as the reference panel for the imputation of the
F2 generation to sequence level for subsequent genome wide
association analyses

Cross/Generation F0� F1 F2

Piétrain x (Large White x Landrace)/
Large White

13 55 1750

Meishan x Piétrain 8 19 304
Wild Boar x Piétrain 6 17 291
Wild Boar x Meishan 1 0 312
Total 24� 91 2657
�Four founders are common among crosses.
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usage of pedigree information (Browning and Browning 2007). Hap-
lotype phasing of the F0 generation variant call set was done using
Beagle 5.0 and subsequent imputation with pedigree information of
the F1 low coverage SNPswas achievedwith Beagle 4.0. F0 and imputed
F1 variants were merged with GATK CombineVariants and phased
with Beagle 5.0. F2 generation 60k SNP chip data were imputed with
Beagle 4.0 and pedigree information with merged and phased F0 and
F1WGS level variants as the reference panel. Local drops in imputation
accuracy were determined by the construction of 24 F0 reference-
panels with one animal left out. Genotype data acquired with the 60k
SNP chip from each F0 individual was imputed with a reference-panel
where the respective individual was missing utilizing Beagle 4.0. The
24 individual datasets were merged and together with the F0 refer-
ence dataset converted to additive coding with Plink 1.9 (Chang
et al. 2015). Correlation (coefficient of determination, R2) for each
variant on QTL harboring chromosomes was calculated with an in
house R script.

Genome wide association studies and
cluster assignment
Single-trait association analyses were performed with GCTA v. 1.92.4
beta 3 on the F2population only (Yang et al. 2011). Inorder toperforma
“leave one chromosome out” (LOCO) analysis, multiple genomic re-
lationship matrices (GRMs) were created from the F2 60k SNP chip
data by excluding each chromosome once with aminor allele frequency
(MAF) cutoff of 1%. Mixed linear model association analyses
(MLMAs) were performed with imputed F2 variants for each chro-
mosome separately using the GRMwhere the respective chromosome
was left out and a MAF cutoff of 1%. To account for the pooled
population structure, covariates representing the different crosses
(4 classes) were included in the MLMA. For further downstream
analysis, significance threshold was established by applying Bonferroni
correction (i.e., 0.05/number of independent tests). Manhattan plots
were created with R, where variants with p-values . 0.001 were

excluded due to software limitations. Clusters incorporating potential
genomic regions of interest were defined using the Manhattan Har-
vester (MH) tool (Haller et al. 2019). MH provides quality assignment
for each peak via a general quality score (GQS) which can be used as
the main parameter for peak assessment. The GQS is generated based
on a trained mixed-effects proportional odds model using 16 various
parameters (e.g., maximal slope, height to width ratio) and human
peak identification data. For this study, the variants with a p-value
below 1.0x1027 (option -inlimit) were included and further the clus-
ters with a GQS. 3.5 (1 is min and 5 is max) were taken into account.
Conditional association analyses were performed by including single
highly associated variants as fixed effects in a LOCO analysis.

Variant effect prediction and gene enrichment analysis
To predict variant effects the Ensembl Variant Effect Predictor (VEP)
release 94 was utilized, which is part of the Ensembl advanced pro-
gramming interface (API) (McLaren et al. 2016). The vep command
using the clusters’ statistically significant variants was executed with the
following settings: –merged –force_overwrite –variant_class –symbol
–nearest gene. To provide further functional interpretation, the Data-
base for Annotation, Visualization and Integrated Discovery (DAVID)
(Huang da et al. 2009) was used for a systematic and integrative anal-
ysis. The gene list from the VEP output was the input for DAVID
(Huang et al. 2007) and Sus scrofa genes were considered as the back-
ground. Gene Ontology (GO) terms (i.e., cellular component, molecu-
lar function, and biological process) from the functional annotation
chart report which were significantly overrepresented with an EASE
Score (i.e., a modified Fisher Exact P-Value) below 0.05 and with a gene
count higher or equal to 5 were retained.

Statement on data and reagent availability
Sequencing data, which were used to conduct this study will be made
publicly available upon publication of the article in the NCBI Se-
quenceReadArchive (SRA). SupplementaryTables have beenuploaded

Figure 1 Genotyping workflow. 24 Foun-
der animals were sequenced with high
coverage, variants were called with GATK
4.0 and phased with Beagle 5.0. 91 F1
animals were sequenced with low cover-
age and variants were called with GATK
3.8 and BCFtools mpileup. The F1 dataset
was imputed using Beagle 4.0 and pedi-
gree information with phased Founders as
a reference-panel for haplotype structure.
The imputed F1 was then merged with the
F0 variant call data set and phased with
Beagle 5.0. Finally the 2657 chip geno-
typed F2 individuals were imputed to
WGS levels with Beagle 4.0 and pedigree
information with the merged and phased
Founder/F1-imputed dataset as the reference-
panel.
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to GSA. Supplementary Table 1 contains the coefficients of determi-
nation (R2) for each variant on QTL harboring chromosomes where
calculation was possible. Supplementary Table 2 containts the com-
plete list of clusters identified in the GWAS with additional support-
ing information for cluster assignment. GRMs from F2 60k genotypes
(File_S1.zip) were created by a “leave one chromsome out” approach
using the program “Genome-wide Complex Trait Analysis (GCTA)
version 1.91.4 beta3”. GWAS was conducted with imputed sequence
level F2 genotypes (Supplementary File_S2.zip) for each chromosome
using the GRM where the respective chromosome was left out(GRM
command: gcta64–bfile SG_F2_chip_wo_chrNO–autosome–maf
0.01–make-grm–out SG_F2_chip_wo_chrNO–thread-num 10–autosome-
num 18 ; GWAS command: gcta64–mlma–covar Kiel_Hoh_cross.covar–
bfile F2_beagle4.0_ped_ChrNO–grm SG_F2_chip_wo_chrNO–pheno
TRAIT.pheno–out TRAIT_chrNO–maf 0.01–thread-num 10; replace NO
with the respective chromosome number and TRAIT with the re-
spective trait to be analyzed) Phenotype files are located in Supple-
mentary File_S2.zip for the traits ADG, BFT, MFR, and CRCL were
used in the GWAS. Crosses were used as covariates in the GWAS and
provided as a gcta compatible covar file in Supplemental File_S4.zip.
SNP locations can be found in the bim files of the genotype data
(Supplementary File_S1.zip and Supplementary File_S2.zip). Population
structure information is provided in form of a Beagle 4.0 compatible
pedigree file (Supplementary File_S3.zip). Raw sequencing data are ac-
cessible via the NCBI Sequence Read Archive (SRA) under BioProject ID
PRJNA553106. File_S5 contains the 60k chip genotype data in variant
call file (VCF) format. Genomic positions have been lifted to genome
assembly Sus scrofa 11.1 (GCA_000003025.6) and annotatedwith dbSNP
build 150. gcta compatible covar files for the conditional association
analyses with top variants are provided in File_S6. Supplemental material
available at FigShare: https://doi.org/10.25387/g3.8287847.

RESULTS

Whole genome sequencing and variant calling
An average of 592,788,350 (SD = 38,623,216, MIN = 525,921,083,
MAX=649,442,924) sequencing reads per samplewere aligned to the
reference genome in the F0 generation with an average mapping
efficiency of 99.37%. In the F1 generation an average of 26,562,876
(SD = 6,619,568, MIN = 15,915,385, MAX = 59,300,856) reads were
mapped to the reference assembly with an average mapping effi-
ciency of 99.33%.

With respect to the number of SNPs detected in the founder
population, 22,671,759 were previously reported and 3,950,955 were
novel. Furthermore, 1,482,139of the INDELswere previously reported
and 4,335,345 were novel. Per chromosome, average distances
among the variants are summarized in Table 2. The Ti/Tv of SNPs
in the founder population was 2.39, whereas known SNPs had a
Ti/Tv of 2.44 and novel SNPs had a Ti/Tv of 2.08. Due to the low
sequencing coverage (average = 0.96 x, min = 0.58 x, max = 2.14 x)
only autosomal SNPs were called in the F1 population. The raw
output of Haplotypecaller consisted of 20,055,697 known and
3,529,441 novel SNPs and the raw output of mpileup contained
19,932,201 known and 3,291,758 novel SNPs. The intersection of
the two datasets resulted in 19,264,662 known and 2,951,058 novel
SNPs whereas removing all SNPs that were not present in the foun-
der variant calling dataset lead to a final number of 19,224,132
known and 2,911,780 novel raw SNPs. After the application of a
stringent filtering approach (see Material and Methods) 5,753,444
known and 741,155 novel SNPs remained in the variant calling
dataset of the F1 population.

Identification of local drops in imputation accuracy
To detect local inaccuracies in the imputed data, we imputed chip data
from each founder with the remaining 23 founders as a reference panel.
The data does not provide information about the imputation accuracy
of the experiment since pedigree information could not be used. The
coefficient of determination for each variant located on a chromo-
some harboring relevant QTL was determined where feasible. The
average coefficients of determination for each chromosome analyzed
are summarized in Table 3 (complete analysis results in Supplementary
Table 1).

GWAS results and clusters
From the genome-wide association study conducted in the pooled F2
population, the followingnumberof variantsexceeded thegenome-wide
significance threshold: 448, 17,105, 6635, and 27,641 for ADG, BFT,
MFR, and CRCL, respectively. Manhattan plots of the GWAS for the
four phenotypic traits are shown in Figure 2. A total of 120 clusters were
designated by theMH tool (i.e., 4 for ADG, 33 for BFT, 22 forMFR and
61 for CRCL) and they were located on the following Sus Scrofa chro-
mosomes (SSC): 1, 2, 4, 5, 7, 17, and 18. The complete cluster list with
additional supporting information for cluster assignment can be found
in Supplementary Table 2. From each of the defined clusters, the top
5 variants were retained. The genes incorporating or lying nearby these
highly significant associations are presented in Table 4. The clusters
associated with the traits overlapped on several chromosomes, specif-
ically on SSC2, SSC4, and SSC7. The location and the extent of the
overlapping clusters is depicted in Figure 3. Particular chromosomes
had exclusive clusters assigned, e.g., SSC17 for CRCL and SSC18 for
MFR. To evaluate all possible relations among the variants exceeding
the significance threshold for each trait, a Venn diagram was used
(Figure 4). The highest number of common variants (i.e., 6,859) was
between BFT and CRCL and the second highest was between BFT and
MFR (i.e., 2,380). To get an estimate of systemic bias, quantile-quantile
plots were generated for all p-values from each GWAS (Supplementary
Figure 2). As a measure of association between observed and expected

n Table 2 Average distance between variants discovered in the
founder population. A number of 24 F0 animals were sequenced
at high coverage and the average distances between variants
(SNPs and INDELs) were calculated per chromosome

Chromosome Avg. distance (bp) SD

1 105,78729 196,8571
2 84,83889 201,4813
3 79,13779 183,627
4 80,16339 174,2767
5 73,37176 177,8913
6 85,34639 214,5176
7 79,12655 175,2067
8 78,90639 164,8448
9 79,61324 166,9157
10 56,5826 141,8648
11 67,6446 139,1412
12 65,41473 190,7484
13 102,70483 209,4908
14 83,58366 158,1296
15 93,02928 187,2321
16 71,18928 155,2467
17 65,91122 163,1281
18 76,95204 149,7542

Mean 82,21004 180,6988
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p-values, lambda values were calculated for all four traits: lADG =
1.282319, lBFT = 1.333425, lCRCL = 1.422044, and lMFR = 1.35587.

VEP and high impact variants
To predict functional consequences on genes the ensembl VEP tool was
employed. Multiple transcripts per gene resulted in larger numbers of
annotations that are reflected in the higher number of predicted effects
as compared to the actual number of identified variants per trait. All
inferred consequences for bonferroni corrected variants per trait and
their percentage breakdown are summarized in Table 5. The large
majority (over 70%) of the consequences were classified as intron var-
iants. According to the severity of the variant consequence, intron

variants are assigned to having a modifier impact, which means that
predictions are difficult to be made or there is no solid evidence of
impact. Variants inferred to have a disruptive impact on the protein,
leading to protein truncation, loss of function or causing nonsense-
mediated decay were of further interest. These significant high impact
variants (Table 6) were mostly located on SSC7, with the exception of
SSC2:rs1110687780 (splice donor variant) affecting TCN1 for the trait
MFR. For the BFT, the most severe consequences were located in the
genes C6orf89, PI16, DST, and PRIM2, while for the CRCL disruptive
impact variants were found in NEU1, four novel genes, ABCD4, DST,
PRIM2, and LPCAT4. Notably, the same two splice donor variants
affect the common genes for BFT and CRCL: DST and PRIM2. Sort-
ing Intolerant From Tolerant (SIFT) scores were determined for all
significant missense variants and are summarized in Supplementary
Table 3 (Ng and Henikoff 2003).

Gene set analysis
GO functional enrichment analysis revealed eleven significantly over-
represented GO terms including molecular functions (MF), biological
processes (BP), and cellular components (CC). A list containing the GO
terms and the associated list of genes is presented in Table 7. For BFT a
GO-MF term was overrepresented and related to calcium ion binding
(GO:0005509). Several olfactory receptor genes were prevalent for the
GO terms assigned to MFR (e.g., GO-BP GO:0007186 G-protein cou-
pled receptor signaling pathway, GO-MF GO:0005549 odorant bind-
ing). The gene set for the CRCL trait was associated with two BP terms
(GO:0001666 response to hypoxia and GO:0008283 cell proliferation)

n Table 3 Identification of local imputation inaccuracies. Chip data
from each of the 24 founders was imputed using the remaining
23 founder animals as the reference panel. Coefficients of
determination (R2) were calculated for each variant in order
to calculate average R2 for SSC1, SSC2, SSC4, SSC7, SSC17,
and SSC18

Chromosome Average R2 SD

1 0.28 0.32
2 0.22 0.29
4 0.25 0.30
7 0.25 0.31

17 0.18 0.25
18 0.29 0.32

Figure 2 Manhattan plots of the2log10 p-values for association of variants with the traits (A) average daily gain (ADG), (B) back fat thickness (BFT),
(C) meat to fat ratio (MFR), and (D) carcass length (CRCL). P-values . 0.001 were excluded from the plots.
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and two CC terms (GO:0045177 apical part of the cell andGO:0031410
cytoplasmic vesicle).

DISCUSSION

Genotyping strategy
The genotyping strategy that we developed for this study is outlined in
Figure 1. Briefly: 24 F0 pigs were subjected to high coverage Illumina
short read sequencing and in addition 91 F1 animals were sequenced at
low coverage and imputed to high coverage WGS levels in order to
allow phasing. 2657 F2 animals were chip genotyped and imputed
using a merged dataset of F0 and imputed F1 as reference-panel.
All imputation steps involved pedigree information. Opposed to a
population-based strategy this approach does not rely on a large
reference-panel but on the relatedness of individuals. In general, the
genotyping strategy can be considered reliable since the majority of
the QTL identified were already described for the four traits analyzed
in this study (cross-reference with Pig QTL database (Hu et al. 2019)).
Nevertheless, we expected to identify a variant that was associated
with muscle mass and fat deposition in exon 2 of IGF2, which has
been extensively described to influence muscle development (Nezer
et al. 1999). The absence of IGF2 associated variants can be explained
by a local drop in coefficients of determination from an average of
R2 = 0.22 to R2 = 0.03 in the genomic region where IGF2 resides
(SSC2 1469183 – 1496417 bp, Figure 5). It must be pointed out that
those coefficients of determination cannot be used to draw conclu-
sions about the actual accuracy of the imputation. Since no pedigree
information was included in the simulation, it can solely be used to

identify local inaccuracies, which were most likely due to assembly
errors in the reference genome.

The genotypingapproachpresented in this study canbe considered a
reasonable strategy to radically increase the marker density of large F2
populations toWGS levels. By sequencing the founder individuals with
high coverage and the F1with low coverage, which are only a fracture of
the number of F2 animals, the approach provides an affordable oppor-
tunity to improve thepower andpotential of otherwiseobsoletedatasets.
Due to the relatedness of the animals deep sequencing of only a few
animals is necessary, rendering it economically attractive.

Cluster identification and exploratory analysis
To fully exploit thepotential of the four resourcepopulations, the crosses
were pooled and further used for conducting GWAS. The increased
sample size together with the increased marker density ensures a high
resolution that might allow the pinpointing of more specific causative
genes and mutations. Further experiments, e.g., Sanger sequencing of
promising regions could elaborate on that. Designing F2 populations
implies that the LD-blocks are longer, a fact that is counteracted to
some extent by jointly analyzing the four designs. Lambda values of
1.282319 to 1.422044 point to a moderate degree of p-value inflation in
the GWAS, which is most likely caused by the usage ofWGS data and a
LOCO GWAS approach. However, to exploit the whole depth and
power of the dataset we chose a LOCO analysis approach. To further
comprehend the closely linked association signals from GWAS, the
following approach was employed: i) clusters incorporating strong ev-
idence for trait-associated chromosomal regions were defined, ii) the
effect of the significant variants was predicted, and iii) a gene set

n Table 4 Top associated genes for average daily gain (ADG), back fat thickness (BFT), meat to fat ratio (MFR), and carcass length (CRCL)
identified in the GWAS. Genes incorporating or nearby the top 5 variants in the clusters are listed with chromosome and cluster numbers

Trait SSC
Cluster
no./SSC Genes

ADG 2 1 SHANK2
4 1 RPS20, LYN, PLAG1
7 2 HMGCLL1, TFEB

BFT 1 1 ZNF462, ENSSSCG00000005432
2 7 LOC102158414, PGA5, MRPL16, ENSSSCG00000013151, ZFP91, CTNND1, ENSSSCG00000024984,

OR9Q2, OR10Q1
4 1 RPS20
7 24 SCGN, LRFN2, DAAM2, C7H6orf223, C7H6orf132, RIPOR2, CARMIL1, BMP5, ENSSSCG00000001500, KIFC1,

C6orf106, PPARD, FKBP5, CPNE5, ENSSSCG00000001574, TMEM217, LRFN2, MRPS10, TRERF1, RUNX2,
RCAN2, MEP1A, ADGRF5, PTCHD4, ENSSSCG00000001734, PGK2, IREB2, ABHD17C, GSTA2, CRABP1,
CRISP3, PRSS16, TBC1D2B, ENSSSCG00000038708, BCL2A1, E2F3

MFR 1 3 LOC106507123, TMEM245, SCAI, ABL1, RAPGEF1, CFAP77, DDX31, MAPKAP1
2 8 LOC102158414, LOC110259166, LOC110259708, TMEM80, DEAF1, EHD1, MACROD1, ATL3, NAV2, DHCR7,

ENSSSCG00000028537, CTTN, SHANK2, ENSSSCG00000036180 (KRTAP5-5-like), NELL1
4 3 PDE7A, SNTG1, RPS20
5 1 ENSSSCG00000034097
7 1 ENSSSCG00000001500

18 6 PPP1R3A, IMMP2L, LRRC4, EXOC4, SND1, ELMO1, MDFIC, TFEC
CRCL 1 1 FNBP1

7 52 VEGFA, FLRT2, LRFN2, MCTP2, DAAM2, PGF, SV2B, MAX, COL21A1, KLHL25, NPAS3, LOC110261756,
NHLRC1, TPMT, CDKAL1, GMNN, RIPOR2, MDC1, DDX39B, HMGCLL1, ENSSSCG00000001500, C6orf106,
KCTD20, SRSF3, ENSSSCG00000001612, FOXP4, TFEB, RCAN2, ADGRF1, MUT, CRISP1, TFAP2D, PKHD1,
BNC1, ENSSSCG00000001827, TMEM266, NKX2-1, PRKD1, LPCAT4, NR2F2, MCTP2, SLCO3A1,
ENSSSCG00000002270, FUT8, ENSSSCG00000002317, DPF3, PTGR2, ZNF410, FAM161B, EIF2B2, MLH3,
VIPAS39, SPTLC2, ENSSSCG00000010328, RF01299, RF00100, HMGN4, NRXN3, ID4, SYNJ2BP, ZFP36L1,
RAD51B, AVEN, ANG, GCM1, FOXG1, ENSSSCG00000033840, ENSSSCG00000035274, RSL24D1,
NSSSCG00000036697,ENSSSCG00000037115, ENSSSCG00000038445, CEMIP, SLC25A21, SPTSSA,
ENSSSCG00000039877, DIO2, ENSSSCG00000040930

17 8 BMP2, JAG1, SPTLC3, TMX4
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analysis was employed to identify sets of genes jointly associated with
the traits of interest.

The quantitative traits considered for this study have been investi-
gated in thepast andaremostlywell represented in thePigQTLdatabase
(Hu et al. 2019), except for MFR. The clusters assigned to each trait
were compared with the QTL regions from the database. For MFR,
additional fat-related traits (e.g., fat percentage in the carcass and fat-
cuts percentage) were considered in order to allow an adequate com-
parison given that the trait has few records in the database and the trait
definition can be country dependent.Most of the clusters overlapped or
were in the vicinity of the previously reported QTL. This was expected
as the database has been recently updated and also includes our pre-
vious results (Blaj et al. 2018) using SNP chip data and three out of the
four pig populations which were taken into account here. Some of the

earlier reported QTL in the database spread over large genomic regions
(e.g.,. 5Mb). It is assumed thatmany of these large QTL regionsmight
in fact not be due to a single mutation, thus representing haplotype
effects caused by several causative variants (Andersson 2009). In the
current study, we were able to assign numerous clusters within
these regions, which implies that a higher genomic resolution
was achieved and that it may be possible to disentangle distinct
quantitative trait nucleotides.

Conditional association analyses by including the top variant as a
fixed effect in the MLMA were carried out in order to gather statistical
evidence for putative causality (Cohen-Zinder et al. 2005) and was
specifically applied to CRCL and BFT on SSC7. This chromosome
exhibits the highest number of clusters (SM with Clusters) and the
highest association signals. By including the top variant (rs81228492)

Figure 3 Cluster overlap for (A) SSC2, (B) SSC4 and (C) SSC7 for all traits (average daily gain (ADG) – red, back fat thickness (BFT) – green, meat to
fat ratio (MFR) – purple, and carcass length (CRCL) - blue). The heights of the clusters are according to the top variant (– log10 p-value) within each
given cluster.

Figure 4 Variants concordance and discordance
between the traits average daily gain (ADG), back
fat thickness (BFT), meat to fat ratio (MFR), and
carcass length (CRCL). The Venn diagram con-
tains statistically significant variants. Intersections
between traits include the number of common
variants. Numbers of variants that were exclu-
sively found in the single traits are outside of
intersections.
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for BFT, only one well-supported peak was above the significance
threshold (Supplementary Figure 1) meaning that there is additional
genetic variation within this region. Similarly, for CRCL the two top
variants (rs333021601 and rs319044994) representing the two differ-
ent significant genomic regions were included alternatively in the
model. After fixing the effect of the latter variant, the surrounding
significant region disappeared, pointing to the possibility that there
could be only one QTL responsible for CRCL on SSC7 around the
99 Mb region. An alternative or additional explanation could be the
presence of long LD blocks, long-range LD and/or various epistatic
interactions among the loci. The overlap among the BFT and CRCL

significant variants (see Figure 3 and Figure 4) localized mostly in
the genomic region 24-32Mb indicate the existence of pleiotropic loci
for the two traits. When conditioned on the top BFT variant
(rs81228492) as a fixed effect for a MLMA on CRCL and the top
CRCL variant (rs333021601) for MLMA on BFT, the initially associ-
ated clusters and those nearby dropped in the intensity of the asso-
ciation signals (Supplementary Figure 1), supporting the presence of
pleiotropic loci. It is also noteworthy that CRCL might be influenced
by the number of thoracolumbar vertebrae (Rohrer et al. 2015). Since
the variant that has been associated with a higher number of vertebrae
is a large Indel in intron 1 of the VRTN gene (Fan et al. 2013) we were

n Table 5 Results of variant effect prediction for the production traits average daily gain (ADG), back fat thickness (BFT), meat to fat ratio
(MFR), and carcass length (CRCL). Bonferroni-corrected variants were analyzed

Predicted effect ADG ADG % BFT BFT % MFR MFR % CRCL CRCL %

Missense variant 2 0.1580 962� 0.6523� 58 0.1893 787� 0.4750�

Frameshift variant 0 0 0 0 0� 0� 6� 0.0036�

Start lost 0 0 1 0.0007 0 0 0 0
Stop gained 0 0 0 0 0 0 1 0.0006
Inframe deletion 0 0 1� 0.0007� 0 0 2 0.0012
Intron variant 936 73.9336 116815 79.2090 21556� 70.3525� 131590 79.4275
5 prime UTR variant 0 0 229� 0.1553� 89 0.2905 277� 0.1672�

3 prime UTR variant 8 0.6319 1160� 0.7866� 1242 4.0535 1543� 0.9314�

Upstream gene variant 50 3.9494 5680� 3.8514� 2195� 7.1638� 5300� 3.1991�

Downstream gene variant 44� 3.4755� 5791� 3.9267� 3442 11.2337 6893� 4.1606�

Frameshift variant, splice region variant 0 0 2 0.0014 0 0 0 0
Missense variant, splice region variant 0 0 41� 0.0278� 0 0 75� 0.0453�

Splice region variant, non coding
transcript exon variant

0 0 2 0.0014 3� 0.0098� 5 0.0030

Splice region variant, 3 prime UTR variant 0 0 3� 0.0020� 3� 0.0098� 0 0
Splice region variant, intron variant, non

coding transcript variant
0 0 2� 0.0014� 4 0.0131 20� 0.0121�

Splice region variant, intron variant 0 0 426� 0.2889� 41� 0.1338� 489� 0.2952�

Splice region variant, synonymous variant 0 0 21 0.0142 22� 0.0718� 28� 0.0169�

Splice donor variant 0 0 36 0.0244� 1� 0.0033 37 0.0223
Intergenic variant 109 8.6098 3318 2.2498 644 2.1018 9909 5.9811
Synonymous variant 0 0 2837 1.9237 214� 0.6984� 2751 1.6605
Intron variant, non coding transcript variant 117� 9.2417� 9636 6.5339 1060� 3.4595� 5759� 3.4761�

Non coding transcript exon variant 0 0 514� 0.3485� 66 0.2154 200� 0.1207�

Start lost, start retained variant, 5 prime UTR variant 0 0 0 0 0 0 1� 0.0006�

Total 1266 147477 30640 165673

n Table 6 Statistically significant high impact variants that were discovered in the genome wide association studies for the production
traits average daily gain (ADG), back fat thickness (BFT), meat to fat ratio (MFR), and carcass length (CRCL)

Trait High impact consequence Variant Position bp Gene Gene name

BFT Start lost SSC7:rs319855624 32544657 C6orf89 chromosome 7 C6orf89 homolog
Frameshift variant, splice region

variant
SSC7:._504514 32606375 PI16 peptidase inhibitor 16
SSC7:._504513 32606373 PI16 peptidase inhibitor 16

Splice donor variant SSC7:rs80834233 29157904 DST dystonin
SSC7:rs327743463 28571665 PRIM2 DNA primase subunit 2

MFR Splice donor variant SSC2:rs1110687780 11630410 TCN1 transcobalamin 1
CRCL Start lost, start retained variant,

5 prime UTR variant
SSC7:rs793752812 23958518 NEU1 neuraminidase 1

Stop gained SSC7:rs334442580 87783592 novel gene
Frameshift variant SSC7:._1165873 97574140 ABCD4 ATP binding cassette subfamily D member 4

SSC7:rs693811701 48561663 novel gene aurora kinase A-like
SSC7:._1068730 87783712 novel gene
SSC7:._1068731 87783718 novel gene

Splice donor variant SSC7:rs80834233 29157904 DST dystonin
SSC7:rs327743463 28571665 PRIM2 DNA primase subunit 2
SSC7:rs331245426 80150975 LPCAT4 lysophosphatidylcholine acyltransferase 4
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not able to discover this variant since the genotyping pipeline applied
in this study does only cover small INDELs.

In order to gain insight into the possible genetic mechanisms that
control the traits, an enrichment analysis of the gene function was
performed with DAVID, prioritizing on the GO terms. The GO-MF
calcium ion binding term found for BFT supports the relationship
between the calcium ion, food intake and lipid metabolism previously
described in the literature (Cui et al. 2017). Furthermore, one of the
genes in this group is DST, a strong candidate gene for which high
impact variants were found via VEP, which is discussed in detail below.
A GO-BP term related to cell proliferation comprised the FAM83B
gene, which is the gene incorporating the top variant found for CRCL.
Interestingly, themajority of the genes included in the over-represented
terms for MFR were olfactory receptors. This enrichment is a conse-
quence of the MFR-identified clusters overlapping regions that are rich
in various olfactory receptor genes. This particular gene family is
known to have significant expansion throughout time within the Sus
Scrofa genome (Nguyen et al. 2012).

Variant effect prediction

ADG: A QTL for ADG found on SSC7 comprises 115 statistically
significant intron variants and83variants upstream(min. p-value 8.71·
10214) of the HMGCLL1 gene, which was shown by Comuzzie et al. to
be associated with childhood obesity in the Hispanic population and to
influence creatinine levels. Another QTL on SSC2 contains 112 intron

variants in SHANK2 (min. p-value 1.33 · 10212). SHANK2 was also
shown to be associated with childhood obesity in the same study and to
have an influence on estradiol blood concentrations (Comuzzie et al.
2012). A third QTL on SSC4 harbors 2 intron and 12 downstream
variants (min p-value 1.06 · 10213) affecting LYN, which encodes
for the LYN proto-oncogene, which was also identified by Comuzzie
et al. and correlated with the amount of fat mass in obese children
(Comuzzie et al. 2012). Six additional variants in the QTL on SSC4
(min. p-value 2.44 · 10212) lie in an intergenic region 13,463 –
14,460 bp downstream of RPS20, a gene which in interplay with
GNL1 is critical for cell growth (Krishnan et al. 2018). Another likely
candidate SNP to influence ADG is an intron variant in the PLAG1
transcription factor (p-value 1.32 · 10211), which is a regulator of IGF2
expression (Zatkova et al. 2004).

BFT: AQTL forBFTwith a very prominent peakwas detected on SSC7.
The SNP with the lowest p-value (6.63 · 10254) is an intron variant in
geneC6orf106.C6orf106 is a target of the humanmiRNA has-miR-192,
which has been identified to have regulatory functions in type 2 diabetes
mellitus (Cui et al. 2016). The second top scoring SNP is an intron
variant in the RIPOR2 gene (p-value 4.34 · 10250). RIPOR2 expression
and protein levels are upregulated during muscle cell differentiation in
human fetal muscle cells (Yoon et al. 2007). Another gene containing
top scoring variants on SSC7 is KIFC1 (7 intron variants, min p-value
3.12 · 10247). Overexpression of KIFC1 promotes cell proliferation in
non-small cell lung cancer (Liu et al. 2016). 21 intron and 8 downstream

n Table 7 Most significant Gene Ontology (GO) terms from DAVID for the top associated genes that were identified in genome wide
association studies for the the traits back fat thickness (BFT), meat to fat ratio (MFR), and carcass length (CRCL)

Trait Category Term Genes

BFT MF GO:0005509 DST, LOC100152993, SCGN, GUCA1B, ITPR3, CIB2, GUCA1A, RASGRP2
calcium ion binding

MFR BP GO:0007186 OR5B3, LOC100623017, LOC106509349, LOC100512519, LOC100513457, OR9Q2,
LOC100628183, LOC100511243, LOC100512154, LOC100514032,
LOC100521066, LOC100519351, OR10Q1, LOC100511620, LOC106509346

G-protein coupled receptor
signaling pathway

CC GO:0016021 ANO9, OR5B3, LOC100512519, LOC100519082, LOC100513457, LOC100628183,
SIGIRR, LOC100512154, BET1L, LOC100521066, TMX2, OR10Q1, TMEM80,
LOC100623017, LOC106509349, OR9Q2, LOC100511243, ZDHHC5, ATL3,
LOC100514032, LRRC4, PPP1R3A, LOC100519351, LRRN3, LOC100511620, STX3,
LOC100521938, CCDC136, LOC106509346, NRXN2

integral component of
membrane

CC GO:0005886 OR5B3, EHD1, LOC100623017, LOC106509349, LOC100512519, OR9Q2,
LOC100513457, LOC100628183, CTNND1, LOC100511243, ELMO1,
LOC100512154, ZDHHC5, LOC100514032, LOC100521066, LOC100519351,
STX3, LOC100511620, RABEPK, LOC106509346, RASGRP2

plasma membrane

MF GO:0004930 OR5B3, LOC100623017, LOC106509349, LOC100512519, LOC100513457, OR9Q2,
LOC100628183, LOC100511243, LOC100512154, LOC100514032,
LOC100521066, LOC100519351, OR10Q1, GPR141, LOC100511620,
LOC106509346

G-protein coupled receptor
activity

MF GO:0004984 OR5B3, LOC100623017, LOC106509349, LOC100512519, LOC100513457, OR9Q2,
LOC100628183, LOC100511243, LOC100512154, LOC100514032,
LOC100521066, LOC100519351, OR10Q1, LOC100511620, LOC106509346

olfactory receptor activity

MF GO:0005549 OR5B3, LOC100623017, LOC106509349, LOC100513457, OR9Q2, LOC100628183,
LOC100512154, LOC100514032, LOC100521066, LOC100519351, OR10Q1,
LOC100511620, LOC106509346

odorant binding

CRCL BP GO:0001666 ANG, TGFB3, PGF, PLAT, VEGFA
response to hypoxia

BP GO:0008283 FURIN, FAM83B, ZFP36L1, MORF4L1, BYSL, RASGRF1
cell proliferation

CC GO:0045177 ADGRF5, VASH1, PLAT, HOMER2, BYSL
apical part of cell

CC GO:0031410 ANG, ADGRF5, FES, NEU1, GRM4, RHGC
cytoplasmic vesicle
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variants in BMP5 (min. p-value 1.91 · 10229), which induces car-
tilage and bone formation (Wozney et al. 1988), are also located in
a cluster on SSC7. 6 variants downstream of the aforementioned
RPS20 (min. p-value 1.90 · 10215) were found in the cluster on
SSC4.

MFR: GWAS for the MFR trait revealed a strong QTL on SSC2 with
variant rs81327136 upstream of KRTAP5-5-like being the most signif-
icant (p-value 1.59 · 10223). Of 72 variants 6 were located in KRTAP5-
5-like introns and 66 in the vicinity of the gene. KRTAP5-5 was
shown to control cytoskeletal function and cancer cell vascular invasion
(Berens et al. 2017). Other variants found in clusters on SSC2 are
located in or adjacenct to DEAF1 (8 intron variants, min p-value
3.47 · 10229), which is a transcription factor that regulates pro-
liferation of epithelial cells (Barker et al. 2008) and that forms a
dominant-negative splice isoform in type 1 diabetes, which corre-
lates with disease severity (Yip et al. 2015). Clusters on SSC2 also
harbor variants associated with SHANK2 (1,714 intron variants, 3 59
UTR variants, min p-value 2.18 · 10226) and CTTN (188 up- and
downstream variants, min p-value 1.53 · 10225). CTTN’s protein
product Cortactin binds to and is indirectly phosphorylated by obesity
factor PTP1B (Stuible et al. 2008). A noteworthy intron variant is located
in the vitamin D pathway gene DHCR7 (p-value 3.06 · 10225), which
has been associated with obesity traits in humans (Vimaleswaran et al.
2013). A total of 14 DHCR7 intron variants were above the signifi-
cance threshold. A less prominent QTL on SSC4 harbors variants
in or close to the aforementioned genes RPS20 (17 downstream
variants, min p-value 1.51 · 10225) and in SNTG1 (19 intron
variants, min p-value 1.48 · 10214), which has been associated with
type 2 diabetes (Ban et al. 2010). A third, rather minor QTL on SSC18,
contains 21 variants downstream ofMDFIC (min p-value 1.97 · 10215),
a gene which has been linked to improved piglet birth weight (Zhang
et al. 2014). 25 intron and 42 downstream variants were found for the
PPP1R3A gene (min p-value 6.92 · 10215), which in a whole exome
sequencing study was found to be associated with type 2 diabetes in a
Mayan population (Sánchez-Pozos et al. 2018).

CRCL: In the GWAS for CRCL 52 clusters were identified on SSC7.
Althoughnot located in one of the clusters, the two lowest p-values (min
p-value 5.40· 10249) were found in the intron and coding region (silent

mutation) of FAM83B (or C6orf143) respectively. A total of 62 signifi-
cant variants in FAM83B were discovered comprising of 60 intron
variants, 1 silent mutation, and 1 missense mutation. Cipriano et al.
demonstrated that overexpression or mutation of FAM83B leads
to EGFR hyperactivation by direct interaction and consequent
hyperactivation of the EGFR downstream effector phospholipase D1,
which was previously associated with BMI in humans (Davenport et al.
2015). An intron variant in the RIPOR2 gene with a p-value of 5.08 ·
10247 is the same SNP, which was found in the GWAS for BFT. A total
of 85mostly intronic RIPOR2 variants were found for the CRCL trait. A
second, less prominent QTL on SSC7 harbors 9 intron, 12 downstream
and 317 upstream variants (min p-value 3.62 · 10231), which have
been assigned to the RSL24D1 gene. RSL24D1 has been identified as
a potential target in familial hypercholesterolemia (Li et al. 2015).
One of the clusters identified for CRCL on SSC17 contains 230 var-
iants 122,416-126,520 bp downstream of BMP2 (min p-value 7.21 ·
10238), a bone formation inducing factor (Wang et al. 2013). In
addition, 18 intron and 114 variants upstream of TMX4 were dis-
covered. TMX4 was associated with feed conversion ratios in chickens
(Shah et al. 2016).

High impact variants: Various high impact variants were discovered
by variant effect prediction. A splice donor variant (rs80834233) in
DST, the gene encoding Dystonin, is associated with BFT (p-value
1.98 · 10219) and CRCL (p-value 1.25 · 10219). Knockout of DST
leads to intrinsic muscle weakness and instability of skeletal muscle
cytoarchitecture in mice (Dalpé et al. 1999). Variant rs793752812
leads to a probable start codon loss in NEU1 and is associated
with CRCL (p-value 1.49 · 10212). A deficiency of the NEU1 gene
product Neuraminidase 1 leads to vertebral deformities in humans
(Sphranger et al. 1977), which is reasonable considering CRCL is
largely determined by the number of vertebrae. Furthermore one
frameshift variant in AURKA (rs693811701, p-value 2.95 · 10212) and
one splice donor variant inNUTM1 (rs331245426, p-value 1.38 · 1029),
both oncogenes (Umene et al. 2015) (Schaefer et al. 2018), are asso-
ciated with CRCL. The splice donor variant rs1110687780, which
affects the gene coding for placenta-specific protein 1-like, was de-
tected in the GWAS for MFR. In humans, PLAC1 has been found
to be highly expressed in various types of tumors (Koslowski
et al. 2007).

Figure 5 Imputation accuracy on SSC2 be-
tween positions 1,250,000 and 2,000,000.
IGF2 is located between bp 1,469,183 and
1,496,417.
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Application of results in breeding programs and follow
up studies
Functional validation studies based on appointed candidate genes and
genetic variants will be considered in follow-up studies. Besides under-
standing the underlyingmolecularmechanisms ofADG,BFT,MFRand
CRCL, the results of GWAS can render a substantial increase in the
reliability of genomic predictions in breeding programs. This concept
was demonstrated in several studies in cattle (Brøndum et al. 2015;
Porto-Neto et al. 2015; van den Berg et al. 2016) and in Drosophila
melanogaster (Ober et al. 2015) by including pre-selected variants from
GWAS results in the prediction models. Even though implementing
genomic selection is becoming a common practice, the usage of
marker-assisted selection or genomic screening is not obsolete pointing
out that the identification of relevant genetic markers via GWAS and
post-GWAS analyses is still of practical importance in pig breeding.

Conclusion
Putting the results of previous simulation studies to test, we conducted
GWAS in four pooled F2 designs, which have been imputed to sequence
level based on high coverage founder and low coverage F1 sequencing.
We found that by pooling the designs the sequence levelmarker density
can be exploited efficiently. QTL for four well-characterized traits were
identified in agreement with previous mapping studies and candidate
genes and pathways were unraveled, that should be subject to further
studies. Thus, the approach applied herein is a feasible strategy to
efficiently utilize extremely well phenotyped experimental designs that
have been established in the past.
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