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Abstract

Chromosomal location has a significant effect on the evolutionary dynamics of genes involved in sexual dimorphism,
impacting both the pattern of sex-specific gene expression and the rate of duplication and protein evolution for these
genes. For nearly all non-model organisms, however, knowledge of chromosomal gene content is minimal and difficult to
obtain on a genomic scale. In this study, we utilized Comparative Genomic Hybridization (CGH), using probes designed from
EST sequence, to identify genes located on the X chromosome of four species in the stalk-eyed fly genus Teleopsis. Analysis
of log2 ratio values of female-to-male hybridization intensities from the CGH microarrays for over 3,400 genes reveals a
strongly bimodal distribution that clearly differentiates autosomal from X-linked genes for all four species. Genotyping of 33
and linkage mapping of 28 of these genes in Teleopsis dalmanni indicate the CGH results correctly identified chromosomal
location in all cases. Syntenic comparison with Drosophila indicates that 90% of the X-linked genes in Teleopsis are
homologous to genes located on chromosome 2L in Drosophila melanogaster, suggesting the formation of a nearly
complete neo-X chromosome from Muller element B in the dipteran lineage leading to Teleopsis. Analysis of gene
movement both relative to Drosophila and within Teleopsis indicates that gene movement is significantly associated with 1)
rates of protein evolution, 2) the pattern of gene duplication, and 3) the evolution of eyespan sexual dimorphism. Overall,
this study reveals that diopsids are a critical group for understanding the evolution of sex chromosomes within Diptera. In
addition, we demonstrate that CGH is a useful technique for identifying chromosomal sex-linkage and should be applicable
to other organisms with EST or partial genomic information.
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Introduction

The origin and evolution of sex chromosomes have long been of

interest to geneticists and evolutionary biologists [1–3]. Besides their

essential role in sex-determination, sex chromosomes are distinct

from autosomes in their gene content, pattern of gene expression,

rate of gene duplication and rate of protein evolution [4]. These

differences are critical in shaping both the evolution of sexual

dimorphism and patterns of speciation. Dramatic variation exists

among animals in sex determination systems [3] and genomic

organization of sex chromosomes [5]. Despite this variation, sex

chromosome gene content is unknown for most species and only in a

handful of taxonomic groups (e.g. mammals, Drosophila) are there

sufficient comparative data to map the dynamics of sex chromo-

some evolution [6–12]. In this paper, we explore the utility of

Comparative Genomic Hybridization (CGH) microarray experi-

ments to differentiate X-linked genes from autosomal genes in

several species of stalk-eyed flies from the genus Teleopsis. This

analysis reveals the formation of a neo-X chromosome in Teleopsis

relative to other Diptera, and identifies substantial gene movement

between autosomes and sex chromosomes.

Considerable theory [e.g. 13–17] has been developed under the

assumption that sex chromosome identity is determined by the

presence of a male-determining factor that initially appeared on an

autosome. Once genic sex determination appears, sexually

antagonistic alleles, i.e. those with beneficial effects in males but

harmful effects in females, should increase in frequency if they are

linked to the sex-determining factor [15]. As soon as multiple loci

are required for male functionality (or if there are alleles that cause

sterility in the opposite sex), then selection will favor reduced

recombination between the sex chromosomes. Lack of recombi-

nation, together with the joint effects of mutation, natural selection

and genetic drift, are then expected to result in degeneration of the

Y chromosome (or W in female heterogametic species). Eventu-

ally, according to theory, extreme divergence in gene content

between sex chromosomes will evolve with only a small number of

genes essential for male function expected to survive on the Y.

Once sex chromosomes appear, dosage compensation mecha-

nisms will often evolve to equalize the gene expression differences

that result from one sex being heterogametic [18,19]. In addition,

selection for how genes are expressed on sex chromosomes relative

to autosomes is expected to differ because X chromosomes are

PLoS Genetics | www.plosgenetics.org 1 September 2010 | Volume 6 | Issue 9 | e1001121



exposed to selection in males half as often as in females, assuming

an equal sex ratio. Conflict will arise when alleles that favour one

sex are harmful to the other. How such sexually antagonistic

conflict is resolved depends on the dominance of the alleles

[15,20]. A number of recent studies have attempted to evaluate

these predictions and so far, largely support predictions based on

dominant, rather than recessive, allelic effects. In Drosophila, a large

fraction of the genome exhibits sex-biased expression [21,22] and

X chromosomes show evidence of feminization, i.e. there are

fewer male-biased genes and more female-biased genes on the X

chromosome than on the autosomes and much of the bias in gene

expression is associated with gametogenesis [23–25].

An alternative, but not mutually exclusive, explanation for why

genes with male-biased expression are under-represented on the X

chromosome is that this chromosome is transcriptionally silenced

during spermatogenesis in flies [26–28] and mammals [29].

Meiotic sex chromosome inactivation (MSCI) has been used to

explain why gene movements caused by retrotransposition

(detectable by the absence of introns in the derived copy) more

commonly involve movement from X chromosomes to autosomes

than the reverse and typically exhibit expression in D. melanogaster

testes [30]. Similar patterns have been found for several other

Drosophila species in which genes have moved by both RNA and

DNA-based mechanisms [9,31]. Movement of mammalian genes

from the X to autosomes has also been linked to sex chromosome

silencing [10,32]. Furthermore, the demasculinization of a neo-X

chromosome in D. pseudoobscura appears to be driven not by shifts

in sex-biased gene expression but rather by differential gene gain,

loss and movement [25]. Male-biased genes on the neo-X of D.

pseudoobscura have not evolved female-biased expression. Instead,

they have been either lost from the X and then newly created on

an autosome or moved from the X to an autosome.

Stalk-eyed flies in the family Diopsidae are an excellent group in

which to explore the dynamics of sex chromosome evolution. They

have become an iconic system for studying sexual selection and the

sex chromosomes harbor much of the genetic variation affecting

numerous aspects of their reproductive biology. Many species

exhibit dramatic sexual dimorphism in head shape in which the

eyes are placed on the ends of stalks [33]. In some males, the outer

most distance between the eyes (eyespan) is twice their body

length. Sexual dimorphism in eyespan has evolved multiple times

within the family [34]. Evidence suggests that long eyespan males

in sexually dimorphic species succeed in male-male contests [35]

and are also preferred by females [36–38]. Much of the genetic

variation associated with exaggerated male eyespan in at least one

dimorphic species, Teleopsis dalmanni, is located on the X

chromosome [39,40]. In addition, X chromosome effects have

also been found for sperm length [41] and parts of the female

sperm storage organs [42].

An additional noteworthy feature of diopsids from southeast

Asia is that several species in the genus Teleopsis [recently

synonymized with Cyrtodiopsis, 43] exhibit a classic sex ratio

polymorphism in which male carriers produce predominantly

female offspring [44,45]. This meiotic drive system is genetically

linked to eyespan such that male eyespan serves as an indicator of

genetic quality due to an association between short eyespan and

segregation distortion [46]. In T. dalmanni, the loci influencing

drive is X-linked and appears to be associated with an inversion

complex that restricts recombination on this chromosome [40].

Therefore, knowing which genes reside on the X chromosome in

T. dalmanni would be extremely valuable for understanding the

genetic consequences of sexual selection in the diopsids and

provide another invertebrate system to compare with Drosophila.

CGH allows the identification of sex-linkage on a substantially

larger scale than has been possible to date by traditional linkage

mapping.

CGH microarray analysis is primarily used for fine scale

identification of gene copy-number variation and is most

commonly used in medical applications [47–49]. Because the

technique involves the relatively simple approach of hybridizing

DNA from two different tissues that may differ in gene copy-

number at one or several regions of the genome, we expected that

it might accurately distinguish the copy-number difference in X-

linked genes between male and female DNA samples. Female

stalk-eyed flies are XX and, therefore, should produce a

hybridization intensity for X-linked genes that is twice that of

males, which are XY. Alternatively, autosomal genes should

exhibit no difference between the sexes, while Y-linked genes will

produce a hybridization signal only for males. Therefore,

oligonucleotide arrays were generated from an annotated EST

library for T. dalmanni and genomic hybridization comparing male

and female DNA were performed for this species and three

congeneric species.

Results

T. dalmanni Chromosome Location
The T. dalmanni log2 ratio values of female-to-male signal

intensities for 3444 genes, averaged across four hybridizations,

exhibit a clear bimodal distribution with one peak at 0 and the

second peak at 0.925 (Figure 1; Table S1). The average correlation

in gene log2 ratio values across different hybridizations was 0.938.

Based on the histogram, the interval with the fewest entries (5

genes) fell between 0.45 and 0.55 so a cut-off of 0.5 was used to

distinguish autosomal from X-linked genes. With this criterion,

2891 genes were scored as autosomal, 533 as X-linked and 16 as

unknown. Therefore, based on this sample of genes, the X

chromosome represents approximately 15% of the T. dalmanni

genome, a measure that is similar to an estimate of the relative size

of the X chromosome (12%) generated from mitotic chromosome

lengths [Figure 2, 39]. K-means clustering did not provide any

chromosomal assignments that contradicted the first method but

Author Summary

The distribution and organization of genes on chromo-
somes vary widely among animals. Chromosomes can
change in number and size, as well as gene composition,
over short evolutionary time scales. Furthermore, chromo-
some location can influence how genes are expressed in
various tissues and how they evolve. The sex chromo-
somes, in particular, have a dynamic impact on gene
movement, expression, and evolution. Uncovering the
chromosomal location of genes has traditionally been
difficult for non-model organism species. In this study, we
assess sex chromosome linkage using a new method that
hybridizes DNA from males and females to probes
representing over 3,400 genes in stalk-eyed flies. This
technique identifies 533 genes (15%) that are located on
the X chromosome with the remaining genes located on
two autosomes. Comparison of these genes with their
location in Drosophila indicates that the X chromosome in
stalk-eyed flies is nearly completely homologous to the
autosome 2L in D. melanogaster. This result reveals the
formation of a neo-X chromosome in the lineage leading
to stalk-eyed flies and indicates that stalk-eyed flies
provide a valuable new system to study the origin and
evolution of sex chromosomes.

Diopsid Neo-X Chromosome
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scored most of the unknown genes from the first method as X-

linked. Overall, K-means scored 2895 genes as autosomal and 545

genes as X-linked. We validated chromosome classifications for 33

loci, four of which were putatively on the X and one was on the Y

chromosome. After PCR and genotyping of at least 35 males and

35 females, all loci were assigned correctly with 28 putative

autosomal loci containing male heterozygotes, and 4 putative X-

linked loci lacking male heterozygotes (Table S2). One gene,

ORF-126, had an extremely low log2 ratio of 26.732 and the next

lowest value for any gene was 20.569. Therefore, we suspected

this gene was Y-linked and designed primers from the EST

sequence to test this possibility. We conducted PCRs each on 47

individual males and 47 individual females and found that all of

the male PCRs produced a band while none of the female PCRs

produced a band, confirming the location of ORF-126 on the Y

chromosome.

Synteny with Drosophila
Inspection of the gene annotation for the D. melanogaster genes

that are homologous to the T. dalmanni genes on the array reveals

that 453 (90%) of the X-linked genes in T. dalmanni are found on

chromosome 2L in D. melanogaster (Figure 2). The remaining 46 X-

linked genes that have a homologous gene in D. melanogaster are

found on each of the other major chromosome arms in roughly

equal numbers (15 from 2R, 11 from 3L, 11 from 3R and 9 from

the X). Conversely, the T. dalmanni autosomal genes have relatively

few homologs on 2L (86 genes) compared to the other major

Drosophila arms: 2R (601), 3L (646), 3R (805), and X (569)

(Figure 2). This pattern indicates a strong syntenic relationship

between the X chromosome in T. dalmanni and chromosome 2L in

D. melanogaster. Figure 1 depicts the log ratio values for the genes

that violate this syntenic relationship. If the putative chromosomal

movement indicated for these genes is an artifact of the

methodology we would expect their log2 ratios to be concentrated

more in the valley between the peaks but this is not the case. Using

GeneMerge, for the small number of genes whose homologs are

not located on 2L in D. melanogaster but are X-linked in T. dalmanni

we tested whether their location on the non-2L chromosome in D.

melanogaster is clustered within a specific chromosomal region on

that chromosome. The program divides each chromosome into

regions corresponding to the cytogenetic map designations and

assesses whether a subset of genes in a sample are disproportion-

ately represented in one of these regions. A clustered distribution

might suggest the existence of a small primitive X chromosome

that was subsequently fused with the 2L homolog, but the non-2L

X-linked genes were randomly distributed across each of their

respective homologous chromosome in D. melanogaster.

In order to investigate the synteny between the non-2L

chromosomes in D. melanogaster and the two autosomes in T.

dalmanni we mapped 28 genes by genotyping flies from two

Figure 1. Distribution of T. dalmanni CGH log2 ratio values. Male and female genomic DNA were hybridized to microarray slides containing
probes designed from EST sequence data. A total of 3444 genes are represented. The large peak indicates autosomal genes while the smaller peak
are genes on the X chromosome. Dark bars indicate the log2 ratio distribution for all the genes, while the hatched bars provide the log2 ratio
distribution for the 132 genes that violate the syntenic relationship between the X chromosome in T. dalmanni and the 2L chromosome in D.
melanogaster.
doi:10.1371/journal.pgen.1001121.g001
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previous F2 intercross experiments involving lines in which males

were selected for increased or decreased relative eyestalk length

[40]. Each of the genes contained a single amino acid repeat

region that varied in length between the lines and, therefore,

segregated as a length polymorphism. Inspection of the resulting

linkage map (Figure 3, Table S2) reveals that one diopsid

autosome contains multiple genes from the D. melanogaster X and

3L chromosome arms (Muller elements A and D) while the other

autosome contains multiple genes from chromosome arms 2R and

3R (Muller elements C and E). Two genes (grainy head and

CG32133) appear to have moved between Teleopsis autosomes

based on their location in D. melanogaster.

Gene Movement in Teleopsis
In addition to the T. dalmanni slides, we performed CGH

experiments on three congeneric species—T. whitei, T. thaii and T.

quinqueguttata. In all cases, cDNA from these species was hybridized

to the microarray slide that contained probes generated from the

T. dalmanni EST sequences. All three species exhibited a similar

bimodal distribution of log2 ratio values (Figure 4; Table S1) but

with slightly reduced separation between the peaks. As a result,

more genes were scored as ‘unknown’ for each of these species

than for T. dalmanni. T. whitei, the species that is most closely

related to T. dalmanni, had the fewest number of unknown genes

(56) followed by T. quinqueguttata (144) and T. thaii (225). The

average correlation in log2 ratio values across different hybridiza-

tions (0.917 for T. whitei, 0.737 for T. thaii and 0.811 for T.

quinqueguttata) was also lower for these species than in T. dalmanni.

The vast majority of genes (93.7%) that are autosomal in T.

dalmanni are also autosomal for the other Teleopsis species,

indicating strong syntenic conservation within the genus. As with

the T. dalmanni analysis, the K-means clustering of the data for the

other Teleopsis species produced chromosome designations similar

to the method based on the confidence intervals of individual

Figure 2. T. dalmanni chromosomal synteny with D. melanogaster. The autosomal category includes 2891 T. dalmanni genes and the X
chromosome comprises 533 T. dalmanni genes. Homology between D. melanogaster and T. dalmanni was assessed based on BlastX searches of EST
sequence [50].
doi:10.1371/journal.pgen.1001121.g002
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probes. The K-means analysis scored the majority of the unknown

genes as X-linked and in a few cases (5 genes in T. whitei, 4 genes in

T. thaii, and 6 genes in T. quinqueguttata) scored a gene that was

autosomal in the first analysis as X-linked. As with ORF-126 in T.

dalmanni, there were two genes, RNA polymerase II 215kD subunit

(RpII215) and a paralogous copy of Cuticular protein 35B (Cpr35B)

Figure 3. Chromosomal linkage map of 28 annotated EST genes in T. dalmanni. Unlabeled hashmarks indicate positions of microsatellite
markers. This map was created using genotypes of 639 flies (288 males, 351 females) from two F2 families obtained by crossing lines of flies selected
for increased or decreased eye stalk length [cf. 40]. 23 markers were informative in both families and provided the framework for estimating linkage
relationships for markers that were only informative in a single family. Color-coding indicates the chromosomal arm location in D. melanogaster. As
indicated by CGH, four X-linked loci are found on 2L. Furthermore, one autosome appears to be a fusion of X+3L while the other autosome contains
genes predominantly from 2R and 3R.
doi:10.1371/journal.pgen.1001121.g003

Diopsid Neo-X Chromosome
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which has duplicated several times within diopsids [50], in T.

quinqueguttata that had extremely low log2 ratio values, 25.107 and

24.378 respectively. PCR of 48 males and 48 females in T.

quinqueguttata confirms a Y chromosome location for RpII215 but

we have been unable to verify the location of the Cpr35B paralog

through PCR presumably because we have not yet been able to

design copy-specific PCR primers.

Assuming a syntenic relationship between D. melanogaster 2L and

the Teleopsis X chromosome (and between all other D. melanogaster

chromosomes and the Teleopsis autosomes) and using the D.

melanogaster and Anopheles gambiae chromosomal designations to

polarize the reconstruction within Teleopsis, we reconstructed the

pattern of gene movement on and off the X chromosome (Figure 5;

Table S3). A total of 193 genes exhibit movement either between

Drosophila and Teleopsis or within Teleopsis. Twenty-nine genes were

not assigned a specific pattern of movement either due to a lack of

homology with D. melanogaster and A. gambiae or because they

produced ambiguous reconstruction within Teleopsis. For 65 of the

Figure 4. Distribution of CGH log2 ratio values for three other Teleopsis species. Male and female genomic DNA were hybridized to
microarray slides containing probes designed from T. dalmanni EST sequence data. Approximately 3400 genes are represented in each histogram.
The large peak indicates autosomal genes while the smaller peak are genes on the X chromosome. A) Teleopsis whitei. B) Teleopsis thaii. C) Teleopsis
quinqueguttata.
doi:10.1371/journal.pgen.1001121.g004
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genes that violated the syntenic relationship between D. melanogaster

2L and the Teleopsis X, it was more parsimonious, based on the

syntenic relationship with A. gambiae, to ascribe the gene movement

as occurring within the lineage leading to Drosophila rather than to

Teleopsis. Of the remaining genes, there are a similar number of

genes that have moved on to an autosome (27) as on to the X

chromosome (20) in the lineage leading to Teleopsis. Within

Teleopsis, movement of genes from the X chromosome to an

autosome is concentrated (23 out of 29 gene moves) on the branch

leading to the monomorphic taxa, T. quinqueguttata, while all of the

movement of genes off of the autosomes and onto the X

chromosome occurs on the branches associated with the two most

sexually dimorphic taxa, T. thaii and T. dalmanni (Figure 5).

Analysis of the gene annotation associated with the pattern of gene

movement indicates that the set of genes that have moved onto the

X chromosome are overrepresented (P = 0.049) for genes that

function in the ‘structural constituent of ribosome’ (GO:0003735).

This pattern is generated primarily by T. thaii as 5 of the 12 genes

that have moved onto the X chromosome on the branch leading to

this species are involved in this molecular function. Genes that had

moved on to an autosome were not overrepresented for any

functional category.

Several studies in Drosophila have demonstrated that chromo-

somal location and the pattern of gene movement across

chromosomes are associated with differential rates of protein

evolution [51,52], duplication [9,31] and divergent patterns of

gene expression [22,24,25]. Estimates of each process were

obtained for Teleopsis in an analysis of the eye-antennal imaginal

disc transcriptome [50]. Therefore, we examined the relationship

between these variables and gene location within the genus. The

rate of protein evolution was measured as the percentage of amino

acid change in the lineage leading to T. dalmanni relative to the

amount of change for that gene in the Drosophila and Anopheles

lineages. Using this index, there is little difference between genes

that reside exclusively on the autosomes or the X chromosome in

Teleopsis, but genes that have moved between these chromosomes

are evolving significantly faster than those that have not moved

(P,0.0001; Kruskal-Wallis test; Figure 6). This pattern is also

supported if we look just at the genes that were determined, by a

relative rate test, to be evolving significantly faster at the protein

level in T. dalmanni than in D. melanogaster, D. pseudoobscura and D.

virilis [50]. These genes are overrepresented in the set of genes that

have moved chromosomes, particularly those that have moved

onto the autosomes (x2 = 27.74, P,0.0001; Chi-squared test).

2.62% of all genes were classified as evolving significantly faster in

T. dalmanni, but 19.51% of the genes that have moved onto an

autosome fell into this category, compared with 8.33% for the

genes that have moved onto the X chromosome, 4.11% for

exclusively X-linked genes and 1.97% for genes that are

exclusively autosomal.

The analysis of the eye-antennal imaginal disc EST database

revealed 20 putative duplication events in the Teleopsis lineage

[50]. An additional duplication that was not detected in that study,

involving the sex determination gene transformer 2 (tra2), was

revealed by the CGH results. Hybridization to probes generated

from different consensus sequences (conseqs) that are both

homologous to tra2 revealed that one sequence resides on an

autosome while the second sequence is X-linked. Subsequent

phylogenetic analysis of the divergence in protein sequence

between the conseqs and Drosophila homologs confirms the CGH

results. Of these 21 putative duplicates, 11 of their homologs in D.

melanogaster reside on 2L while the remaining homologs are

distributed in similar numbers among 2R (2), 3L (2), 3R (5), and X

(1). This chromosome distribution is significantly overrepresented

Figure 5. Gene movement in Teleopsis. Reconstruction of gene movement between autosomes and the X chromosome was polarized using
chromosomal data from A. gambiae and D. melanogaster. The X chromosome in Teleopsis was assumed to be homologous to chromosome 3R in A.
gambiae and 2L in D. melanogaster. The branches with hash marks represent those that have undergone increases in eye-stalk sexual dimorphism.
The states for each species and the specific genes associated with each reconstruction (using the branch numbers as reference) are presented in
Table S2.
doi:10.1371/journal.pgen.1001121.g005
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for genes on 2L (x2 = 14.143, P = 0.0002; Chi-squared test). Given

the syntenic relationship between 2L in D. melanogaster and the X

chromosome in Teleopsis, there is also a significant relationship

between gene duplication and residence on the X chromosome in

T. dalmanni (x2 = 6.430, P = 0.011; Chi-squared test), but the

relationship is weaker because three of the duplicates have moved

off the X chromosome in T. dalmanni. Overall, genes that belong to

a duplicate set are significantly more likely to move between

chromosomes than are other genes. There are 10 occurrences

(27.7%) of genes in the duplicate sets moving chromosomes within

Teleopsis compared to 88 (2.6%) chromosomal movements for the

remaining genes (x2 = 31.031, P,0.0001; Chi-squared test). Of

the 10 duplicate gene movements, 7 are off of the X chromosome

onto an autosome, two are off an autosome onto the X, and one is

onto the Y chromosome. The EST study also compared the gene

expression levels in male T. dalmanni eye-antennal imaginal discs

between lines of flies that had been selected for over fifty

generations for increased and decreased eye span and found over

350 differentially expressed genes. These genes, however, were not

preferentially associated with chromosomal location (x2 = 3.502,

P = 0.174; Chi-squared test) or gene movement (x2 = 2.322,

P = 0.508; Chi-squared test).

Discussion

The results from this study indicate that CGH microarrays are

an effective technique for identifying sex chromosome linkage in

non-model organisms for which EST or partial genomic

information is available. For all four Teleopsis species examined,

the log2 ratio values of female-to-male hybridization intensities

exhibited a distinct bimodal distribution, although there is more

ambiguity in the results for the taxa more distantly related to T.

dalmanni, the species whose EST sequence was used to design the

microarray slide. We scored 3444 Teleopsis genes as either

autosomal or linked to a sex chromosome and confirmed

assignment for 33 genes by direct genotyping. The X chromosome

Figure 6. Relationship between Teleopsis chromosomal location and the rate of protein evolution. The rate of protein evolution in
Teleopsis was measured as the branch length leading to T. dalmanni expressed as a percentage of the entire tree length based a phylogenetic analysis
including A. gambiae and three Drosophila species [50]. The sample sizes for the chromosomal locations are: A - 2034 genes, Onto A – 41 genes, X –
342 genes and Onto X – 23 genes.
doi:10.1371/journal.pgen.1001121.g006
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comprises approximately 15% of the genome in these species.

Comparison with Drosophila indicates there is a strong syntenic

relationship between the X chromosome in T. dalmanni and

chromosome 2L in D. melanogaster. Both the overall syntenic

relationship, as well as the subset of genes that violate this

relationship, are supported by the hybridizations in all four species.

In addition, the distribution of log2 ratio values of the genes that

appear to have moved chromosomes between Drosophila and

Teleopsis is similar to the remaining genes (Figure 1), suggesting this

putative chromosomal movement is not an artifact of the

methodology. The CGH approach also identified one Y-linked

gene in T. dalmanni and at least one (and possibly two) Y-linked

genes in T. quinqueguttata. The evolutionary history and genomic

organization of the Y chromosome have received considerable

interest recently [53–57], but Y-linked genes are difficult to isolate

using standard genomic techniques (such as BAC libraries) because

of their heterochromatic structure. The CGH approach has

considerable promise for identifying genes on the Y chromosome,

especially if EST information is available from tissue such as testes,

which are likely to be a rich source of Y-linked gene expression

[58].

Evolution of Sex Chromosomes
Diptera provide one of the most comprehensive model systems

for studying the differentiation of sex chromosomes. The

regulatory network controlling sex determination in Drosophila is

well characterized at the genetic and molecular level [59]. While

some aspects of this system appear unique to this clade, there are

other features that are highly conserved across Diptera and

provide a valuable comparative framework for examining the

genetics controlling sex determination in other fly species [60–64].

There is also substantial variation in both sex chromosome

composition and sex determination systems at various taxonomic

levels within the order [59,64–66]. For instance, Tephritidae

include species with isomorphic chromosomes and female

heterogamety [67] and, within Musca domestica, the chromosomal

location of the male-determining factor varies between popula-

tions, occurring in some cases on the X chromosome and, in other

populations, on one of several autosomes [68,69]. Despite the

substantial variation in these systems, a comprehensive catalog of

genes on the sex chromosomes exists for only Drosophila and the

mosquito, A. gambiae [70]. Therefore the data on chromosomal

location presented in this study provide valuable information for

reconstructing syntenic relationships and mapping the evolution of

chromosomal organization within Diptera. Furthermore, the

discovery of a neo-X chromosome in Teleopsis means that these

flies represent a critical group in a comparative analysis of sex

chromosome organization and provide a complementary model

system for understanding key aspects of sex chromosome

evolution.

Because of the abundant interspecific variation in sex

chromosome organization and the paucity of information

regarding the specific gene composition of these chromosomes

within Diptera, it is difficult to reconstruct the steps that may have

led to the formation of the neo-X chromosome in Teleopsis. There

is substantial syntenic conservation between the X chromosomes

of A. gambiae and D. melanogaster [70,71], flies that share a common

ancestor approximately 250 million years ago and represent a

more ancestral split than Teleopsis and Drosophila. However,

tephritids, which are thought to be a closer relative of diopsids

than are Drosophila [72], appear to have a greatly reduced X

chromosome containing few genes and a sex determination system

controlled by a male-determining factor [67]. This pattern,

combined with the fact that the calyptrate flies examined (e.g.

Musca domestica and Lucilia cuprina) have a similar condition,

suggests the ancestor leading to diopsids may also have had a small

X chromosome and male-determining factor. If this is the case,

there are a few scenarios that might describe the formation of the

neo-X in diopsids. First, the neo-X may represent the fusion of an

autosome to small ancestral sex chromosomes. In this scenario, we

would predict that some homology would be maintained between

the ancestral portion of the sex chromosome of diopsids (i.e. the

region not homologous to 2L) and chromosomal regions in other

flies. There was no syntenic relationship between the non-2L X

linked genes in Teleopsis and any chromosomal region in Drosophila,

but there may be synteny between these genes and the X

chromosomes of tephritids or calyptrates. Second, the male

determining factor (M) may have moved from a sex chromosome

to an autosome (i.e. the homolog of 2L) and the sex chromosome

creation process started anew. Similarly, M may have existed in a

polymorphic state with respect to chromosomal location (as in

Musca) and become fixed on an autosome at some point. In either

case, we would predict a lack of homology between the sex

chromosome of diopsids and tephritids or calyptrates and M

should exhibit different micro-syntenic relationships within

diopsids than tephritids or calyptrates. Finally, a new gene that

is located on 2L may have become the primary sex determination

signal supplementing M. The evolution of sex-determination

pathways is generally characterized by modification of compo-

nents higher up in the genetic hierarchy [73], and Shearman [66]

has outlined several processes that would result in the acquisition

of a new gene in the sex determination pathway. If this scenario

applies to stalk-eyed flies, there will be no homology between the

primary sex determination gene in diopsids and the M factor of

tephritids and calyptrates. Obviously, it is essential for future

research to elucidate the sex determination system in Teleopsis and

to determine the gene content of sex chromosomes in other

dipteran systems such as tephritids and calyptrates.

Regardless of the evolutionary transitions in sex chromosome

composition leading to Teleopsis, the formation of a neo-X

chromosome in this lineage provides an opportunity to examine

several important components of sex chromosome evolution, such

as the degradation of the Y chromosome and the evolution of

dosage compensation. In a few Drosophila lineages, the presence of

neo-X chromosomes has provided invaluable snapshots into these

processes [53,74–76]. The neo-X chromosome in diopsids is likely

to be more ancient than those in D. miranda [76] or D. americana

[77], but may be similar in age to the neo-X in D. pseudoobscura,

which has been estimated at 8–10 million years old [78].

Therefore, Teleopsis offers an alternative system to Drosophila for

examining sex chromosome evolution, but the neo-X chromosome

in this species is also distinct from those in Drosophila in that it

appears to represent a wholesale reconstitution of the X rather

than a fusion of an autosomal arm to a substantial preexisting X.

Only a single Y-linked gene was identified for T. dalmanni by the

CGH microarrays, so it is premature to speculate on the

evolutionary history of the Y chromosome in Teleopsis. However,

results from this study, along with images of mitotic chromosome

lengths [39], clearly indicate the sex chromosomes in Teleopsis are

heteromorphic in males. Therefore, a dosage compensation

mechanism is expected to exist in this species. The microarray

experiment conducted in Baker et al. [50] compared gene

expression between males from different lines, and provides an

opportunity to test for the presence of dosage compensation. If the

X chromosome in males is hyper-transcribed there should be no

difference in the level of expression between autosomal genes and

X-linked genes, and, in fact, we find no difference in the average

signal intensity between these groups (P = 0.782; Wilcoxon test).
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Intriguingly, none of the male specific lethal (MSL) complex genes

that control dosage compensation in Drosophila [79] were found in

the EST survey of T. dalmanni. While their absence may result

from random sampling of the transcript population, it is possible

that diopsids, like Sciara [80], utilize a mechanism of dosage

compensation that differs from Drosophila.

Gene Movement in Teleopsis
Transposition in Drosophila and mammals is characterized by an

excess of movement off of the X chromosome [8,9,30,31,81,82].

The derived autosomal copies generally exhibit testes expression

[8,9,30,31,81,82], and therefore, selection to avoid meiotic sex

chromosome inactivation (MSCI) has been hypothesized as a

primary mechanism driving this pattern [8,9,30,31,81,82]. It is

unknown whether silencing of X-linked genes during late

spermatogenesis occurs in stalk-eyed flies. Overall, the reconstruc-

tion of gene movement within Teleopsis indicates similar amounts

of movement on and off of the X chromosome (Figure 4).

However, there was a striking relationship in the pattern of

movement with respect to sexual dimorphism in eyespan.

Movement of genes onto the X chromosome are concentrated

on branches leading to the most dimorphic taxa while movement

off the X is associated primarily with the monomorphic species, T.

quinqueguttata (Figure 4). One possible explanation for this pattern is

that sexual selection is operating more strongly on testes function

within T. quinqueguttata than the dimorphic species, such that the

genes moving off the X chromosome in this species are undergoing

selection for increased testes expression. Regardless of the selection

pressures affecting T. quinqueguttata, it is noteworthy that the

branches leading to the most dimorphic species are characterized

primarily by gene movement onto the X chromosome. If these

genes play a role in the evolution of eyestalk dimorphism, then

they are unlikely to be affected by MSCI. However, sexual

antagonism has also been postulated as a factor driving gene

movement off of the X chromosome [24,25] Therefore, we might

expect genes affecting male eyespan to be preferentially located on

an autosome but gene movement in the dimorphic species appear

directed away from not onto the autosomes. As in Anopheles [83],

gene expression in Teleopsis may not be characterized by a

demasculinization of the X chromosome. Consistent with this

scenario, the largest QTL influencing variation in male eyespan

has been mapped to the X chromosome [40].

Much of the ‘off-of-the-X’ gene movement in Drosophila is driven

by duplication events in which the derived copy, often through

retrotransposition, moves off the X and subsequently acquires

testes expression [9,31]. The majority of gene movements

reconstructed in Teleopsis cannot be traced to duplication events

as complete genomic data is not available for this species.

However, for the small number of duplicated genes identified in

the EST analysis there was a clear relationship between the

duplication process and chromosomal organization. Duplicated

genes were concentrated on the 2L/X (D. melanogaster/T. dalmanni)

chromosome and over 10 times more likely to move between

chromosomes than genes that had not been duplicated. Further-

more, the pattern of gene movement for these duplicated genes is

consistent with the ‘out-of-the-X’ hypothesis (7 movements off of

the X versus 2 onto the X) but the sample size is too limited to

draw strong conclusions.

Genes that have moved chromosomes also exhibit a faster rate

of protein evolution within stalk-eyed flies than genes that have not

moved. Theoretical models predict that patterns of divergence of

X-linked protein coding genes will be distinct from autosomal

genes [4], and several empirical studies have identified differences

in substitution patterns between X-linked and autosomal genes

[51,84,85,but see 86–88]. Using a measure of protein evolution

that calculates divergence in Teleopsis relative to Drosophila and

Anopheles [50], we found no difference in relative divergence

between genes on the X chromosome and genes on an autosome.

Genes that had moved between chromosomes, however, have

higher levels of divergence than those that have not. Despite the

extensive research on gene movement in Drosophila, to our

knowledge, no study has examined, at the genomic level, the

association between gene movement and protein evolution within

the genus. There is, however, a positive relationship between

male-biased gene expression and rates of protein evolution

[23,51]. Therefore, if gene movement in Teleopsis is related to

the evolution of sexual dimorphism then these genes may be under

more intense selection pressures, and evolving faster, than other

genes. Ultimately, it will be necessary to measure levels of sex-

specific gene expression and quantify rates of evolutionary change

before and after translocation in order to fully understand the

factors driving this pattern.

One methodological issue that may influence the pattern of

gene movement within Teleopsis is the effect of sequence divergence

on hybridization intensity. Chromosomal location for the three

Teleopsis species not including T. dalmanni were inferred from

microarray slides with probes designed from T. dalmanni ESTs and

the effect of sequence divergence on relative intensity for these

species is unknown. Some have suggested that assessment of gene

expression levels from cross-species hybridization can be prob-

lematic [89], although the resolution needed for CGH arrays is less

than that for detecting differential gene expression. We attempted

to mitigate some of these concerns by limiting probe design to

protein coding sequence and using the median hybridization value

for up to ten probes from a single EST contig. However, the

number of ambiguous chromosomal designations and the

between-slide correlations clearly indicate that the error associated

with measuring hybridization intensity increases as the species

becomes more distantly related to T. dalmanni. Therefore, we have

taken a conservative approach by only assigning chromosomal

location to genes that had consistent signal across all four

hybridizations for each species. With respect to the pattern of

gene movement in the genus, if probe sequence divergence is

influencing hybridization intensities, and thus the reconstruction of

gene movement, we would not expect the pattern found in this

study where, for two divergent species (i.e. T. thaii and T.

quinqueguttata), all the movement is concentrated in one direction

for one species and in the other direction for the second species.

More likely, gene movement would be randomly distributed

among these branches. In addition, for all of the putative gene

movement in Teleopsis, the mean rank of relative sequence

divergence is higher for the genes where the movement occurs

on a branch leading to T. dalmanni than branches exclusive to the

other three species, suggesting that the relationship between

movement and sequence divergence is not an artifact created by

hybridization effects. In the future, it will be essential for new

hybridizations examining chromosomal location in other diopsid

species to use probes designed from sequence data from that

particular species, as well as to develop resources for direct

genotyping in these species.

Methods

Study Organism
Diopsids are one of several families within a group of higher flies

known as Acalyptrata, a paraphyletic group that also contains the

fly families Drosophilidae and Tephritidae. Relationships among

acalyptrate fly families have proven difficult to resolve and are
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actively under investigation, but current evidence indicates that

the Tephritoideae is the most likely sister group to the

Diopsoideae, and that these superfamilies likely had a common

ancestor with Drosophila no more than 76 MYA [72]. Four diopsid

species in the genus Teleopsis, T. dalmanni, T. whitei, T. thaii and T.

quinqueguttata were used in this study. The first three species are all

sexually dimorphic with respect to eyespan while T. quinqueguttata is

monomorphic. In T. dalmanni, eye span exhibits X-linked

inheritance [39] and eye span QTL are tightly linked to a sex-

ratio factor that results in female-biased brood sex ratios [44],

presumably as a result of one or more inversions on the X

chromosome [40]. As a consequence, males carrying a sex-ratio X

chromosome have shorter eye span than other males [40]. They

also have shorter sperm [41]. Sex chromosome meiotic drive has

been detected in multiple populations of T. dalmanni and T. whitei

[44,45] in southeast Asia, all of which exhibit some degree of

postcopulatory reproductive isolation [90]. Phylogenetic relation-

ships among the four Teleopsis species are well supported and

sexual dimorphism in eyespan has been mapped on the phylogeny

[91,92]. QTL mapping experiments [40,93] and visualization of

mitotic chromosomes in spermatocytes [39] for T. dalmanni

indicate that this species has three major chromosomes, two

autosomal chromosomes and one set of sex chromosomes

characterized by an acrocentric X and smaller Y chromosome.

Microarray Slide Construction
60-mer Agilent oligonucleotide probes were designed based on

contig sequences from an EST library made from the eye-antennal

imaginal discs of T. dalmanni [50]. This study generated over

33,000 ESTs that assembled into over 3400 contigs with

significant homology to a gene in Drosophila. Probes were designed

for nearly all of these genes along with 168 contigs with open

reading frames (ORF) greater than 500 basepairs. Because we

were also conducting hybridization on Teleopsis species other than

T. dalmanni, probes were limited to protein coding regions in order

to minimize the amount of nucleotide divergence between T.

dalmanni and the other species, which tends to be higher in the

UTR regions of the transcripts. A maximum of 10 probes were

designed for each gene. One rationale for selecting this number of

probes is that the CGH results provided valuable information for a

subsequent study comparing sex-biased gene expression between

T. dalmanni and T. quinqueguttata. For the gene expression study, we

wanted probes with the lowest amount of sequence divergence

between species and the CGH results provided a means for

selecting these probes.

Hybridization and Analysis of Chromosomal Location
The microarray experiment consisted of 4 replicate hybridiza-

tions for each species (the data is available from NCBI via

accession number GSE20315). Each hybridization sample con-

sisted of 4 or 5 male or female adult flies that were taken from

population cages maintained at the University of Maryland,

College Park. After removing wings and heads DNA was extracted

from macerated fly bodies with Qiagen DNeasy kits using the

insect sample protocol. DNA concentration and quality was then

estimated with a Nanodrop ND-1000 spectrophotometer and 3 mg

of DNA was used in each sample. Each DNA sample was

fractionated by restriction digestion with AluI and RsaI for 2 h at

37uC. Each sample was then labeled with either Cy-3 or Cy-5 and

processed according to the Agilent array-based CGH protocol.

After hybridization for 24 h at 65uC, arrays were scanned using an

Agilent G2539A microarray scanner. Hybridization intensity was

measured from array images scanned at each dye wavelength

using Agilent’s Feature Extraction Software. Features were

excluded from further analysis if the majority of pixels were

saturated or the median pixel intensity was less than two times the

background. Intensity scores were normalized using the linear

normalization methodology in the Feature Extraction Software.

For each hybridization, we calculated the median log2 ratio (all

log2 ratios were defined as female/male intensity) of all the probes

for a given gene or ORF. Then, the log2 ratios for a given

hybridization were centralized by adding or subtracting a constant

value to the median log2 ratios so that the peak of the lower

distribution was centered over zero.

Standard CGH software and analysis techniques are not

appropriate for this study because a chromosomal map of the

genome does not exist for T. dalmanni. Therefore, after signal

extraction and centralization, we conducted two analyses to

separate the gene log2 ratios into two categories (i.e. autosomal or

X-linked). In the first method, we generated a histogram of the

gene log2 ratios averaged across the four hybridizations for each

species. Based on this histogram, intervals of size 0.1 were

searched every 0.0125 across the log2 distribution to determine the

interval with the fewest entries. The value in the center of this

interval was then used as a cut-off for distinguishing chromosomal

categories. Using the variation in log2 ratios across the four

hybridizations, we then calculated a 95% confidence interval for

each gene. If the confidence interval of a given gene did not

contain the cut-off value, then that gene was assigned as autosomal

if its average log2 ratio value was less than the cut-off and X-linked

if its average log2 ratio value was greater than the cut-off. If a

gene’s confidence interval contained the cut-off value then the

gene’s location was designated as unknown. The second method

we used to separate the probes into groups was K-means clustering

[94]. This method performs well when specifying an exact number

of clusters and, using the program tmev [95] we conducted 50

iterations of average linkage clustering based on the Euclidian

distance to classify the genes into 2 clusters. Overall, the K-means

analysis produced chromosomal designations that required about

3 times as much gene movement between the autosomes and the

X chromosome within Teleopsis as the first method. Therefore in

order to assess the pattern of gene movement relative to Drosophila

and within the genus we used the more conservative designations

provided by the confidence interval method.

Analysis of Gene Movement
Reconstruction of gene movement within Teleopsis was conducted

in MacClade (V4.06) using a simple parsimony approach.

Chromosomal locations in D. melanogaster were used to root the

reconstruction of gene movement within Teleopsis assuming a

syntenic relationship between chromosome 2L in D. melanogaster and

the X chromosome in Teleopsis (see Results). For a few genes that

have undergone chromosomal translocation within Drosophila, the

basal state for the genus, as reconstructed by Vibranovski et al. [31],

was used. Chromosomal locations in the mosquito, Anopheles gambiae,

were used to polarize gene movement on the basal Teleopsis branch

that forms a split with D. melanogaster. We assumed a syntenic

relationship between chromosome 3R in A. gambiae and the 2L/X

chromosome in D. melanogaster/Teleopsis [70]. ‘Unknown’ character

states for Teleopsis chromosomal location were assigned the state that

minimized the amount of chromosomal gene movement and all

genes that produced an ambiguous reconstruction were discarded.

A measure of the rate of protein evolution for each gene was taken

from the analysis of the T. dalmanni EST database [50] and was

based on maximum likelihood trees constructed from amino acid

data (using a JTT substitution model with no invariant sites) for A.

gambiae, three Drosophila species—D. melanogaster, D. pseudoobscura and

D. virilis—and T. dalmanni. The index measures the percentage of
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the entire tree length comprised by the branch leading to T.

dalmanni, and was calculated by dividing the length of the branch

leading to T. dalmanni by the length of the entire tree. We also used,

from the Baker et al. [50] study, data on the number of putative

gene duplications with the genus as well as data from a microarray

experiment that compared the level of gene expression between

males from two artificial lines selected for increased and decreased

eye span. Over-representation of gene ontology terms was evaluated

with GeneMerge [96], which uses a hypergeometric distribution

and Bonferroni correction for multiple testing, to provide statistical

rank scores for numerous functional categories. Statistical analyses

were conducted with JMP [97].

Linkage Mapping
Syntenic relationships for identified genes were established after

constructing a linkage map based on anonymous microsatellites

[98] and annotated EST loci [50] containing variable length tracts

of repeated glutamines [99]. We conducted two F2 intercross

experiments between different pairs of replicate lines of T. dalmanni

selected for either long (high line) or short (low line) male relative

eye span [cf. 40,99]. The first intercross was conducted after 32

generations of selection by mating a high line male with a low line

female. This cross produced 490 flies, including 231 females and

259 males, in a single F2 family. For this analysis we genotyped 80

females and 95 males at 17 microsatellite and 26 amino acid

repeat loci, of which 11 were X-linked and exhibited recombina-

tion. The second intercross was conducted after 45 generations of

selection by mating a low line male with a high line female. The

male used in this cross carried a drive X chromosome, which

exhibits very little recombination with a standard X chromosome

[40]. We used a single F2 family containing 464 flies including 271

females and 193 males. These flies were genotyped at 20

microsatellite and 18 amino acid repeat loci, of which four were

X-linked.

For each family we used Joinmap v. 4.0 [100] to assign

microsatellite and amino acid repeat loci to linkage groups using

Kosambi map distances. We used the CP population type for

autosomal loci and X-linked loci in females because this option

allows for heterogeneous segregation types, resulting from a

mixture of homozygous and heterozygous parents, and coded each

locus to fit segregation expectations for the corresponding parental

genotypes. We used haploid segregation expectations for X-linked

loci in males. Because some microsatellite or annotated loci were

informative in only one of the crosses, we used Joinmap to produce

a joint linkage map, which combines the linkage maps for males

and females in both families. A total of 17 microsatellite and 6

annotated loci were genotyped for all flies in both families and

provide a common framework for estimating linkage relationships.

Supporting Information

Table S1 Gene CGH log ratio values for the four Teleopsis

species. In the majority of cases, gene names and IDs correspond

to the annotation used for the Drosophila melanogaster genes that are

homologous to the Teleopsis ESTs that were the source of the CGH

probes. A few genes, that had no significant hit to D. melanogaster,

use the gene names for their homolog in Anopheles gambiae, while

those with no significant hit to any other gene, are designated with

‘ORF-’. Td-T. dalmanni, Tw-T. white, Tt-T. thaii and Tq-T.

quinqueguttata. The inferred chromosomal locations (A-autosomal,

X-X chromosome, and U-unknown) are presented for each gene.

Log ratio values averaged across all four hybridization, as well as

the individual log ratios for each hybridization, are also presented

for each gene.

Found at: doi:10.1371/journal.pgen.1001121.s001 (1.76 MB

XLS)

Table S2 Summary information on genotyped loci in T.

dalmanni. Sample sizes and heterozygosity (Ho) for each sex,

average CGH values, and linkage mapping in relation to

chromosomal arm location in D. melanogaster (Dm) are provided.

‘Inf chr.’ provides the chromosomal location based on genotyping,

while ‘CGH chr.’ provides the chromosomal location based on

CGH. Linkage map value indicates chromosome and distance in

cM (cf. Johns et al. [40]). These genes exhibit variation in amino

acid repeats and were genotyped in outbred T. dalmanni flies as

length variants by PCR.

Found at: doi:10.1371/journal.pgen.1001121.s002 (0.12 MB

DOC)

Table S3 Summary of gene movement for Teleopsis species.

Gene designations are explained in Table S1 legend. ‘Duplicate

set’ refers to whether a duplication event was inferred for that gene

within stalk-eyed flies based on an analysis of EST consensus

sequences. For each gene, the inferred chromosomal locations (A-

autosomal, X-X chromosome, and {AX}-unknown) for each

Teleopsis species as well as their chromosomal location in D.

melanogaster and A. gambiae are presented. The ‘Move’ column

summarizes to which chromosome and on which branch of the

tree the gene movement occurred. See Fig. 5 for identification of

branch numbers and changes occurring at the base of the Teleopsis

tree are designated ‘inTeleopsis’. Log ratio values averaged across

all four hybridization for each Teleopsis species are also presented.

Found at: doi:10.1371/journal.pgen.1001121.s003 (0.07 MB

XLS)
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