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Abstract: Alzheimer’s disease (AD) is characterized by extracellular amyloid plaques composed
of the β-amyloid peptides and intracellular neurofibrillary tangles and associates with progressive
declines in memory and cognition. Several genes play important roles and regulate enzymes
that produce a pathological accumulation of β-amyloid in the brain, such as gamma secretase
(γ-secretase). Induced pluripotent stem cells from patients with Alzheimer’s disease with different
underlying genetic mechanisms may help model different phenotypes of Alzheimer’s disease and
facilitate personalized drug screening platforms for the identification of small molecules. We also
discuss recent developments by γ-secretase inhibitors and modulators in the treatment of AD.
In addition, small-molecule drugs isolated from Chinese herbal medicines have been shown effective
in treating Alzheimer’s disease. We propose a mechanism of small-molecule drugs in treating
Alzheimer’s disease. Combining therapy with different small-molecule drugs may increase the
chance of symptomatic treatment. A customized strategy tailored to individuals and in combination
with therapy may be a more suitable treatment option for Alzheimer’s disease in the future.

Keywords: induced pluripotent stem cells; Alzheimer’s disease; γ-Secretase

1. Introduction

Alzheimer’s disease is a prevalent neurodegenerative disease that worsens over time and causes
brain lesions that can result in behavioral changes. It accounts for the largest number of dementia
cases [1]. In the United States, the Alzheimer’s Association estimates approximately two new cases per
year per 1000 people aged 65 to 74, 11 new cases per year per 1000 people aged 75 to 84, and 37 new cases
per year per 1000 people aged 85 and older [2]. Alzheimer’s disease is characterizing by short-term
memory loss accompanied by depression. Impairment of language ability leads patients to avoid
difficult or complex words; the ability to recognize written characters is greatly reduced as well [3].
In the older age group (>65 years), Alzheimer’s disease is one of several dreaded neurodegenerative
diseases that cause dementia. Others include frontotemporal dementia, dementia with Lewy bodies,
vascular dementia, progressive supranuclear palsy, alcoholic dementia, Creutzfeldt–Jakob disease,
and corticobasal degeneration (Figure 1) [4]. Alzheimer’s disease has two forms: early-onset and
late-onset. Early-onset Alzheimer’s disease, also known as familial Alzheimer’s disease, occurs
mainly before the age of 65 in association with hereditary genetic mutations. Late-onset Alzheimer’s
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disease, also known as sporadic Alzheimer’s disease, occurs after the age of 65, usually in association
with environmental factors and age, and no inherited genetic mutation is known to be involved [5].
The early-onset form accounts for only about 5% of all patients with Alzheimer’s disease. However,
gene expression is most directly related to early-onset Alzheimer’s disease [6]. Several gene mutations
lead to increased accumulation of amyloid in the brain. The genes include amyloid precursor protein
(APP), presenilin-1 (PSEN-1), and presenilin-2 (PSEN-2). The APP gene sequence is located on human
chromosome 21. APP protein was found in many tissues but is concentrated mainly in neuronal
synapses. The functions of APP include the formation of regulatory synapses and the expulsion of
iron atoms from cells [7]. APP protein exists in many different species and is highly conserved [8].
In humans, the PSEN-1 gene sequence is located on chromosome 14, and the PSEN-2 gene sequence is
located on chromosome 1. PSEN-1 and PSEN-2 are highly homologous [9]. The function of PSENs is to
form a complex with APP in cells and participate in the translocation and post-synthetic processing of
APP [10].
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Pathologically, AD is characterized by extracellular amyloid plaques composed of the β-amyloid
peptides and intracellular neurofibrillary tangles that comprise the microtubule-associated protein
tau [11]. Understanding the two pathologies that lead to neuronal death has been a focus of AD
research. However, the generally used cell models of AD-PC12 and SH-SY5Y require the addition of
Aβ1–42 peptides with induced cytotoxicity to mimic the symptoms of the disease [12–17]. However,
the amyloid plaques are not the only symptoms of AD; hence, these in vitro research models are not
comprehensive. The study of AD mechanisms in a human genetic context and natural display of AD
symptoms in a cell model allow the understanding of AD pathology. Induced pluripotent stem cells
(iPSCs) are a pathologically relevant in vitro model for the mechanistic studies and preclinical drug
discovery of AD [18].

iPSCs are pluripotent stem cells formed by the lentiviral vector transfer of four transcription
factors (i.e., Oct4, Sox2, c-Myc, and Klf4) into adult cells [19]. The benefits of iPSCs are that they
differentiate into different types of neuronal cells from the stem cell stage and can be used to produce
forebrain acetylcholine neurons, dopaminergic progenitor cells, and Purkinje cells [20–23]. Neuronal
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cells derived from iPSCs exhibit electrophysiological responses. Different types of iPSC-derived
neurons have been used in the study of different diseases [24–26]. Basal forebrain cholinergic neurons
degenerate in AD, Down syndrome, and dementia. Injectable acetylcholine agonists improve memory
degradation in patients with AD [27]. Therefore, acetylcholine cells play a potentially regulatory role
in memory and learning in the central nervous system [28]. The platelet-derived growth factor promoter
driven amyloid precursor protein (PDAPP) transgenic mice exhibited amyloid deposition in the brain and
memory dysfunction.

The cholinergic neurons derived from human iPSCs are transplanted to the hippocampus of PDAPP
transgenic mice. Compared with vehicle-injected PDAPP mice, the transplantation of iPSC-derived
differentiated neuronal precursor cells to PDAPP mice significantly improved memory dysfunction [29].
Purkinje cells are the only neurons in the cerebellar cortex that automatically produce two types of
action potentials [30]. Damage to Purkinje cells is related to cognitive impairment and motor deficits in
patients with AD [31]. The iPSC-induced increase in the number of Purkinje cell bodies is a potential
novel strategy for AD treatment [22,32].

The AD cell model is useful for testing potential therapeutic drugs. Its use will increase the
possibility of identifying an effective AD treatment through the collection of cells from patients with
AD or Down syndrome and their reversal to iPSCs. The cells that have differentiated into neuronal
cells and produce AD symptoms render them useful for exploring whether drugs are effective in the
inhibition of these symptoms [33]. The use of iPSCs from patients with AD who have familial gene
mutations will increase the possibility of developing effective therapeutic drugs, particularly those
targeting the mechanisms of Aβ accumulation [34]. For example, a recent study using an iPSC platform
exclusively derived from patients with AD was effective in the identification of small molecules and
compounds with synergistic anti-Aβ effects [35]. Moreover, the collection of different early-onset AD
gene mutations can produce different iPSCs based on AD symptoms. These approaches are helpful for
understanding the mechanisms of AD and for developing drugs for this disease (Table 1).

2. Pluripotent Stem Cells Induced by AD Gene Mutations

2.1. APP Gene Mutations

Early-onset APP gene-mutated patient cells were used to produce a model of iPSCs overexpression,
including a double mutation (KM670/671NL) of APP, which increases the total Aβ burden [36], followed
by APP duplication to prepare iPSCs from patients with late-AD onset. The results revealed significantly
higher levels of Aβ 1–40, phospho-tau (Thr 231), and active glycogen synthase kinase-3β (aGSK-3β) [37].
Interestingly, APP (A673T) mutations are protective against AD and cognitive decline [38].

2.2. Trisomy 21 Gene Mutation

Trisomy 21 is caused by the presence of an extra copy of the APP gene and is associated with
increased Aβ peptide production. The accumulation of Aβ peptides is associated with a high risk
of AD dementia in patients with Down syndrome [39]. iPSCs from individuals with trisomy 21 can
induce Aβ aggregation, which causes increased expression of the tau protein and affects synapse
formation and functionality [40].

2.3. PSEN1/2 Gene Mutation

Mutations of PSEN1 and PSEN2, which are catalytic components of γ-secretase, are causative
factors of autosomal dominant early-onset familial AD. Patients with familial AD have mutations in
PSEN1 (A246E) and PSEN2 (N141I). Differentiated neurons derived from iPSCs of patients with familial
AD exhibit increased toxic Aβ42 secretion [41]. Differentiated neurons derived from iPSCs with PSEN1
(∆E9) mutations can exhibit increased Aβ production, altered cytokine release, and deregulation of
Ca2+ homeostasis [42].
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2.4. Microtubule-Associated Protein Tau Gene Mutation

Microtubule-associated protein tau (MAPT) gene mutations are among the most common causes of
familial frontotemporal dementia. MAPT (p.A152T) has been linked with frontotemporal dementia
and Alzheimer’s disease. iPSCs from individuals carrying the tau-A152T variant of MAPT neurons
showed accumulation, redistribution, and decreased solubility of tau. Upregulation of tau was
coupled with enhanced stress-inducible markers and vulnerability of cells to proteotoxic, excitotoxic,
and mitochondrial stressors [43]. iPSCs with MAPT mutations N279K, P301L, and E10 + 16 had
neuritis outgrowth deficiencies [44]. The iPSCs were prepared separately, and their phenotypes
manifested accumulations of tau protein, mitochondrial dysfunction, and defects of nerve growth and
differentiation [45].

Table 1. Alzheimer’s diseases modeled with induced pluripotent stem (iPS) cells.

Gene Mutation of iPSCs iPS Cells Produce Effect References

Presenilin-1 ∆E9 mutation
Impair γ-secretase activity but do not

disrupt γ-secretase-independent functions
of PSEN1

Minna Oksanen [42]

FAD patients with mutations in
PSEN1 (A246E) and PSEN2 (N141I) Increased toxic Aβ1-42 secretion Takuya Yagi [41]

Amyloid precursor protein (APP)
A673T mutation

Protective against Alzheimer’s disease
and cognitive decline Šárka Lehtonen [38]

APP double mutation (KM670/671NL) Increase the total Aβ burden Minna Oksanen [36]

Duplication of the amyloid precursor
protein gene (APP(Dp))

Increased Aβ 1–40, p-tau (Thr 231),
and active glycogen synthase kinase-3β Mason A. Israel [37]

Trisomy of chromosome 21 (Ts21) Aβ aggregation and increased tau protein Glenn A. Maclean [46]

A152T variant in MAPT
A152T-iPS cells-derived neurons showed

accumulation, redistribution,
and decreased solubility of tau.

M. Catarina Silva [43]

MAPT gene mutations (N279K, P301L,
and E10+16)

Deficiencies in neurite outgrowth
and upregulation of

neurodegenerative pathways
Juan Antonio García-León [44]

3. γ-secretase Inhibitors and γ-Secretase Modulators

Mutations in the PSEN-1 gene account for approximately 50% of the pathogenesis of early onset
of AD and are the most common gene mutations in this disease [47]. Although gene mutations are
responsible for early onset of AD, 95% of AD cases are late-onset diseases and are not necessarily
caused by genetic mutations [48]. Late-onset AD can be caused by mutations in the PSEN-1 gene;
such mutations account for 25% of cases of late-onset AD [49]. The PSEN-1 gene is an important
regulator of γ-secretase in early- and late-onset AD (Figure 2). γ-secretase cleaves >90 different
substrates. Studies of the γ-secretase-mediated cleavage of APP and Notch have focused on AD and
cancer [50]. Complete inhibition of γ-secretase, as achieved by nonselective γ-secretase inhibitors
(GSIs), abolishes all γ-secretase activity, leading to decreased Aβ production and Notch signaling.
A recent publication used cryo-electron microscopy to elucidate the structures of the γ-secretase basis
of the APP-C83 fragment and the structures of the γ-secretase basis of the Notch 100 fragment [51].
This will help in the development of substrate-specific γ-secretase inhibitors or modulators. Therefore,
we discuss the development of GSIs and γ-secretase modulators (GSMs) in clinical settings.
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Figure 2. Beta-amyloid accumulation. In general, cleavage of beta amyloid precursor protein (APP)
by alpha-secretase and γ-secretase cuts APP into P3 peptides (1–24~1–26 amino acids). However,
once the gene generates mutations, such as APP and GSIS1, PSEN1 gene expression increases, and the
wrong cleavage is likely to occur and produce not easily metabolized peptide fragments (1–40~1–42
amino acids).

3.1. γ-Secretase Inhibitors

Most of the mutations in the PSEN-1 gene are single nucleotide substitution mutations, which are
missense mutations. PSEN-1 mutations cause an increase in the production of amyloid-β protein (~90%
40-residue amyloid beta-protein and ~10% 42-residue amyloid beta-protein) [52–54]. PSEN-1 is one of
the components of γ-secretase [55]. The drugs’ development strategies are through inhibition cleaved
by γ-secretase and reducing the production of amyloid-β protein [56,57]. However, the mechanism to
treat Alzheimer’s disease led to no improvement with cognitive function and accompanying adverse
side effects led to failure [58]. Despite the initial failure of GSIs to treat Alzheimer’s disease successfully,
these inhibitors are still considered to have potential. γ-secretase suppresses the expression of the
intracellular domain of the Notch protein (NICD), which represents a failure of this strategy, because the
Notch protein plays a key role in the function of adult neural stem cells [59], affecting the differentiation
and proliferation of neurons [60]. Development of GSIs must account for the effect on the Notch
signals (Figure 3), and GSIs can produce cell toxicity by increasing the levels of APP carboxy-terminal
fragments (β-CTF) [61].
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model is an in vivo AD model. This model carries the APP KM670/671NL mutations. Oral 
administration of semagacestat (1 mg/kg) to 5.5-month-old APP-transgenic Tg2576 mice significantly 
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Figure 3. γ-secretase inhibitors. Notch and APP proteins are inactive when they are first synthesized
and must have sections removed to become active. Furin and BACE first cleave these sections and
activate the proteins. The second cleavage is by γ-secretase. GSIs can reduce γ-secretase but have a
side effect of inhibiting Notch-signaling proteins. The function of this protein is related to nerve growth
and differentiation. ADAM = A disintegrin and metalloproteinase, APP = amyloid precursor protein,
BACE = beta-secretase, and GSI = γ-secretase inhibitors.

3.1.1. Semagacestat

Semagacestat (LY-450139) (Figure 4a) was the first GSI to enter a phase III trial for AD.
The compounds showed beta-amyloid-lowering effects in the in vitro assays [62]. Semagacestat is a
γ-secretase inhibitor for Aβ42, Aβ40, and Aβ38 with IC50 of 10.9, 12.1, and 12.0 nM, respectively. It also
inhibits Notch signaling with an IC50 of 14.1 nM in H4 human glioma cells [61]. The Tg2576 mouse model
is an in vivo AD model. This model carries the APP KM670/671NL mutations. Oral administration
of semagacestat (1 mg/kg) to 5.5-month-old APP-transgenic Tg2576 mice significantly improved the
memory deficits [63]. Recently, reports have suggested that semagacestat is a pseudo-inhibitor of
γ-secretase [64]. A phase III trial showed that semagacestat did not improve cognitive status and
those patients receiving the higher dose exhibited significant deterioration of their functional ability.
Semagacestat has more adverse effects, including cancers and skin infections (clinical trial number
NCT00594568) [65].

3.1.2. Avagacestat

Avagacestat (BMS-708163) (Figure 4b) was expected to enter a clinical phase II trial for AD.
Avagacestat is a γ-secretase inhibitor of Aβ40 and Aβ42 with IC50 of 0.3 and 0.27 nM, respectively,
and exhibits 193-fold selectivity against Notch in H4 human neuroglioma cells [66]. In vitro assays
revealed that avagacestat reduced CSF Aβ levels without causing Notch-related toxicities [67]. The drug
is administered orally to rats and dogs in the in vivo studies, and it significantly reduced Aβ40 levels



Int. J. Mol. Sci. 2020, 21, 1327 7 of 19

for sustained periods in the brain, plasma, and cerebrospinal fluid [66]. A phase II clinical trial revealed
that avagacestat was not effective (clinical trial number NCT00890890) [68].
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The first-generation GSMs are (c) R-flurbiprofen and (d) indomethacin. The second-generation
GSMs are (e) EVP-0015962, (f) BPN-15606, and (g) BIIB042.

γ-Secretase inhibitors (GSIs) block the γ-secretase-mediated cleavage of APP. However, these GSIs
also block the γ-secretase-mediated cleavage of other substrates, including the critical signaling
molecule Notch. For these reasons, drugs that do not inhibit the Notch signaling cleavage of γ-secretase
modulators (GSMs) may be candidate treatments for AD [69]. Given the amyloid hypothesis for
Alzheimer’s disease and ensuing cognitive decline, several treatments, including anti-beta-amyloid
(Aβ) small organic molecules, antigens, and monoclonal antibodies, have been developed to interfere
with Aβ production or increase clearance, including β-site beta-secretase (BACE) inhibitors, to block
the first enzymatic step of the formation of Aβ or GSIs. However, these clinical trials targeting amyloid
plaques of Alzheimer’s disease have failed in patients with mild-to-moderate Alzheimer’s disease [70].
GSIs have problems about leading to critical issues of Notch-related neuron toxicity [57,58]. Therefore,
GSMs may be a better and safer strategy for drug development against AD. GSMs can act through an
allosteric binding site to increase the concentrations of the shorter non-Aβ 1-42/Aβ 1-40 peptides.

3.2. γ-secretase modulators

GSMs differ from GSIs in that they do not alter total Aβ production, do not increase APP, and do
not alter the generation of γ-secretase substrates but rather decrease Aβ1–42 peptides and increase
Aβ1–38 peptides (Figure 5) [71]. Nonsteroidal anti-inflammatory drugs (NSAIDs), such as aspirin,
is commonly used for pain and inflammation in adults. NSAIDs selectively reduce the formation of
Aβ1-42 without inhibiting the proteolysis of Notch1. The first-generation GSMs include R-flurbiprofen
and indomethacin (Figure 4c–g) [72].

3.2.1. R-flurbiprofen (Tarenflurbil, MPC-7869)

R-flurbiprofen was expected to enter a clinical phase III AD trial (clinical trial number
NCT00105547). R-flurbiprofen has functioned based on downregulation by neuronal tryptophan
2, 3-dioxygenase (TDO2). TDO2 expression was increased by neuronal cyclooxygenase-2 (COX-2)
activities. The overexpression of TDO2 in the hippocampus led to behavioral deficits. R-flurbiprofen
has prevented behavioral deficits in APPSwe-PS1∆E9 mice [73]. In clinical trials of patients with
Alzheimer’s disease; R-flurbiprofen had low potency and brain penetration and was considered an
unsuccessful treatment [74,75]. The shortcomings of the drug were not improvement by changes in the
drug delivery route or the development of nanoparticle carriers [76].
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increase the levels of Aβ1–38 peptides. Aβ = beta-amyloid and GSM = γ-secretase modulators.

3.2.2. Indomethacin

Indomethacin was expected to enter a clinical phase III AD trial (clinical trial number NCT00432081).
Indomethacin showed more inhibitory effects against COX-1 than against COX-2 [77]. Indomethacin
attenuates neuronal pathological changes and cognitive impairments in APP/PS1 transgenic mice [78].
However, a clinical trial revealed that indomethacin did not improve the slow cognitive decline in
patients with AD [79].

First-generation GSMs have low potency and inefficient blood–brain barrier penetrance, which
affects the treatment of AD [80]. In second-generation GSMs, which include EVP-0015962, BIIB042
exhibited improved brain penetration ability [81]. GSM treatment of Alzheimer’s disease is considered
feasible. BPN-15606 is a highly potent GSM that is a candidate for human clinical trials [82].

3.2.3. EVP-0015962

EVP-0015962 (Figure 4e) decreased Aβ1–42 peptides and increased the shorter Aβ1–38 peptides,
thus lowering Aβ42 in the H4 cell model. The total levels of Aβ and the amyloid precursor protein
were not changed. In vivo, EVP-0015962 decreased memory deficits and reduced Aβ plaque formation
in Tg2576 transgenic animals [83]. EVP-0015962 will enter a clinical phase II trial for the treatment of
early AD onset (clinical trial number NCT01661673).

3.2.4. BIIB042

BIIB042 (Figure 4f) is a potent γ-secretase modulator that lowered Aβ42, increased Aβ38, and did
not affect Notch signaling in an in vitro model [84]. Tg2576 mice overexpress the human amyloid
precursor protein and serve as a research model for AD. BIIB042 reduced Aβ42 levels and Aβ plaque
burden in Tg2576 mice [85]. BIIB042 is a candidate drug for AD.

3.2.5. BPN-15606

BPN-15606 (Figure 4g) inhibited the production of the Aβ1–42 and Aβ1–40 peptides, while
facilitating the concomitant increase in Aβ1–38 and Aβ1–37 peptides production without inhibiting
the γ-secretase-mediated proteolysis of Notch. BPN-15606 can lower Aβ42 levels significantly in the
central nervous system of rats and mice [82]. Recent reports indicate that BPN-15606 is effective when
administered prior to the severe pathological manifestations of AD [86].
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4. Small-Molecular Combination GSM Treatments of Alzheimer’s Disease

GSMs have the opportunity to become candidate drugs for the treatment of AD, but a combined
treatment with drugs involving different mechanisms might provide additional efficacy for ameliorating
cognitive impairment in Alzheimer’s disease. Many Chinese herbal medicines are considered to have
the effect of treating dementia. We list small-molecule drugs extracted from commonly used Chinese
herbal medicines and their mechanisms of treating Alzheimer’s disease (Table 2). The GSM structure
is shown in Figure 6.
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4.1. Icariside

Icariside is an extract from Herba epimedii, an ancient herbal medicine. Aggregates of Aβ are the
agents responsible for disease progression in Alzheimer’s disease, and the accumulation of these
aggregates is toxic to the brain. The major regulatory alpha-secretase in neurons, A disintegrin
and metalloproteinase 10 (ADAM10), are responsible for cleaving APP. This cleavage generates a
neuroprotective APP-derived short fragment (C83) and attenuates the production of Aβ peptides [87].
The mechanism of icariside in the treatment of Alzheimer’s disease involves increased ADAM10
expression and decreased expression of both APP and BACE1, resulting in reduced production of
Aβ [88].

4.2. Onjisaponin

Onjisaponin B (OB) decreases Aβ by degradation of APP without direct inhibition of BACE1
and γ-secretase activities. In vivo, oral administration of OB mitigates Aβ pathology and behavioral
defects in APP/PS1 mice [89,90]. OB has effects of reduced IL-1β, IL-6, TNF-α, and malondialdehyde in
the serum and hippocampus of lipopolysaccharide-induced cognitive-deficit rats. OB have beneficial
effects by the antioxidant, anti-inflammatory, and anti-apoptosis in the lipopolysaccharide-induced
PC12 cells [91].
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4.3. Bajijiasu

Bajijiasu can inhibit neuronal inflammation, increase the levels of insulin degradation enzymes
and neprilysin, and decrease BACE1 expression [92]. Bajijiasu have a function of neuron-protectiveness
against Aβ-induced neurotoxicity in PC12 cells [93]. Animal studies also found the same function.
In APP/PS1 mice models, oral of bajijiasu improved learning and memory ability. The effects of
bajijiasu have protected neurons against apoptosis, elevated the expression of neurotrophic factors,
and alleviated endoplasmic reticulum stress [94].

4.4. Asarones

Asarones, the active constituents of Acori Tatarinowii Rhizoma, can improve the proliferation and
self-renewal of neural progenitor cells. A mechanistic study showed that asarones activated extracellular
signal-regulated kinase (ERK), part of a critical kinase cascade for neurogenesis [95]. Asarone have
decreased Aβ deposition in the cortex and hippocampus of APP/PS1 mice brains [96].

4.5. Catalpol

There is a significant positive correlation between brain-derived neurotropic factor (BDNF) content
and memory. Catalpol can improve memory and reduce neurodegeneration by increasing BDNF
expression [97]. In vitro, catalpol has been able to reduce the levels of soluble Aβ40 and Aβ42 in the
cerebral cortex, and thus, inhibit the formation of senile plaques [98].

4.6. Liquiritin

Liquiritin have been extracted from Glycyrrhiza uralensis. Oxidative stress plays an important role
in the pathogenesis of Alzheimer’s disease. Histopathological hallmarks of Alzheimer’s disease include
formation of senile plaques composed of the Aβ peptides. Aβ can aggregate in formation with metal
ions to catalyze production of reactive oxygen species [99]. Excessive oxidative stresses are generally
regarded as a pathological condition. Malondialdehyde (MDA) and 8-hydroxy-2′deoxyguanosine
(8-OHdG) are products of lipid peroxidation and are the most commonly detected biomarkers of
oxidative stress [100]. Liquiritin reduces MDA and 8-OHdG in the hippocampus of rats with Alzheimer’s
disease and, through related mechanisms, can significantly improve spatial learning and memory [101].

4.7. Glabridin

Deterioration of cholinergic innervation in the human cerebral cortex leads to significant cognitive
and behavioral disorders in Alzheimer’s disease [102]. Glabridin, a small-molecule drug studied as
a potential treatment for Alzheimer’s disease, has anticholinesterase activity. Glabridin reduced the
brain cholinesterase activity and memory improvement in amnesia mice. The U.S. Food and Drug
Administration approved cholinesterase inhibitors for the treatment of Alzheimer’s disease [103].

4.8. Tanshinone IIA and Cryptotanshinone

Tanshinone IIA (TIIA) and cryptotanshinone (CT) are extracted from Salviae miltiorrhizae as major
lipophilic compounds. In vitro, TIIA and CT significantly reduced intracellular NO and Ca2+ levels
in H9c2 cells [104]. The gliosis-related and neuro-inflammatory markers in the hippocampal tissues
revealed a remarkable reduction in the expression of glial fibrillary acidic protein (GFAP), S100β
protein, COX-2, inducible nitric oxide synthase (iNOS), and nuclear factor kappa-light-chain-enhancer
of activated B cells (NF-kBp65) after CRY treatment. TIIA and CT display anti-inflammatory and
neuroprotective effects in a nongenetic mouse model of AD [105].
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4.9. Ginsenoside Rg1

Ginsenoside Rg1 have been extracted from Panax ginseng. Ginsenoside Rg1 repaired hippocampal
long-term potentiation and memory in an Alzheimer’s disease mouse model. Through a mechanism that
includes increased activity of the antioxidant enzymes glutathione peroxidase and superoxide dismutase
and reduces astrocyte activation, it can increase the proliferation of hippocampal cells [106,107].

4.10. Astragaloside IV

Peroxisome proliferator-activated receptor (PPAR) agonists inhibit the expression of interleukin 6,
tumor necrosis factor α, and cyclooxygenase 2 in microglial cells and monocytes stimulated by Aβ and
reduce the proinflammatory and neurotoxic substances that these cells produce [108]. Astragaloside IV
(AS-IV), derived from Astragalus membranaceus, is a natural PPARγ agonist that suppresses the activity
of BACE1 and reduces the generation of Aβ. Activation of PPARγ in microglia by PPAR may be of
value in the treatment of Alzheimer’s disease and associated inflammatory diseases [109].

4.11. n-Butylidenephthalide

n-Butylidenephthalide (n-BP) is derived from Angelica sinensis. It has been applied to the
treatment of neurodegenerative diseases, including Parkinson’s disease [110], amyotrophic lateral
sclerosis [111], and Alzheimer’s disease [40]. n-BP was shown to reduce Aβ, total tau protein and
its hyperphosphorylated form, and cellular toxicity in iPSCs-derived neurons induced by Down
syndrome [40].

Table 2. The role and mechanisms of small-molecule drugs treated in the Alzheimer’s disease model.

Extracts Extracted from/
Chinese Name

Drug Doses &
Experimental Model Possible Molecular Mechanism Effect Reference

Icariin II Herba Epimedii/淫羊藿 APP/PS1 transgenic mice were
treated orally g icariside II 30 m/kg.

Effectively ameliorated cognitive function
deficits, but also inhibited neuronal degeneration

and reduced the formation of plaque burden.
[88]

Onjisaponin B Radix polygalae/遠志
APP/PS1 transgenic mice were

treated orally 200 µL of onjisaponin B
1 mg/mL.

The Onjisaponin B suppresses Aβ production
without direct inhibition of β-secretase and

γ-secretase activities.
[89]

Bajijiasu Morinda officinalis/巴戟天
APP/PS1 transgenic mice were
treated orally 20 mg and 80 mg

bajijiasu/kg.

Reductions of Aβ deposition and senile plaques
and have higher levels of neurotrophic factors

and inhibitory function on neuroinflammation in
the brains of APP/PS1 mice.

[92]

Asarones Rhizoma Acori
tatarinowii/石菖蒲

Adult hippocampal neural
progenitor cells (NPC) cultures

treated with 1 µM asarones.

The Asarones enhanced NPC proliferation and
neurogenesis in the hippocampi of transgenic

AD model mice.
[95]

Catalpol Rehmannia glutinosa/地黃
APP/PS1 transgenic mice were

treated orally catalpol 50 mg / kg.
Improves memory and protects the forebrain

neurons through increasing BDNF expression. [97]

Liquiritin Glycyrrhizae radix/甘草

Soluble amyloid-β1-42 oligomers
injected into the hippocampus
induced cognitive-deficit rats.
Treated by liquiritin was orally

50~100 mg/kg.

The drugs improve Aβ1-42-induced spatial
learning and memory impairment through

inhibiting oxidative stress and neural apoptosis.
[101]

Glabridin Glycyrrhiza glabra/洋甘草
Oral glabridin 25 and 50 mg/kg
treated for diabetic rats [112].

It reversed learning and memory deficits of
diabetic rats. [103]

Tanshinone IIA
Salviae miltiorrhizae/丹

Oral 10mg/kg treated for
nongenetic mouse model of
β-amyloid-induced AD.

That TIIA and CT display anti-inflammatory and
neuron-protective effects in a nongenetic mouse

model of AD.

[105].
Cryptotanshinone

Ginsenoside Rg1 Radix ginseng/人參
Oral 20 mg/kg D-galactose-induced

aging rat model.

It prevents cognitive impairment and
hippocampus senescence of D-galactose-induced

aging in a rat model.
[107]

Astragaloside IV Astragalus
membranaceus/黃耆

APP/PS1 mice that were treated
orally AS-IV 10 mg/kg.

AS-IV treatment increased PPARγ and reduced
Aβ plaque formation in the brain. [109]

n-Butylidenephthalide Angelica sinensis/當歸 Down syndrome - iPSCs were
treated n-BP 10µM for 3 days.

n-BP benefitted AD treatment by scavenging Aβ

aggregates and neurofibrillary tangles. [40]

5. Conclusions

Recent studies report tau pathology and neurodegeneration are enhanced, but amyloid pathology
is generally unaffected by concurrent tau pathology [113–115]. Through iPSCs, models get verified [116].
Using iPSCs that naturally produce Alzheimer’s disease symptoms to explore the mechanisms of
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small-molecule drugs and combining this approach with GSM or other therapies is a strategy for
developing Alzheimer’s drugs. At the same time, using an iPSC platform for drug screening may be
a good way to develop personalized medicine. Individual differences are perhaps the main cause
of setbacks to the development of Alzheimer’s drugs. Establishing the patient’s iPSC to confirm the
symptoms first and then accurately selecting the appropriate therapeutic drug may be a good way
to provide effective treatment to patients while reducing the rate of failure of drug development.
Through cryo-electron microscopy (cryo-EM) analysis, the structures for γ-secretase acting on the
APP-C83 fragment and Notch-100 fragment will help develop substrate-specificity secretase inhibitors
or modulators. Many small molecules extracted from Chinese herbal medicines, such as Curcumin,
Asarones, and Astragaloside, have been used for the treatment of dementia [117–119]. However,
these treatments have not achieved the expected results; thus, combinations of drugs with different
mechanisms may be necessary. An increase in the number of choices may increase the chances of
success in fighting Alzheimer’s disease (Figure 7).Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 14 of 21 
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Figure 7. The iPSC screen drug strategy of Alzheimer’s disease. The AD-iPSC cell model can produces
different AD symptoms, including β-amyloid accumulation, nerve entanglement, and inflammatory
response. iPSCs have be customized according to personalization and, through various different
treatment strategies, the treatment effect can be achieved more efficiently. AD = Alzheimer’s disease,
GSI = γ-secretase inhibitors, GSM = γ -secretase modulators, and iPSC = induced pluripotent stem cell.
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Abbreviations

AD Alzheimer’s disease
ADAM A disintegrin and metalloproteinase
APP Amyloid precursor protein
AS-IV Astragaloside IV
BACE β-site beta-secretase
BDNF Brain-derived neurotropic factor
cryo-EM Cryo-electron microscopy
COX-2 Cyclooxygenase-2
CT Cryptotanshinone
DLB Dementia with Lewy bodies
ERK Extracellular signal-regulated kinase
FTLD Frontotemporal dementia
GSI γ-secretase inhibitors
GSMs γ-secretase modulators
GFAP Glial fibrillary acidic protein
iNOS Inducible nitric oxide synthase
MAPT Microtubule-associated protein tau
MCI Mild cognitive impairment
MDA Malondialdehyde
NICD Notch intracellular domains
NSAIDs Nonsteroidal anti-inflammatory drugs
NF-kBp65 Nuclear factor kappa-light-chain-enhancer of activated B cells
n-BP n-Butylidenephthalide
OB Onjisaponin B
PSEN-1 Presenilin-1
PSEN-2 Presenilin-2
PDAPP PDGF promoter driven amyloid precursor protein
PPAR Peroxisome proliferator-activated receptor
SCD Subjective cognitive decline
TIIA Tanshinone IIA
VaD Vascular dementia
8-OHdG 8-hydroxy-2′deoxyguanosine
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