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Over the last years a great number of bacterial genomes were sequenced. Now one of the most important challenges of
computational genomics is the functional annotation of nucleic acid sequences. In this study we presented the computational
method and the annotation system for predicting biological functions using phylogenetic profiles. The phylogenetic profile of a
gene was created by way of searching for similarities between the nucleotide sequence of the gene and 1204 reference genomes,
with further estimation of the statistical significance of found similarities. The profiles of the genes with known functions were
used for prediction of possible functions and functional groups for the new genes. We conducted the functional annotation for
genes from 104 bacterial genomes and compared the functions predicted by our system with the already known functions. For the
genes that have already been annotated, the known function matched the function we predicted in 63% of the time, and in 86% of
the time the known functionwas foundwithin the top five predicted functions. Besides, our system increased the share of annotated
genes by 19%. The developed system may be used as an alternative or complementary system to the current annotation systems.

1. Introduction

Recent advances in genome sequencing have provided access
to a wide variety of nucleic acid sequences [1]. Thousands of
complete bacterial genomes, as well as numerous eukaryotic
genomes, are now available for use. But to effectively apply
this knowledge, we must understand the functions of genes
in cells, which makes functional characterization, that is,
annotation of the already sequenced genes, our top priority
[2].There are twomethods to solve this task.The first one is in
vitro, the experimental biological approach, which allows us
to receive the most reliable information about the functions
of genes and other sequences [3]. However, these researches
are quite time-consuming and expensive. In silico approach is
the other option: computer-based annotation is rather low-
cost and the results can be obtained much faster. Yet the
reliability is not high compared to the experimental approach.
Besides, there are genes which cannot be annotated with the
computer approach, and their share in bacterial genomes,

though varying for different genomes, averages 45% [4]. Our
purpose is to develop new mathematical and computational
techniques in order to increase the share of annotated
genomes and improve the annotation reliability [5, 6].

The bacterial genes computer annotation is based on one
main principle: if two sequences are similar, the probability of
their biological functions being similar is very high.This idea
underlies all of the currently used mathematical annotation
methods [7, 8] of which the most widespread are those
based on the heuristic similarity search algorithm, multiple
sequence alignment, hidden Markov model (HMM), and
complex systems combining several methods.Thesemethods
were used to assign functions to nearly 60% of sequenced
bacterial genes, while around 40% are not yet characterized.
Let us examine the main computer annotation methods in
more detail.

(1) Dynamic Programming and Heuristic Algorithms. The
main principle behind the annotation is as follows: if a known
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sequence in a database is similar to the one under study, their
functions are likely to be similar too. Methods used to detect
similarities between nucleotide sequences include global and
local alignment, both of which are based on dynamic pro-
gramming [9, 10]. These methods are the most precise ones
but are not very efficient due to their extensive computational
complexity. Therefore, the heuristic programming tools for
pairwise alignment such as BLAST [11] and FASTA [12] with
various Expect value thresholds are more widespread. As
a source of sequences with known functions they use the
following databases: RefSeq [13], GenBank [14], KEGGGenes
[15], UniProt [16], and Swiss-Prot [17]. Compared to the
dynamic programming, however, the heuristic algorithms
discover much fewer significant alignments. At the same
time, this is the only approach allowing us to analyze all the
gene sequences available so far.

(2) HMM-Based Systems. Pfam [18] and TIGRfam [19] are
both protein families databases containing multiple align-
ments, HMMmodels, and related information for automatic
classification and annotation of new proteins. The search for
the most probable models is carried out with HMMER3 [18]
or PSI-BLAST [20] software tools. To annotate genes using
HMM, it is necessary to form the training and validation gene
sets, train the HMM models, and conduct cross-validation.
Then the best match between the HMM and the gene
under study is used for functional annotation. This approach
inherits all of the features, advantages, and disadvantages of
machine learning: importance of forming original samples
correctly, avoiding system retraining, and so forth. At the
same time, the quality of functions prediction with HMM is
much higher than in some machine learning algorithms [21].

(3) Phylogeny-Based Methods. One of these methods uses the
COG database [22], which contains clusters of orthologous
genes. Three or more genes are grouped into one cluster if
they are found in different genomes and are more homol-
ogous to each other than to other genes in these genomes.
Currently there are about five thousand COG clusters with
known biological functions. The main idea is that ortholo-
gous genes are likely to have the same biological functions.
The method used to define such functions is similar to the
methods described above. To annotate a gene, initially there is
a database created containing clusters of orthologs of known
genes. Further, the functions of the gene under study as
well as its COG cluster are defined by way of searching for
similarities between this gene and the known genes from
the database. The sequences are compared by searching for
significant alignments with the BLAST software. One of
the disadvantages of the approach is the need to analyze a
significant number of organisms before a phylogenetic tree
and COG clusters can be created; the other one is that to
conduct the search for significant alignments the heuristic
tools are used, and they cannot guarantee that all statistically
significant alignments are discovered.

(4) Pipelines. InterPro [23] is a system that uses the protein
families database with known functions, signatures, and
Gene Ontology [24] (GO) terms to determine features of

new proteins. InterPro contains 11 different databases: Pfam,
TIGRfam, SUPERFAMILY, and others. For search and anno-
tation the InterProScan tool is used [25].

IMG(-ER) [26] is a system for automatic annotation of
new genomes and expert functions review. It includes native
IMG terms derived from Pfam, TIGRfam, COG, Swiss-Prot,
GO, and KEGG and is used for annotation of completely new
genomes and for complementation of existing annotations.
The database contains more than four thousand various gene
functions; about 20% of all genes are covered by IMG terms.

JCVI [27] is a system for structural and functional anno-
tation of genes. Functional annotation is based on BLAST,
RPS-BLAST, HMM, and other systems for homology search
between nucleotide sequences. As a result of annotation, the
gene is assigned a name, symbol, GO terms, EC number, and
JCVI functional role categories.

RAST [28] is a fully automated service for annotating
bacterial and archaeal genomes. It uses manually curated
subsystems of functional roles and protein families (FIGfams)
largely derived from the subsystems.This service is developed
by the SEED project, which also provides convenient tools for
viewing and analyzing results of the annotations.

GenDB [29] is an open source project that provides a
web interface and API for gene annotation. For functional
annotation it uses BLAST, HMMER, InterProScan, and other
prediction tools.

Although by using several annotation methods we can
increase the number of genes with predicted functions,
complex systems inherit features and drawbacks of their
subsystems. Besides, it is sometimes difficult to choose
between the results from different algorithms.

(5) Phylogenetic Profiles. When the similarity between two
nucleic or amino acid sequences is not strong (usually that
means below 70%), we cannot be sure that these sequences
have the same biological roles notwithstanding the number
of similarities found. However, we shall consider the fact that
not a separate gene but a combination of genes involved in a
genetic process is relevant for the viability of bacteria. This
means that genes found in one and the same combination
in different bacterial genomes are most probably involved in
the same genetic process. Hence, the information about the
gene under study being involved in a group of genes present
in genomes of different bacteria may be critically important
for prediction of its function.

To obtain this information, we form the so-called phy-
logenetic profiles [30]. They are created for every gene of
the bacterial genome using the following method. First,
certain genome sequences are selected, which we will call
the reference group. Then a phylogenetic profile is built for
every gene in these sequences; this profile is a vector of ones
and zeros with the length equaling the size of the reference
group. Thus, every gene from the group matches 0 or 1 in
the corresponding phylogenetic profile: a zero means the
bacterial genome contains no homolog for the gene under
study; if a similar gene is found, the entry is a one.

After constructing profiles for the reference group, we
build one for the gene under study. Using a similarity metric
we can now compare the profiles. If the gene under study
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is part of a combination involved in one genetic process, its
profilewill be similar to one or several profiles in the reference
group. Otherwise no similarities will be found.

This approach was first used by Pellegrini for protein
sequences [31] andwas sufficiently developed over the last ten
years in terms of the creation, comparison, and analysis of
phylogenetic profiles. Particularly, the concept of using real
vectors or matrices instead of binary vectors was developed.
Also, various approaches to comparison of phylogenetic
profiles were suggested, such as the mutual information
approach, Jaccard coefficient, Pearson correlation, and hyper-
geometric distribution.The detailed review of the approaches
was given in studies [32, 33].

However, the results very much depend on the similarity
search method used. In this study, we used the phylogeny-
based method, though it is a little amended. Firstly, with
the help of BLAST we searched for homologs with different
values of reward and penalty, which ensured the reasonable
search speed and allowed us to find a large number of local
alignments. Secondly, we used the dynamic programming
algorithm [9] with the PuPy substitution matrix [34] to
see if a statistically significant global alignment could be
found where BLAST had discovered a local one. The rea-
son we looked for global alignments only was that local
alignments often indicate partial similarities, not the whole
gene homologs. To define statistical significance of a global
alignment, the Monte Carlo method was used [35]. Thirdly,
we compared the annotated gene to the bacterial genomes,
not to single genes, which saved us from mistakes associated
with the structural annotation of bacteria, that is, with
genes demarcation. Following this analysis, a phylogenetic
profile was built for every gene under study, which was then
compared to the profiles of the reference group genes. Our
study resulted in annotation of an additional 19% of genes
which could not be annotated with any of the previously
used methods. At the same time, we were unable to assign
statistically valid functions to 9% of the genes.

2. Materials and Methods

2.1. Phylogenetic Profiles. Phylogenetic profiles are used to
create sets of genes that are involved in the same genetic
process. This approach was first applied in 1998 by Pellegrini
and his colleagues [31]. To create a phylogenetic profile of a
gene, it is necessary to form a binary vector as follows: if a
gene has been detected in the 𝑖th genome, the 𝑖th position
of the vector contains 1; if there is no gene found, it is 0. We
assume that the genes involved in the same genetic process
will have similar phylogenetic profiles constructed from the
same set of reference genomes. The assumption is derived
from the fact that the gene normally performs its function
not alone but in conjunction with other genes as part of one
metabolic pathway. In the course of evolution this process is
inherited by different organisms; as a result, more functional
groups emerge containing genes of similar profiles [36].

In this paper, for the predicted functionwe take one of the
most probable predicted functions from the gene’s functional
group.As you can see, the phylogenetic approach does not use
direct comparison of the coding sequences of genes against
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Figure 1: Creation of the phylogenetic profiles database for genes
with known functions. Function prediction for a new gene.

each other but takes into account the cooccurrence of certain
genes in the genomes. So, this approach can supplement the
annotation methods discussed in the previous section and
predict functions for those genes, forwhich the best similarity
is significantly lower than 70%.

2.2. The Method Description. Our work in this study had
two stages: creation of a database containing phylogenetic
profiles of genes with known functions and prediction of
the functions for genes using the previously created database
(Figure 1).

To create a phylogenetic profile of a gene, it is necessary to
determine a set of reference genomes. As of this writing, there
were more than 2,100 bacterial genomes sequenced; however,
using close genomes, for example, strains of one organism,
impairs precision of predictions because occurrences of
the gene in such genomes are not independent. So from
all bacterial genomes we only selected 1,204 as reference
genomes. To create the database of phylogenetic profiles,
we used all the genes with known functions from the 1,204
reference genomes: 3.7 million genes in total.

The major task in the database creation process was to
determine the similarity significance for each pair of genes
and genomes. First, we used BLAST with different options to
search for significant local alignments. After that we extended
the found local alignments to global alignments and for
each global alignment we calculated scores 𝐹 of dynamic
programming (Needleman-Wunsch algorithm [9]) using the
PuPy matrix. Using the Monte Carlo method and (1), we
calculated statistical significance for each global alignment
on the assumption that the distribution of the score 𝐹 was
normal [37]:

𝑍 =
𝐹 −𝑀(𝐹)

√𝐷 (𝐹)

, (1)

where 𝐹 is the score of alignment and 𝑀(𝐹) and 𝐷(𝐹) are
the sample mean and sample variance of the random value 𝐹.
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The sequences sample was created from the original sequence
by randomly shuffling its symbols. 𝑀(𝐹) and 𝐷(𝐹) were
calculated on the samples with size 1000.

Further, we created binary vectors for each gene by the
following rule: we assigned 1 to the 𝑖th element of the vector
if the statistical significance of the global alignment between
the gene and the 𝑖th genome exceeded the chosen minimal
value and 0 if no similarity was found or if its significance
did not exceed the chosen minimal value.Therefore, for each
gene we created a binary vector with length𝑁, where𝑁 is the
number of referent genomes. We chose the minimal value of
statistical significance 𝑍 = 5.0, so that the probability to find
more than one 1 for random sequences was 5%.

Since the names of the same functions may vary in
different annotation systems, we unified them by using
the Gene Ontology (GO) terms. As a result, the predicted
functions in our system are represented as GO terms.

To predict a function, we first create a binary vector for
the gene in the same manner as when creating the database
of known functions, after which we search for similar vectors
in this database using the probability measure that will be
described below. Let𝑁 be the size of the reference group and
let the vector length, 𝑛

1
, be the number of 1 in the vector (i.e.,

in the phylogenetic profile) of the first gene, 𝑛
2
the number of

1 in the vector of the second gene, and 𝑛
12
the number of com-

mon 1 (i.e., placed in the same positions) in the first and sec-
ond genes. As ameasure of similarity between two vectors, we
chose the probability 𝑃 of observing 𝑛

12
or greater cooccur-

rences between two profiles purely by chance. As is known,
the randomvariable of common 1 follows the hypergeometric
distribution [38]; hence the probability𝑃 can be calculated by

𝑃 (𝑛 ≥ 𝑛
12
) =

min(𝑛
1
,𝑛
2
)

∑

𝑘=𝑛
12

𝐶
𝑘

𝑛
1

× 𝐶
𝑛
2
−𝑘

𝑁−𝑛
1

𝐶
𝑛
2

𝑁

, (2)

where 𝐶𝑘
𝑛
= 𝑛!/𝑘!(𝑛 − 𝑘)! is the number of 𝑘-combinations

from the given set of 𝑛 elements.
Vectors of the genes, the probability 𝑃 for which did

not exceed the chosen threshold, participate in determining
the potential function of the annotated gene. The result of
the prediction is a list of possible functions, sorted by the
probability 𝑃. For phylogenetic profiles filtering, we chose
the 𝑃
0
threshold of 10−7. The vector pairs with 𝑃 > 𝑃

0
are

considered different.We tested the selected threshold on a set
of random vectors: the selected𝑃

0
value provides such level of

significance, inwhich of 107 comparisons of two randomphy-
logenetic profiles no more than one has the level of 𝑃 < 𝑃

0
.

3. Results

3.1. Comparison of the Current Work to Previously Con-
ducted Annotations. To evaluate the quality of the developed
method, we used it to predict possible functions for the
genomes which had already been annotated. Since the system
database already contained genes from these genomes, for
testing purposes we excluded them from the reference group.
The method detects a functionally linked group of genes
rather than the one most probable function. That is why

Table 1: Bacterial genomes grouped by annotation method.

Annotation methods Number of
genomes Group ID

NCBI, UniProt, TIGRfam, Pfam,
PRIAM, KEGG, COG, InterPro,
IMG-ER

38 GRP 1

BLAST, homology 28 GRP 2
GenDB, BLAST, COG, COGnitor 7 GRP 3
InterPro(Scan) 5 GRP 4
Total 104 GRP ALL

we compare the known function not to the single predicted
one but to the first 𝐾 of more probable functions. Below we
describe the approach in more detail.

Of 1204 reference genomes we selected at random 104
bacterial genomes from various families. For every genome,
we defined the method it was formerly annotated with and
then grouped the genomes accordingly (Table 1). It was
essential so that we could afterwards compare our results to
the results obtained from the previous annotations based on
different methods.

The system presents the predicted function as a set of
Gene Ontology terms. Let us see what the GO terms are
in more detail. Each term may belong to one of the three
domains: cellular component (C), molecular function (F),
and biological process (P). Hence, every function may be
presented as a set of terms from these domains, though not
necessarily from all three of them at once. It is worth noting
that GO terms in each domain are structured as a tree, where
each term is a leaf or an internal vertex. We were mostly
interested in molecular functions of genes; therefore in this
study we will only cover results for terms of this type (F);
however, similar results were obtained for every type (C,
F, and P) separately and for the combination of all three
together. To compare sets of terms, we used two approaches:
perfect match, when all the terms should match for the sets to
be equal, and fuzzy match, when the sets are considered equal
if at least one pair of terms match one another.

By the known function we will mean the previously
annotated function, and by the predicted function, the one
obtained in this study. To define the system characteristics,
we introduced subsets, which are displayed in Figure 2 and
described in detail in Table 2. Since the annotation results
are presented as a list of possible functions, we consider the
functions equal if the known function is foundwithin the first
𝑁 most probable predicted functions. The list was arranged
by probability P (see (2) below); for this study we take𝑁 = 5.

To evaluate the precision of predictions, we split theC
5
set

into two subsets. Let the C
6
set be a subset of genes for which

the known function was found within the top five (𝑁 = 5)
predicted functions. Therefore, 𝐶

7
= 𝐶
5
− 𝐶
6
is a subset of

those genes from C
5
for which the known function differs

from the predicted function (the known function was not
found within the top five predicted functions).

In Table 2, we would like to highlight the two sets and two
subsets of genes which are essential for estimating the quality
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Table 2: Subsets of genes used to compare the current and previous
annotations.

Name Description
𝐶
0

All genes under study

𝐶
1

The subset of genes from the 𝐶
0
set that have known

functions

𝐶
2

The subset of genes from the 𝐶
0
set that have predicted

functions

𝐶
3

The subset of genes from the 𝐶
2
set that have predicted

functions, but no known functions. 𝐶
3
= 𝐶
2
− 𝐶
1

𝐶
4

The subset of genes from the 𝐶
1
set that have known

functions, but no predicted functions. 𝐶
4
= 𝐶
1
− 𝐶
2

𝐶
5

The subset of genes from the 𝐶
0
set that have both

known and predicted functions. 𝐶
5
= 𝐶
1
∩ 𝐶
2

𝐶
6

The subset of genes from the 𝐶
5
set for which the

known function was found within the top five predicted
functions

𝐶
7

The subset of genes from the 𝐶
5
set for which the

known function was not found within the top five
predicted functions. 𝐶

7
= 𝐶
5
− 𝐶
6
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Genes with
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Known and 
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Figure 2: Subsets of genes under study.

characteristics of our annotation system in comparison with
the annotations that have been made previously. These are
sets C

3
and C

4
and subsets C

6
and C

7
. The C

3
set contains the

genes that have predicted functions, but no known functions.
The C

4
set contains the genes that have known functions, but

no predicted functions. The C
6
and C

7
subsets were defined

in the previous paragraph.
This section contains prediction results grouped by

method of their original annotation and by method of
comparison of their known function with the predicted ones.
In all tables we define the size of the 𝐶

𝑖
sets as 𝑁

𝑖
. Tables

3 and 4 show the share of various gene sets in the total
number of genes: these are the set of previously annotated
genes and the set of genes annotated with our system, as well
as their intersections and subsets. The obtained results can
be visualized with the diagram in Figure 3 (the perfect match
method of functions comparison is used).

All genes
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known functions

Known and 
predicted 

functions differ Known and 
predicted 

functions match

Genes with
predicted functions

Genes with known
and predicted functions

40%
7%

9%

19%

(100%)

(66%)

(56%)

Figure 3: Visualization of annotation results.

It is clear that the share of genes from the C
3
set varies

from 16.9% to 21.4% and averages 19% (Table 3). The share of
genes from the C

4
set varies from 6.8% to 11.3% and averages

9%. To determine the equality of known and predicted
functions, we used the two above-described ways, perfect
match and fuzzy match (Table 4).The share of genes from the
C
6
set varies from 37.7% to 44.4% and averages 40% (Table 4).

The share of genes from the C
7
set varies from 3.8% to 8.5%

and averages 7%. As you can see from Table 4, these results
vary slightly depending on the comparison approach (perfect
match or fuzzy match). The major difference between the
known and predicted functions (i.e., the maximum ratio of
N
7
/N
6
) is observed for the group of genes defined in Table 1

as GRP 4.
It is also interesting to estimate the precision of pre-

dictions for the top one (𝑁 = 1) function of the genes
from the C

3
set. For this purpose we analyzed the genes

from the C
5
set (which consists of the genes that have both

known and predicted functions) and found for each gene
the minimum size of the predicted functions list so that it
contained the known function. This dependence in terms of
percentage points is presented in Table 5. The size of the C

5

set is designated as 100%; each row shows the share of each
place in the list where the known function was found. As can
be seen from Table 5, the known function was found on the
top of the predicted functions list in 63% of the time and in
Positions 2 to 5 in 23% of the time; 13% of cases accrued to
Position 6 and higher. These results show that when we use
themost probable predicted function, the precision to predict
the known function is 63%. Therefore, we can conclude that
precision for genes from the C

3
set may be the same.

These results also justify the choice of 𝑁 = 5 for
comparing the biological functions for the C

5
set genes

(𝐶
6
+ 𝐶
7
). As you can see from Table 5, the share of exactly

predicted functions stops increasing notably at 𝑁 = 3 and
reaches saturation at𝑁 = 5.

3.2. Results of Metabolic Pathways Prediction. As is known,
each gene may be part of one or several metabolic pathways.
In other words, the gene may be functionally linked with
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Table 3: Shares of 𝐶
1
–𝐶
5
subsets in the total number of genes (𝑁

0
).𝑁
1
/𝑁
0
is the share of genes from the 𝐶

1
set;𝑁

2
/𝑁
0
is the share of genes

from the 𝐶
2
set;𝑁

3
/𝑁
0
is the share of genes from the 𝐶

3
set;𝑁

4
/𝑁
0
is the share of genes from the 𝐶

4
set;𝑁

5
/𝑁
0
is the share of genes from

the 𝐶
5
set.

Group ID 𝑁
0
(number of genes) 𝑁

1
/𝑁
0

𝑁
2
/𝑁
0

𝑁
3
/𝑁
0

𝑁
4
/𝑁
0

𝑁
5
/𝑁
0

𝐶
1

𝐶
2

𝐶
3

𝐶
4

𝐶
5

GRP 1 144157 0.551 0.613 0.169 0.113 0.444
GRP 2 82170 0.573 0.668 0.186 0.091 0.482
GRP 3 24657 0.568 0.714 0.214 0.068 0.500
GRP 4 20592 0.549 0.663 0.194 0.080 0.469
GRP ALL 375151 0.563 0.658 0.186 0.091 0.472

Table 4: Comparison of original and predicted functions. 𝑁
5
/𝑁
0
is the share of genes from the 𝐶

5
set (these genes have both known and

predicted functions),𝑁
6
/𝑁
0
is the share of genes from the 𝐶

7
set (genes from 𝐶

5
for which the known function and the predicted function

are equal), and𝑁
7
/𝑁
0
is the share of genes from the𝐶

7
set (genes from𝐶

5
for which the known function differs from the predicted function).

Group ID 𝑁
5
/𝑁
0

Perfect match Fuzzy match
𝑁
6
/𝑁
0
= 𝐶
6

𝑁
7
/𝑁
0
= 𝐶
7

𝑁
6
/𝑁
0
= 𝐶
6

𝑁
7
/𝑁
0
= 𝐶
7

GRP 1 0.444 0.377 0.067 0.401 0.043
GRP 2 0.482 0.420 0.062 0.444 0.038
GRP 3 0.500 0.432 0.068 0.460 0.040
GRP 4 0.469 0.384 0.085 0.419 0.050
GRP ALL 0.472 0.407 0.065 0.432 0.040

Table 5: Distribution of places in the list of predicted functions
where known function was found.

Position of the
known function in
the list

Cumulative
percentage
of genes

Percentage
of genes

Number
of genes

1 63.23 63.23 108806
2 77.12 13.89 23894
3 82.06 4.94 8498
4 84.64 2.58 4446
5 86.23 1.59 2743
6 87.36 1.13 1949
7 88.19 0.83 1433
8 88.84 0.65 1127
9 89.40 0.56 962
10 89.87 0.47 783

one or several groups of genes. Based on this statement, we
created functional groups for each gene. This statement may
be verified by calculating the share of common functions
between a metabolic pathway and a predicted functional
group.Thismeasuremay be an additional quality characteris-
tic for the system. For each gene, we determined the number
of predicted functions that were involved in its metabolic
pathway. The information about metabolic pathways was
received from the KEGG database and processed in the
following way:

(1) Since metabolic processes can be quite extensive, we
filtered out those containing more than 30 genes.

(2) We consider only those genes that were involved in at
least one metabolic process described above.

(3) If a gene was involved in more than one metabolic
pathway, we selected for it the pathway with the
smallest number of genes.

For each gene we formed two lists of most probable functions
with lengths𝑄 and 2𝑄, where𝑄 is the length of themetabolic
pathway of the gene. After that, we calculated the share of
metabolic pathway functions contained in each of these lists.
Accordingly, the higher the share is, the better the predicted
functions group defines the metabolic pathway.

About 90,000 genes from 375,000 genes under study were
involved in metabolic pathways from the KEGG database.
We chose 70,000 genes that were involved in the filtered
metabolic pathways described above. The metabolic path-
ways were grouped by the number of contained functions;
the results for each group were averaged by the size of the
group and can be found in Table 6. As you can see, for the
fuzzy match approach the coverage of the𝑄 length metabolic
pathway by the list of top 𝑄 predicted functions is about 0.5,
and for the list of top 2𝑄 predicted functions it is about 0.6.
At the same time, for the perfect match approach we evidence
high dependency on the length of a metabolic pathway,
and the coverage strongly decreases with the increase of the
length. If the length of a metabolic pathway is in the range
from 1 to 4, the coverage is about 0.4; for pathways with the
length between 25 and 30 the coverage is about 0.1.

The results of annotations for genes under study can be
freely accessed at http://genefunction.ru/public results/.

4. Discussion

First of all, it is interesting to consider the genes for which
functions predicted in our study differ from the known
functions.They fall into the subset of genes which we defined
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Table 6: The average share of functions from the 𝑄 length metabolic pathway in the lists of top 𝑄 and top 2𝑄 predicted functions.

Approach Size of predicted functions list Metabolic pathways length range (𝑄)
1–4 5–9 10–14 15–19 20–24 25–30

Perfect match 𝑄 0.381 0.198 0.162 0.115 0.097 0.090
2𝑄 0.415 0.235 0.196 0.144 0.125 0.115

Fuzzy match 𝑄 0.549 0.462 0.495 0.440 0.427 0.453
2𝑄 0.588 0.530 0.572 0.538 0.543 0.578

as C
7
in Table 2 and Figure 2. The share of this set is 7%

from the total number of the genes under study (Figure 3).
The difference can be explained by the fixed size of the top
predicted functions for each gene. To compare them with
the known functions we use the top five predicted functions
sorted by probability 𝑃. As you can see from Table 5, a known
functionwas foundwithin the top five predicted functions for
86% of the genes. For 14% the five best predicted candidates
did not contain an already known function. This may occur
in three cases. Firstly, the genes may be involved in several
metabolic pathways with different functions (i.e., functions
of the gene in these pathways are different). If one of these
metabolic pathways is more widespread in genomes under
study than the others, the function of the gene in this pathway
may be predicted as more probable; thus the previously
predicted (known) function may not be found among the
top five predicted functions. Secondly, the gene may have
a mutated copy (paralog), which takes part in a different
genetic process. Such paralog may participate in a metabolic
process that can be found in a greater number of reference
bacterial genomes than the metabolic process in which the
original gene we study participates. Thirdly, there might be
a mistake made in previous annotations, but the probability
of that to happen is very small, which may be explained by
the high level of similarity between sequences in the previous
annotations.

It is also interesting to consider the C
4
set which contains

genes for which no predicted functions were found in the
present work. The share of such genes is 9% of the total
number of analyzed genes. There are two reasons to explain
the absence of predicted functions for these genes.The first is
that the search for similarities in this work was performed by
comparing the nucleotide sequences rather than the amino
acid sequences. Some significant similarities of the amino
acid sequences may appear insignificant on the nucleotide
level, and their statistical value will be below the threshold
level. Secondly, thismay be explained by the specific feature of
the approach: to create a group of related genes it is necessary
to find similar vectors with a sufficient number of 1; that is,
the gene must be found in a sufficient number of different
genomes. In most cases when a group cannot be created, it is
because of few 1 in the profile of the gene rather than due to
the absence of similar vectors.

The most successful result of our work is the C
3
subset of

genes for which there were no previously predicted functions
before our study; the share of this set is 19% of all genes
that have been examined in the present work. The fact that
these functions have never been predicted before can be

explained by the difference of approaches. The vast majority
of the existing annotation methods identifying orthologs
use amino acid sequences with the sufficiently high level of
similarity only, which allows predicting the equality of their
biological functions with great probability: the higher the
similarity, the stronger the indication that these sequences are
exact orthologs. When the similarity level is lower (though
still statistically significant), more potential homologs can
be found: the greater part of them are paralogs (mutated
copies with unrelated functions), but it is entirely possible
that orthologsmay also be found among these similarities. To
separate one fromanother, some additional informationmust
be used. In this work, such information is the similarity of
phylogenetic profiles. The similarity between the profiles will
be significant for orthologs and either missing or statistically
less significant for paralogs. Therefore, this additional filter-
ing by phylogenetic profiles allows us to sort out paralogs and
to predict biological functions for genes using the similarities
not accounted for by the existing annotation methods. We
also increased the number of significant similarities by
using several cycles of local alignments search with different
parameters, including the purine-pyrimidine weight matrix
for global alignment. Besides, we compared each gene with
whole bacterial genomes rather than with sets of previously
selected genes from these genomes. It allowed us to avoid
errors during structural annotations, that is, when identifying
the gene sequences in the bacterial genomes. To sum it all
up, our success in annotating new genes is based on the
phylogenetic profiles comparison method, which allowed
us to find additional orthologs among a great number of
paralogs.

Let us also estimate the precision of biological function
predictions for genes from the C

3
set. For this estimation,

we use as the prediction result the first function in the
list sorted by probability 𝑃. As you can see in Table 5, the
predicted biological functions of 63% of all genes examined
in the present work coincide with known functions. It can
be expected that the precision of predictions for the C

3

genes will be the same (about 63%). The obtained results
look reasonably better in comparison to similar studies; for
instance, in a previous study for the E. coli genome the known
function was found on the top of the predicted functions
list in 43% of the time and within the top ten in 60% of the
time and for the S. cerevisiae genome the known function was
found within the top fifty predicted functions in 60% of the
time [39]. However, in our study the known function was on
average found within the top five predicted functions in 86%
of the time.
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Table 7: Using of RAST and InterProScan for annotation of genes
from 10 bacterial genomes. Subsets of genes𝐶

3
,𝐶
4
, and𝐶

5
are shown

(Table 2).

𝐶
4
, % 𝐶

5
, % 𝐶

3
, %

RAST 17 48 9
InterProScan 12 44 13

Since the developed system first of all determines groups
of functionally linked genes and only after that the single
functions, we tried to estimate the quality of such functional
groups by comparing their functions with those of the
genes in metabolic pathways. Comprehensive results can be
found in Table 6. A predicted group of size 𝑁 contains
about half of the functions of the size N metabolic pathway
when compared with the fuzzy match method. Thus, we
can conclude that the coverage of the metabolic pathway
increases if we expand the list of the top predicted functions.
On this conclusion we agree completely with the previously
published studies [40, 41]. We consider these results to be
reasonably good.The existing systems of metabolic pathways
are based on the readings from publications and literature,
while our system uses the nucleotide sequence itself (thus
making it possible to create functional groups even if there
is no published information for the metabolic pathway of the
gene). So it may serve as a very fast preliminary method to
create groups of genes taking part in the same genetic process.

We compared directly the annotation, which we did with
the help of our system, with the annotation, which can be
done byRAST and InterProScan [25, 28]. For this, we chose 10
random bacterial genomes which together contained 32536
genes. All these geneswere annotated byRAST, InterProScan,
and our system and the annotation results are shown in
Table 7 in terms of Table 2. From these results it is seen
that our system annotates 9 and 13% of genes additionally to
RAST and InterProScan, respectively. At the same time, for
17 and 12% of genes annotated by RAST and InterProScan
our system cannot make the annotation. In general the direct
analysis gave the results comparable with the results received
in the original publications (Figures 2 and 3). We made
the estimate of the number of false positives which may
be present in the annotation results. To do this, we mixed
up the sequence of each of 32536 genes with preservation
of the triplet periodicity [42] and then random sequences
were annotated as real genes. We received 18% and 1.3% of
random sequences annotated using RAST and InterProScan,
respectively. In the case of our system, the number of
annotated random sequences was about 0.5%. Thus, the
annotation done by RAST contains a significant number of
false positives and the accuracy of the RAST annotation is
very low. The number of false positives for InterProScan and
for our system is comparable.

Although the developed system does not make exact
predictions of gene functions (the precision is about 63%; see
Table 5), it may be used as an alternative or complementation
to the existing annotation systems: the existing systems
predict functions for genes from sets C

4
and C

5
, and our

system covers functions for genes from sets C
3
and C

5
.

Therefore, the use of our system can increase the share of
annotated bacterial genes by 19% (by the size of the C

3
set).
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