
RESEARCH ARTICLE

Examining distinct working memory

processes in children and adolescents using

fMRI: Results and validation of a modified

Brown-Peterson paradigm

Vanessa Siffredi1,2,3*, Pierre Barrouillet1, Megan Spencer-Smith2,4, Maarten Vaessen1,

Vicki Anderson2,3,5, Patrik Vuilleumier1

1 University of Geneva, Geneva, Switzerland, 2 Murdoch Childrens Research Institute, Melbourne,

Australia, 3 University of Melbourne, Melbourne, Australia, 4 Monash University, Melbourne, Australia,

5 Royal Children’s Hospital, Melbourne, Australia

* vanessa.siffredi@gmail.com

Abstract

Verbal working memory (WM) comprises different processes (encoding, maintenance,

retrieval) that are often compromised in brain diseases, but their neural correlates have not

yet been examined in childhood and adolescence. To probe WM processes and associated

neural correlates in developmental samples, and obtain comparable effects across different

ages and populations, we designed an adapted Brown-Peterson task (verbal encoding and

retrieval combined with verbal and visual concurrent tasks during maintenance) to imple-

ment during functional magnetic resonance imaging (fMRI). In a sample of typically deve-

loping children and adolescents (n = 16), aged 8 to 16 years, our paradigm successfully

identified distinct patterns of activation for encoding, maintenance, and retrieval. While

encoding activated perceptual systems in posterior and ventral visual regions, retrieval acti-

vated fronto-parietal regions associated with executive control and attention. We found a dif-

ferent impact of verbal versus visual concurrent processing during WM maintenance: at

retrieval, the former condition evoked greater activations in visual cortex, as opposed to

selective involvement of language-related areas in left temporal cortex in the latter condition.

These results are in accord with WM models, suggesting greater competition for processing

resources when retrieval follows within-domain compared with cross-domain interference.

This pattern was found regardless of age. Our study provides a novel paradigm to investi-

gate distinct WM brain systems with reliable results across a wide age range in developmen-

tal populations, and suitable for participants with different WM capacities.

Introduction

The ability to maintain relevant information in mind in the presence of interference or dis-

tracting information is critical for higher cognitive functions required in daily life. Working

memory (WM) is the theoretical construct used to refer to this capacity to simultaneously
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maintain and process information over brief periods of time according to current task goals

[1–3]. Studies in children and adolescents show that WM capacity plays a crucial role in the

development of many cognitive activities (e.g., learning, reasoning, problem solving, language

comprehension), and also predicts academic performance and achievement [4–6]. Moreover,

WM is impaired in various developmental disorders, e.g. attention deficit hyperactivity disor-

der (ADHD), autism spectrum disorder (ASD) or specific language impairment (SLI), provid-

ing a crucial neuropsychological measure in several neuropsychiatric conditions and useful

risk marker for cognitive development [7–9].

From a developmental point of view, WM capacity develops rapidly over childhood [10–

13]. This is usually measured by the increase in the amount of information that can be retained

and transformed using complex memory span tasks that require maintaining information for

further recall while performing a concurrent activity [7]. An important component of WM

maintenance, involving active verbal rehearsal and attentional refreshing, emerges around 7

years of age [14]. Evidence suggests that multiple mechanisms contribute to childhood devel-

opment of WM, affecting all the processes involved in encoding, maintenance, and retrieval

(e.g., increase in attentional capacity, process automatisation, increase in knowledge, mne-

monic strategies, and so forth; see [15]).

In terms of neural substrates, development of WM ability parallels structural changes in

frontal-parietal cortices affecting grey matter [16] and white matter [17]. Similar to neuroim-

aging findings in adult populations, this core network of fronto-parietal brain areas is consis-

tently found to activate in children and adolescents, and is apparent as early as 5 years of age

during different verbal and visuospatial tasks thought to evaluate WM functions [18–20].

One recent imaging study compared encoding and retrieval processes in a Sternberg item

recognition paradigm with digits in children and adolescents from 9 to 19 years [21]. Encoding

of digits activated the right prefrontal and parietal cortex, left motor areas, occipital cortex,

and cerebellum; retrieval activated the left prefrontal and parietal cortex, right motor areas, as

well as anterior and posterior cingulate cortex, and cerebellum. Other functional neuroimag-

ing studies investigating WM in school-age children have used an n-back task in which a

sequence of stimuli is presented to the participant who must indicate when the current stimu-

lus matches the one from n steps earlier in the sequence (e.g., [22, 23]). Despite its popularity

in fMRI studies, empirical evidence shows that the n-back task correlates weakly with WM

span tasks, suggesting that it is unlikely that these two types of tasks reflect a single construct,

and questionning the empirical validity of using n-back tasks (continuous-recognition or

updating measures) as a WM task [24, 25]. Other tasks, such as the Steinberg item recognition

paradigm (e.g., [12, 26]), have also been used to study WM in developmental populations.

However, these tasks require the maintenance of information in short-term memory, but

not the simulatenous maintenance and manipulation of information as the theorethical con-

struct of WM specifies [3, 27]. Thus, very few developmental studies have explored the neural

correlates of WM using tasks requiring not just maintenance, but also active manipulation of

information [18, 19]. To our knowledge, brain activity associated with WM processes of main-

tenance during the simultaneous processing of a concurrent task and retrieval have not yet

been studied in developmental fMRI studies.

Previous literature has identified the major challenges inherent in studying both typical and

atypical development, including designing tasks that can be administered to individuals across

a wide age range in both typical and atypically developing groups [28]. In this study, our aims

were to design a novel WM paradigm that: i) is demanding of WM capacity but simple enough

to be administered to both children and adolescents and both healthy and clinical paediatric

populations (e.g., populations with mild intellectual difficulties), and for which brain activity

could not be explained by difference in age or WM performance; ii) would enable investigation
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of neural substrates for encoding, maintenance and retrieval WM processes during fMRI; and

could identify the effect of different concurrent processing tasks on maintenance and retrieval.

Among the paradigms appropriate for measuring the impact of concurrent processing on

maintenance, the Brown-Peterson task is best suited to examine encoding, maintenance, and

retrieval processes in WM. The original Brown-Peterson task requires participants to encode

and retrieve a string of letters with a concurrent task (i.e., counting backward by three) inter-

posed between encoding and subsequent retrieval [29, 30]. In opposition to the immediate

serial recall paradigm, the concurrent task in Brown-Peterson paradigm impairs maintenance

and thus retrieval of the encoded information. Here, we designed a novel task inspired from

the Brown-Peterson paradigm in which children and adolescents had to maintain verbal infor-

mation (letters) while performing a concurrent task involving either verbal (lexical decision)

or visual (face decision) task appropriate for children and adolescents. This design allowed us

to compare not only encoding and retrieval components of verbal WM during fMRI, but also

to probe for neural substrates differentially modulated by the concurrent task, both within-

domain (i.e. verbal distractors) and cross-domain (i.e. visual distractors). According to the

influential model of Baddeley (1986; [31]), verbal and visuo-spatial maintenance and process-

ing involve separate and domain-specific systems, a phonological loop for verbal information

and a visuospatial sketchpad for visuospatial information. Thus, processing irrelevant verbal

information should produce selective interference with verbal maintenance because verbal

processing would mobilize the phonological loop, thus impeding the articulatory rehearsal

process in charge of verbal maintenance. By contrast, processing visuospatial information

should involve the domain-specific visuospatial sketchpad and should not have any effect on

verbal maintenance.

To validate this novel paradigm, we applied it in children and adolescents aged 8 to 16

years. We expected that all would successfully complete our adapted Brown-Peterson fMRI

paradigm, which tailors task difficulty to each participant according to their WM capacity. We

predicted that distinct activation patterns would be elicited by the two concurrent tasks (i.e.

within and cross-domain), not only during the maintenance interval, but also during the sub-

sequent retrieval period. Based on Baddeley’s WM model [30], the nature of the concurrent

task was expected to differentially impact verbal WM and thus modulate brain areas recruited

during retrieval, despite the fact that identical verbal stimuli were encoded. Specifically, expo-

sure to words vs faces during the maintenance interval should hamper vs favour the engage-

ment of language-related regions in the left hemisphere during the subsequent retrieval phase.

Materials and methods

Participants

Participants were 16 healthy children and adolescents aged 8 to 16 years (8 to 10 year-old,

n = 5; 11 to 13 year-old, n = 8; 14 to 16 year old, n = 3; mean age = 12.19; SD = 2.25), 9 females

and 7 males, recruited though advertisements in local schools and staff at the Royal Children’s

Hospital. The wide age range of this sample allowed us to examine whether the adapted

Brown-Peterson task was suitable for both children and adolescents. No participant had a doc-

umented history of a brain lesion, neurological disability or neurodevelopmental disorder

such as autism spectrum disorder (ASD) or attention deficit hyperactivity disorder (ADHD).

All participants were right-handed as measured by a score between +40 and +100 at the Edin-

burgh Handedness Inventory [32, 33], English speaking, had a Full Scale Intellectual Quotient

(FSIQ) based on the Wechsler Abbreviated Scale of Intelligence (WASI; [34]) higher than 85

(M = 116.2, SD = 10.4) and normal or corrected-to-normal vision and hearing. The study was

approved by the Human Research Ethics Committee at the Royal Children’s Hospital. Written
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informed consent was obtained from the caregivers of the children and adolescents prior to

participation.

Material and design

Participants completed an adapted version of the Brown-Peterson paradigm [29, 30] imple-

ment during functional magnetic resonance imaging (fMRI). A mixed block and event-related

design allowed separate examination of specific WM processes: encoding, maintenance and

retrieval. The task required a combination of verbal storage and maintenance during either

verbal (within-domain) or visual (cross-domain) concurrent tasks. Each active trial consisted

of three active phases (Fig 1):

1) Encoding period.

Participants were presented with a series of single upper-case letters for further recall displayed

sequentially in the middle of the screen at a rate of one letter per second. All consonants of the

English alphabet were used as memory items except W, which is three-syllabic. Series of two

and three letters were created for within-domain and cross-domain blocks in such a way that

each letter appeared with the same frequency in both blocks. Participants were asked to main-

tain the letters in order of appearance.

2) Maintenance delay filled with a concurrent task.

During the maintenance delay of 6 seconds, a concurrent task required to process either verbal

Fig 1. Adapted Brown-Peterson fMRI paradigm using within- and cross-domain concurrent tasks.

https://doi.org/10.1371/journal.pone.0179959.g001
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or non-verbal stimuli involving within- or cross-domain interference respectively.

The within-domain concurrent task was a lexical decision task. Two successive letter-strings

were presented for 3 seconds each and required simple motor responses (i.e. press as quickly

and as accurately as possible the left-most/green button if the letter-string was a word; or the

right-most/red one if it was a non-word). Words were selected from the “Oxford Wordlist”,

which is an Australian database of high frequency words in young children’s writing and read-

ing development [35]. Among the 307 most frequently used words, only nouns were selected

based on the following search terms: any gender, any location (urban or rural), any socioeco-

nomical status, any text type (e.g., description, discussion, narrative) and appearing during the

first three years of school (40% were within 1 to 100 most frequently used words; 35% were

within 101 to 200 most frequently used words; 25% were within 201–307 most frequently used

words). Non-words with orthographically existing onsets and bodies were selected from the

“ACR Nonword database” [36]. Three to eight letter-strings (words and non-words) were dis-

played centrally on the screen. Words and non-words were equally often presented.

The cross-domain concurrent task was a face decision task. Two successive pictures were pre-

sented for 3 seconds each, requiring similar motor responses (i.e. press as quickly and as accu-

rately as possible the left-most/green button if a real face was presented; or the right-most/red

one if it was a scrambled face). Ten males and 10 females faces with a neutral expression were

selected from the NimStim database [37], and converted into greyscale using Matlab R2013a

(The MathWorks, 2012). Scrambled faces were created from the original faces using Matlab

(size of square = 300, iterations = 2). Faces and scrambled faces were equally often presented.

3) Retrieval period.

At retrieval, one single upper-case letter was presented along with either one or two place-

holders (for paradigm with 2 or 3 letters to remember, respectively) made of dashes with

a question mark. Participants had to decide if the single letter matched the letter that was pre-

sented in that serial position during the encoding period by giving a simple motor responses,

i.e. press as quickly and as accurately as possible the left-most/green button or the right-most/

red one for positive and negative responses respectively. This was done to make sure that par-

ticipants memorised both item and serial order information.

In addition to the active condition, there was a baseline condition (no-concurrent task) in

which participants were required to encode a single letter and recognise it after a short empty

delay of 1 second. They were instructed to press as quickly and as accurately as possible the

left-most/green button if the single letter was the same during encoding and retrieval; or the

right-most/red one if it was a different letter.

For both the active and baseline conditions, a randomized inter-trial interval of 2000, 2500,

or 3000 milliseconds was presented before the next trial. Three types of blocks of 10 trials each

were created: two active blocks, one including the within-domain concurrent task and the

other including the cross-domain concurrent task, and a third baseline block. The order of

presentation of these three blocks was counterbalanced across participants and repeated twice

for a total of six blocks of 10 trials. Within each block, half of the probes were positive (i.e., 5

trials required a “yes” response) and the position of positive and negative probes were random-

ized within each blocks.

Two important challenges of brain imaging studies examining cognitive development

are that differences in both participant age and task performance may influence activation

patterns. One concern is whether changes in neural activity reflect changes in functional matu-

ration of the central nervous system, independently of behavioural efficiency, or whether they

reflect changes in task performance consequent upon increasing age [22, 38]. For these rea-

sons, in our paradigm, task difficulty was adapted to each participant by adapting the number
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of verbal items to remember. Based on pilot testing conducted outside the scanner, partici-

pants with a backward digit span of 5 or more were presented with the version of the paradigm

with 3 letters to be remembered, and those with a backward digit span lower than 5 were pre-

sented with the version of the paradigm with 2 letters to be remember. In our sample, seven

participants completed the 3-letters paradigm (age range = 10 to 15 years; M = 12.53; SD =

1.44) and nine participants completed the 2-letters paradigm (age range = 8 to 16 years; M =

11.93; SD = 2.78). All participants had a retrieval accuracy of 80% or more, which suggested

that task difficulty was appropriate for each participant.

Procedure

Participants completed the adapted Brown-Peterson fMRI paradigm. This fMRI paradigm was

presented visually during fMRI using E-prime2 (Psychology Software Tools, PST, Pittsburgh).

Initially, participants successfully completed a mock MRI scanner training protocol before the

MRI. Participants were prepared for the adapted Brown-Peterson paradigm through training

initially outside (5 trials for each of the three conditions described above) and then inside the

scanner before starting fMRI acquisition (again 5 new trials for each of the three conditions).

All participants demonstrated understanding of the paradigm before being placed in the scan-

ner. The paradigm was projected onto a screen at the foot of the MRI bed, and participants

viewed the images from a mirror attached to the head coil. To minimize head motion during

scanning, a soft cloth was placed on the child’s forehead, then taped to the head tray, and foam

pads were inserted around the head. Responses were provided using an MRI compatible

response box with four response buttons. The response box was placed centrally on the child’s

stomach and responses were provided by pressing the left-most/green button with the left

thumb or the right-most/red button with the right thumb, respectively.

Statistical analysis of behavioural data on concurrent task and retrieval

Separate repeated measures analyses of variance (ANOVA) were conducted on accuracy mea-

sures (percent correct) for the concurrent tasks (within domain/lexical decision task and cross-

domain/face decision task) and the retrieval period with the type of the previous concurrent

task (within- or cross-domain) as within-subject factor. Independent-sample t tests were used

to explore sex differences in accuracy. Pearson’s correlation was used to study the relationship

between age and accuracy. Statistical analyses were performed using SPSS Statistics V22.0 [39].

Image acquisition

MRI was performed on a Siemens 3T MAGNETOM Trio scanner (Siemens, Erlangen, Ger-

many) at the Royal Children’s Hospital. The scanner was equipped with the Syngo MR B17

software release, and a 12-channel receive-only head coil was used. T1-weighted MP-RAGE

sequence (Magnetization Prepared Rapid Gradient Echo) were obtained using the following

parameters: repetition time (TR) = 1900 ms, echo time (TE) = 2.71 ms, inversion time (TI) =

900 ms, flip angle (FA) = 9˚, field of view (FoV) = 256mm, voxel size = 0.7 x 0.7 x 0.7 mm.

Functional images were acquired using a T2-weighted with a gradient-echo-planar imaging

(EPI) sequence with 32 interleaved slices with 5% gap, voxel size = 2.6 x 2.6 x 3 mm, TR =

2400ms, TE = 35ms, FA = 90˚, FoV = 240mm.

Image analysis

fMRI data were preprocessed and analysed using SPM8 (Wellcome Department of Imaging

Neuroscience, University College London, UK) implemented in Matlab R2014a. The images
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of each subject were corrected for slice acquisition timing, and spatially realigned to eliminate

movement artefacts. Head motions were small in any direction (Maximum translation, X =

0.39mm, Y = 0.76mm, Z = 1.69mm; Maximum rotation (converted from degrees to milli-

metres, 40): X = 0.04mm, Y = 0.2mm, Z = 0.01mm; Mean translation: X = 0.08mm, Y =

0.11mm, Z = 0.25mm ; Mean rotation : X = 0.004mm, Y = 0.003mm, Z = 0.002mm) and there-

fore no participant was excluded from further processing [40]. To allow for inter-subject com-

parison, data were normalized using the MNI brain template (Montreal Neurologic Institute)

and resampled to 1.9 x 1.9 x 3 mm. These functional images were finally smoothed using a

Gaussian filter of full width at half maximum = 8mm to increase signal-to-noise ratio.

Statistical analyses were performed using a two-step process, taking into account the intra-

individual and inter-individual variance [41]. First level single subject statistics were assessed

by a voxel-based statistics according to the General Linear Model implemented in SPM8.

Given the high rate of correct responses across participants (above 90%, see Results section for

further detail) and to guarantee an equal number of trials for each condition, brain activity was

analysed pooling the correct and incorrect trials together. The onsets of each event of interest

were convolved with the canonical hemodynamic response function (HRF) and used as regres-

sors in the individual design matrix. For the encoding period, these onsets included encoding

of the active condition and encoding of the baseline condition, using a boxcar function of 2 or

3 seconds for active encoding (depending of the difficulty level) and 1 second for the baseline

encoding. The maintenance delay filled with a concurrent task was modelled using a boxcar

function of 6 seconds for the within-domain (lexical decision) and the cross-domain (face

decision) concurrent tasks. Finally, the retrieval period was modelled using a boxcar function

of 3 seconds for the tree retrieval types, i.e., retrieval after within-domain concurrent task,

retrieval after cross-domain concurrent task and retrieval of the baseline condition.

All six movement parameters (translation: x, y and z; rotation: pitch, roll and yaw) were

included as covariates of no interest in the model. The individual statistical images from each

condition were then entered in a group analysis at the second level using a flexible factorial

design, which provides the flexibility to specify the different period of our mixed block and

event-related paradigm. In this random-effects model, independence and unequal variance

between subjects and conditions were assumed, allowing for violation of sphericity, as imple-

mented in SPM8. Considering a possible impact of gender on brain-activation, we also added

this binary variable as a covariate in the flexible factorial design [26, 38, 42, 43]. In line with

guidelines used in neuroimaging studies of complex cognitive functions [44], whole-brain

analysis was conducted with a significance threshold of p< .001 at the voxel level, uncorrected

for multiple comparisons, and a minimum extent threshold of 20 voxels [26, 45]. Anatomical

location of activations was verified using SPM Anatomy toolbox [46].

We performed exploratory analyses to examine age- and retrieval accuracy-related changes

in brain activation during the Brown-Peterson fMRI paradigm. The largest and most relevant

clusters of activation identified at the group level were used to define functional regions of

interest (ROIs) for each of the different conditions using the marsBaR toolbox [47]. Beta values

were extracted from each ROI, by contrasting activation during the encoding or retrieval WM

conditions relative to the respective baseline conditions. Beta values from each ROI and each

participant were then used to compute Pearson’s correlation coefficients in order to evaluate

any age- and accuracy-related effects on ROI activity using SPSS [39]. Beta values from the

encoding or retrieval periods were contrasted to the baseline values (rather than to each other)

to test for condition-specific effects without mixing any positive vs negative correlation with

one vs the other active condition.

We also performed a whole-brain analysis where different active phases were compared

(encoding vs retrieval, within-domain concurrent task vs cross-domain concurrent task,
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retrieval following within-domain concurrent task vs retrieval following cross-domain concur-

rent task), but now including age and retrieval accuracy as covariates of interest in a multiple

parametric regression design using SPM8. For these regressions, a significant threshold of p<

.001 uncorrected for multiple comparisons with a minimum extent threshold of 20 voxels was

used.

Results

Behavioural data

As far as the concurrent tasks were concerned, the percentage of correct responses was 97%

(SD = 4.3) for the within-domain (lexical decision task) and 98% (SD = 3.5) for the cross-

domain (face decision task). For the effect of the type of the concurrent task, assumption of

normality was violated, as assessed by inspection of histograms and results of the Shapiro-

Wilk test (p = .001). Therefore, related-sample Wilcoxon-signed rank test was used and

showed no significant effect of the type of concurrent task (Ws = 33, z = .58, p = .565). Con-

cerning retrieval of the active condition, repeated-measures ANOVA showed no effect of type

of concurrent task on response accuracy, F (1,15) = 1.278, p = .276 (90.9%, SD = 8.8, and

93.4%, SD = 5.3, for the within-domain/lexical and cross-domain/face decision tasks, respec-

tively). Hence, differences in brain activity patterns at retrieval could not be explained by dif-

ferences in WM performance.

There was no significant relationship between age and response accuracy on the retrieval of

the active condition whatever the type of the previous concurrent task (r = .318, p = .23, and

r = .299, p = .261 for the within- and between-domain concurrent task respectively), and no

significant relationship between age and response accuracy on the concurrent tasks (r = .493,

p = .052, and r = .185, p = .492 for the lexical decision and face decision concurrent tasks, respec-

tively). There was no significant gender difference for any of the measures, ts< 1, ps> .50.

Taken together, these behavioural data show good performance overall on the adapted

Brown-Peterson paradigm. Moreover, this pattern was stable across the age range of our sam-

ple and gender. Therefore, from a behavioural point of view, our task appears to be suitable for

a wide age range of children and adolescents.

Functional magnetic resonance imaging

Active letter encoding and retrieval vs. baseline. To delineate brain regions generally

recruited during WM, we first contrasted the active encoding period relative to the baseline

encoding period, regardless of the domain of concurrent task during the maintenance interval.

This showed activation in a widespread network, including bilateral visual areas in the occipi-

tal lobes, parahippocampal gyri, as well as left prefrontal regions, the caudate nucleus, and

the cerebellum (Table 1). Likewise, we contrasted the active retrieval relative to the baseline

retrieval period, regardless of concurrent conditions, which revealed a distributed pattern of

activation encompassing mainly bilateral prefrontal cortices, but also temporal and parietal

areas (Table 1). These data confirm that our working memory paradigm successfully engaged

brain networks associated with visual stimulus processing and executive functions.

Active letter encoding vs. letter retrieval. We next sought to identify regions selectively

recruited by distinct WM processes. Encoding, as compared to retrieval (during the active

task), was associated with widespread activations bilaterally in the occipital and ventral tempo-

ral lobes (inferior occipital and fusiform gyri), as well as in medial frontal areas (supplementary

motor area (SMA), middle cingulate gyrus) and precentral gyrus. Smaller activation foci were

found in the insula (Fig 2 and Table 2). Conversely, the retrieval phase, compared to encoding,

activated bilateral dorsolateral prefrontal areas (mainly inferior and middle, but also superior
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frontal gyri), as well as the anterior cingulate cortex (ACC), inferior parietal lobule (angular,

supramarginal, and postcentral gyri), and lateral temporal areas (superior and middle tempo-

ral gyri).

Maintenance delay filled with a concurrent task (within-domain vs. cross-domain).

Comparing activations during the within-domain concurrent task (lexical decision task),

Table 1. List of activations for active encoding and retrieval compared to baseline condition.

Region Hemisphere Number of voxels t value x, y, z

ENCODING (compared to encoding baseline)

Frontal Inferior (BA 47) L 108* 4.46 -38, 30, -14

Superior and middle (BA 9) L 160* 4.42 -27, 40, 43

Superior and superior medial (BA10) L 193* 4.22 -15, 57, 13

Occipital Lingual, inferior, calcarine (BA18) L 515*+ 6.33 -25, -95, -11

4.66 -11, -99, -8

R 631*+ 6.08 25, -91, -11

5.89 21, -91, -2

Temporal Parahippocampal gyrus L 130*+ 5.07 -40, -28, -11

R 71* 4.77 13, -13, -17

Subcortical Caudate nucleus (BA 48) L 563*+ 5.87 -17, 19, 10

Pulvinar R 24 3.64 13, -32, 13

Cerebellum L 222* 4.77 -10, -30, -14

RETRIEVAL (compared to retrieval baseline)

Frontal Prefrontal, putamen, middle and inferior (BA 49, 10, 44) L 7684*+ 6.10 -15, -6, 13

6.07 -27, 8, -2

5.83 -29, 42 19

5.05 -61, 11, 22

Middle and superior (BA 10, 6) R 572*+ 4.91 27, 46, 7

4.43 28, 51, 10

23 4.01 36, -2, 64

Superior orbital (BA 11) L 74* 4.77 -21, 53, -14

Precentral gyrus (BA 6, 4) L 268* 5.13 -34, -4, 61

L 56 4.18 -49, 0, 40

L 32 3.49 -36, -17, 40

Middle cingulate (BA 24) L 42 3.82 -17, -25, 46

Parietal Angular (BA 39) R 169 4.21 40, -65, 46

Inferior and superior lobule (BA 7) L 1813*+ 5.02 -36, -55, 55

4.92 -32, -61, 55

Inferior lobule and postcentral gyrus (BA 40, 1) L 404*+ 4.85 -51, -25, 46

4.19 -57, -23, 28

Temporal Middle extending calcarine gyrus R 189*+ 5.74 32, -65, 16

(BA23) 3.49 28, -57, 10

Superior and middle (BA 39) L 82 4.25 -61, -47, 19

Middle (BA 21) R 58 3.83 51, -34, -14

Occipital Lingual (BA 18) L 214 3.98 -6, -76, -2

Subcortical Vermis L 229 4.68 -2, -53, -5

Cerebellum L 156 4.32 -25, -61, -17

Note: Coordinates are in MNI space. x, y, z coordinates refer to voxels with highest statistical significance within a cluster (location of the peak coordinate).

Clusters used to define ROIs for specific subsequent analyses are marked with a sign *.

Clusters reaching a significance threshold of p < .05 at the voxel level, corrected for multiple comparison, are marked with a sign +. BA = Brodmann area

https://doi.org/10.1371/journal.pone.0179959.t001
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relative to the cross-domain concurrent task (face decision task), revealed differential increases

in the right middle frontal gyrus (Brodmann area 10) and medial fusiform cortex only (Table 2

and Fig 3). Conversely, the cross-domain concurrent task (face decision task) compared to

within-domain concurrent task (lexical decision task) produced a more extensive pattern of

activation, particularly in bilateral visual areas, including occipital and fusiform cortex overlap-

ping with the fusiform face areas (FFA). Activations were also found in several frontal areas

(left inferior and medial frontal gyri, SMA, right middle cingulate cortex, precentral gyrus),

the temporo-parietal junction, left parahippocampal gyrus, and right pulvinar. Thus, the

cross-domain concurrent task appeared to recruit a more widespread network than the

within-domain concurrent task, even though behavioural data show that this could not be

explained by task difficulty since accuracy did not significantly differ in the two concurrent

tasks.

Letter retrieval following within-domain vs. cross-domain concurrent tasks. The most

critical question concerning the WM system in our paradigm is whether the nature of the con-

current task during the maintenance interval may produce different degrees of competition

and thus result in different neural substrates during retrieval. We therefore tested for brain

Fig 2. Activation maps related to the contrasts encoding vs retrieval.

https://doi.org/10.1371/journal.pone.0179959.g002
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Table 2. List of activations for contrasts of interest.

Region Hemisphere Number of

voxels

t value x, y, z

ENCODING > RETRIEVAL

Frontal SMA, middle cingulate (BA 6) L&R 640*+ 6.84 -6, 8, 49

5.45 8,10,49

Pre and post central gyrus (BA 4) L 175 4.07 38, -21, 55

Precentral gyrus (BA 6) R 104+ 5.32 46, 6, 28

Medial (BA 11) L 23 3.68 -0, 38, -17

Parietal Postcentral gyrus (BA 6, 1) L 70+ 5.09 -53, -6, 49

R 25 4.05 61, -13, 46

Occipital Inferior (cuneus, precuneus, lingual), fusiform (BA 18, 19, 37) L 2468*+ 13.24 -23, -89,

-11

11.65 -36, -80,

-11

8.94 -36, -51,

-17

R 2692*+ 13.11 27, -87,

-11

8.28 34, -49,

-17

8.25 32, -89, 10

Other Insula (BA 13) L 31 3.63 -30, 13, 10

RETRIEVAL > ENCODING

Frontal Precentral, middle (BA 8, 6)

Middle (BA 8, 10)

L 500* 4.87 -36, 11, 40

4.78 -38, 13, 37

R 227* 4.6 40, 10, 49

L 59 3.64 -44, 51, 10

Inferior, middle (BA 47, 10) R 487* 4.68 47, 23, -8

4.27 44, 53, -11

Superior and middle (BA 10) R 212 4.2 30, 63, 4

Superior, SMA (BA 8, 6) R 242* 4.1 25, 23, 55

4.08 9, 25, 58

Anterior cingulate (BA 32) R 227* 4.09 2, 36, 19

Precentral gyrus (BA 4) L 34 4.04 -19, -27,

55

Middle orbital (BA 10) L 34 3.93 -29, 57,

-11

Superior medial (BA 8) R 24 3.57 2, 34, 40

Parieto-

temporal

Angular, superior temporal, supramarginal, inferior parietal lobule (BA 39, 22) R 3563* 7.3 46, -74, 34

5.17 59, -19, -5

4.94 46, -53, 49

Angular, middle temporal, inferior parietal lobule L 5998* 6.41 -42, -55,

40

6.02 -55, -51,

22

5.35 -49, -51,

37

Postcentral gyrus (BA 4) L 188* 4.91 -42, -13,

31

Temporal Superior extending to putamen (BA 49) L 301 4.7 -30, -13, 4

Middle (BA 21) L 190 4.18 -65, -25, -8

(Continued )
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Table 2. (Continued)

Region Hemisphere Number of

voxels

t value x, y, z

Occipital Lingual (BA 18) R 25 3.8 11, -74, -8

Subcortical Putamen (BA 49) R 199 4.44 30, -13, 7

WITHIN-DOMAIN > CROSS-DOMAIN CONCURRENT TASK

Frontal Frontal pole (BA 10) R 266*+ 5.3 27, 55, 4

Occipital Medial fusiform (BA 19) R 36* 4.43 30, -53, -8

CROSS-DOMAIN > WITHIN-DOMAIN CONCURRENT TASK

Occipital Inferior (lingual, precuneus, fusiform), cuneus, including fusiform face area (FFA;

BA 19, 18, 37)

R 2873*+ 9.1 42, -84,

-11

8.97 34, -91, -5

5.92 49, -53,

-14

Middle, lingual, inferior, lateral fusiform, including FFA (BA 19, 18, 37) L 878*+ 5.64 -34, -91, -5

4.76 -44, -72,

-14

4.6 -48, -51,

-17

Precuneus gyrus (BA 7) R 30 3.79 8, -59, 64

Lingual (BA 18) L 39 3.79 -0, -61, 7

Frontal Inferior (BA 47) L 238*+ 5.11 -38, 36,

-14

Precentral (BA 4) R 156+ 4.9 38, -13, 43

Medial frontal (BA 11) L 92 4.79 -2, 46, -17

Middle cingulate (BA 24) R 92 4.22 13, -17, 49

SMA (BA 6) L 59 3.82 -6, -13, 55

Temporal Inferior (BA 20) R 39*+ 5.29 47, -27,

-20

Middle (BA 21) L 60 4.12 -61, -9, -20

Parahippocampal gyrus L 806*+ 5.63 -29, -11,

-14

Parietal Inferior lobule (BA 40) R 119+ 5.06 57, -27, 55

Postcentral gyrus (BA 4) L 92 4.32 -42, -27,

64

Angular (BA 39) L 169 4.1 -36, -59,

22

Superior lobule (BA 7) R 59 4.06 25, -70, 52

Subcortical Pulvinar R 207*+ 5.28 25, -30, 7

RETRIEVAL AFTER WITHIN-DOMAIN > RETRIEVAL AFTER CROSS-DOMAIN CONCURRENT TASK

Occipital Cuneus, fusiform, middle and inferior occipital (BA 18, 19) R 3181*+ 8.71 15, -101, 7

8.44 27, -78, -8

7.58 30, -89, 10

7.17 42, -72, -8

Inferior and middle occipital, fusiform, calcarine (BA 18, 37) L 1620*+ 7.15 -25, -80, -8

6.71 -32, -61,

-14

6.62 -15, -101,

4

5.47 -6, -91, -11

RETRIEVAL AFTER CROSS-DOMAIN INTERFERENCE > RETRIEVAL AFTER WITHIN-DOMAIN CONCURRENT TASK

(Continued )
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regions that would be differentially activated during the retrieval period when following

within-domain concurrent task (lexical decision) or when following cross-domain concurrent

task (face decision). Greater increases following the within-domain concurrent task were

found in visual areas, with large bilateral clusters in occipital cortices (bilateral middle and

Table 2. (Continued)

Region Hemisphere Number of

voxels

t value x, y, z

Temporal Middle and superior (BA 21) L 27* 3.74 -40, -47, 4

L 23* 3.39 -59, -34, 4

Occipital Calcarine (BA 17) R 279* 4.79 2, -91, 10

Inferior (BA 37) L 22* 3.83 -53, -63,

-14

Note: Coordinates are in MNI space. x, y, z coordinates refer to voxels with highest statistical significance within a cluster (location of the peak coordinate).

Clusters used to define ROIs for specific subsequent analyses are marked with a sign *.

Clusters reaching a significance threshold of p < .05 at the voxel level, corrected for multiple comparison, are marked with a sign +. BA = Brodmann area.

https://doi.org/10.1371/journal.pone.0179959.t002

Fig 3. Activation map for the contrast within-domain vs cross-domain concurrent tasks (MRIcron reference slices). Activations in yellow: within-

domain concurrent task > cross-domain. Activations in red: cross-domain concurrent task >within-domain.

https://doi.org/10.1371/journal.pone.0179959.g003
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inferior occipital gyri, fusiform gyri, right cuneus and left calcarine). Conversely, greater

increases were found after the cross-domain concurrent task in the left middle and superior

temporal cortex, overlapping with usual location of phonological processing [48, 49], plus left

calcarine gyrus and bilateral medial occipital cortex (Table 2 and Fig 4).

Age and retrieval accuracy-related activations. Several functional ROIs were defined for

each of the contrast of interest described above (marked with a star in Tables 1 and 2) and

used for additional analyses to examine any modulation by individual characteristics of the

participants. Parameter estimates (beta values) extracted and averaged across voxels from

these ROIs were then submitted to Pearson’s correlation with age and WM retrieval accuracy.

No significant correlation was found between encoding- or retrieval-related activation (relative

to baseline activation) with neither age nor WM retrieval accuracy on the adapted Brown-

Peterson paradigm for any of these ROIs. Table 3 summarizes these correlation coefficients.

We also performed an exploratory whole-brain regression analysis in SPM using (a) age;

and (b) WM retrieval accuracy for the main contrasts of interest as described above (encoding

vs retrieval, within vs cross domain concurrent tasks). None of these analyses revealed any sig-

nificant overlap with activations identified by the main contrasts of interest reported in

Fig 4. Activation map for retrieval following within-domain vs cross-domain (MRIcron reference slices). Activations in yellow: retrieval following

within-domain concurrent task > cross-domain. Activations in red: retrieval following cross-domain concurrent task >within-domain. For illustration purpose,

activations observed in retrieval following within-domain concurrent > cross-domain are represented with a threshold of p < .005 uncorrected for multiple

comparisons.

https://doi.org/10.1371/journal.pone.0179959.g004
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Table 2 indicating that all effects reported above are largely independent of age (within the

range of our sample) and WM retrieval accuracy.

Discussion

We report and validate an adapted Brown-Peterson fMRI paradigm that probes for the neural

correlates of different WM processes, including encoding, maintenance and retrieval, as well

as the effect of within- and cross-domain concurrent tasks during maintenance. Results indi-

cate that this paradigm can be performed equally well by children and adolescents of different

ages, with reliable results across different levels of performance. To our knowledge, this is the

first study to propose a paradigm to delineate distinct patterns of brain activity for the different

WM processes in children and adolescents. We provide the first exploratory results on brain

activity related to encoding, maintenance, and retrieval WM processes in children and adoles-

cents, and compare verbal WM in the presence of both verbal (within-domain) and visual

(cross-domain) concurrent tasks.

As expected, our adapted Brown-Peterson paradigm was successfully completed with high

accuracy in the MRI scanner by typically developing children as young as 8 years of age, indi-

cating that it is suitable to examine WM processes in children and adolescents from 8 to 16

years of age. It is important to note that task difficulty was adapted to each participant’s WM

capacity using a simple procedure (based on backward digit span performance, the participant

completed the paradigm with two or three letters to remember), and we found no significant

association between age or task performance and brain activation patterns. These findings

indicate that our paradigm is well suited to examine brain systems associated with different

Table 3. Pearson’s correlations between activity of functional ROIs and (a) age or (b) retrieval accuracy.

Functional ROIs Age Accuracy

Region Side Number of voxels Peak coordinates r P value r P value

ENCODING (compared to encoding baseline condition)

Frontal Inferior L 108 -38, 30, -14 -.351 .183 -.275 .304

Superior and middle L 160 -27, 40, 43 -.041 .881 -.269 .314

Superior and superior medial L 193 -15, 57, 13 -.101 .711 -.360 .171

Occipital Lingual, inferior, Fusiform L 515 -25, -95, -11 .322 .224 .235 .382

R 631 25, -91, -11 .308 .245 .182 .501

Temporal Parahippocampal Gyrus L 130 -40, -28, -11 .455 .077 .214 .426

R 71 13, -13, -17 .225 .401 .389 .137

Subcortex Caudate Nucleus L 563 -17, 19, 10 -.225 .402 -.111 .683

Other Cerebellum L 222 -10, -30, -14 .241 .369 .361 .169

RETRIEVAL (compared to retrieval baseline condition)

Frontal Inferior extending to

putamen and insula

L 7684 -15, -6, 13 -.174 .519 -.100 .171

Middle and superior R 572 27, 46, 7 -.010 .969 .055 .839

Precentral L 268 -34, -4, 61 .242 .367 .282 .289

Superior orbital L 74 -21, 53, -14 .030 .911 .076 .780

Temporal Middle extending to

precuneus

R 189 32, -65, 16 .187 .489 .405 .120

Parietal Inferior and superior lobule L 1813 -36, -55, 55 .395 .130 .248 .354

Inferior lobule, postcentral L 404 -51, -25, 46 .338 .201 .381 .145

Note: Activity was measured during either encoding or retrieval periods depending on the phases recruiting each ROI. Coordinates in MNI space and

number of voxels are given for each functional ROI, as well as Pearson’s correlation coefficients, r, and corresponding p values.

https://doi.org/10.1371/journal.pone.0179959.t003
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WM capacities in different age groups. This may be an important advantage when comparing

groups with different developmental trajectories, because previous studies show that WM-

related activations may increase with age in parallel with changes in performance and

improvements in WM capacity [12, 18].

Secondly, our imaging results demonstrate that, while distributed networks in frontal and

visual areas activated in the context of the verbal WM paradigm used here (i.e. during the

active conditions compared to the baseline), distinct neural substrates were selectively re-

cruited during the encoding and retrieval periods. The verbal encoding period induced stron-

ger activations in posterior and ventral brain regions, with large bilateral increases in occipital,

as well as parahippocampal cortices. In contrast, the verbal retrieval period induced stronger

activations in more anterior and dorsal regions, in particular in prefrontal and parietal areas,

and to a lesser extent in lateral temporal areas.

The predominance of activity in visual cortex together with medial temporal lobe (parahip-

pocampal gyrus) during encoding is consistent with the need to extract discriminative visual

information from the to-be-remembered stimuli and store this information into short-term

memory. On one hand, ventral occipito-temporal areas differentially engaged during encoding

are crucial for perceptual shape analysis, especially for letters with a letter-sensitive activation

in these regions [50, 51]. We did not find selective activations corresponding to the “visual

word form area” but this region is typically responsive to letter-strings or words rather than

isolated letters [52–54]. Moreover, we did not find language-related activation during verbal

encoding, in particular Broca’s area which has been implicated in the subvocal rehearsal sys-

tem [55]. However, language-related activation has been mainly found during encoding of

words [56] and not during encoding of letters [57].On the other hand, the parahippocampal

cortex is a key brain region at the interface between perception and memory, therefore likely

to make an important contribution to efficient storage of visual information into WM [58].

As expected, predominant activity in frontal and parietal areas during retrieval is consistent

with executive control and attentional focusing. The executive control system serves as an

attention controller that allocates and coordinates attentional resources for cognitive tasks,

such as retrieval of information encoded in working memory [59, 60]. Our findings accord

with previous studies showing the involvement of frontal areas, especially prefrontal and ante-

rior cingulate cortices, in the executive control required during WM demands [61, 62]. Focus-

ing attention is crucial for efficient executive control [63] and recruits parietal regions [64],

which were strongly implicated during the retrieval period in our study. In addition, WM

retrieval of serial order is dissociable from the type of information contained in the item

sequence [65] and also relies on activation in frontal and parietal activations [66].

Overall, our findings converge with those of van den Brosh and colleagues (2014), who

reported a similar posterior and perceptual network during the encoding phase compared to a

more anterior and executive network during the recall phase of a Sternberg item recognition para-

digm (which did not include a distracting phase) in children and adolescents aged 9 to 19 years.

However, these authors did not find any temporal or parahippocampal activations, possibly

reflecting differences in the paradigm and material used (digits in their study vs. letters in ours).

More generally, our findings of extensive fronto-parietal and visual activity during WM also dove-

tail with previous neuroimaging studies investigating brain systems associated with verbal WM in

children and adolescents, across different kinds of verbal WM paradigms, such as the Steinberg

item recognition task using letters [21, 67, 68] or n-back tasks using letters [69, 70].

Study hypotheses were supported by results revealing that brain activation patterns differ as

a function of the nature of the concurrent task performed during the maintenance interval.

Our design allowed us to compare the impact of within-domain (lexical decision task) versus

cross-domain (face decision task) concurrent task processing during the maintenance period
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intervening between encoding and retrieval, while information stored in WM itself did not dif-

fer. A lexical decision task was expected to produce within-domain interference, as it involved

verbal material resembling the to-be-remembered material (i.e. letters), while a face decision

task was considered to induce cross-domain interference as it relied on non-verbal visual

processes.

As predicted, the within-domain and cross-domain concurrent tasks evoked distinct brain

activations when compared to each other. Localised and right-sided activations in the right

frontal pole (Brodmann area 10) and medial fusiform gyrus were observed during the within-

domain/lexical concurrent task, whereas the cross-domain/face concurrent task elicited much

more distributed activations in occipital temporal extrastriate areas, but also left parahippocam-

pal gyrus and fronto-parietal regions. These differences could not be attributed to task difficulty

(since there were no significant difference in accuracy between the within-domain/lexical and

the cross-domain/face decision task) but most likely reflect the different task demands and per-

haps different strategies and processes applied during the maintenance interval. Since verbal

information had to be held in WM, it might have produced stronger interference and greater

conflict in resource allocation during the within-domain/lexical decision task than the cross-

domain/face decision task, eventually affording less efficient engagement of task-specific net-

works in the former condition and hence lower accuracy. The involvement of the right frontal

pole (Brodmann area 10), thought to organize an optimal use of cognitive resources and over-

come potential impasses [71], may reflect this conflict in resource allocation and an increase in

cognitive load during a verbal concurrent task. Such recruitment of attentional control mecha-

nisms during interference appears consistent with the time-based resource-sharing model

(TBRS; [72–74]). This model postulates the existence of attention-based mechanisms involved

to maintain relevant verbal information when the capacity of the verbal-specific system (compa-

rable to the phonological loop in Baddeley and Hitch’s model) is exceeded [75]. Alternatively,

greater activation of visual and fronto-parietal areas as well as temporal regions, including para-

hippocampal gyrus, during the cross-domain/face decision task might reflect the dual process

of face decision task and active maintenance of verbal information.

Critically, and in keeping with our hypotheses, the two concurrent tasks (within- and cross-

domain) elicited distinct patterns of brain activity during the subsequent retrieval phase,

despite the fact that identical stimuli were encoded, maintained and retrieved from WM. This

indicates that partly different processes mediated retrieval after within- and cross-domain

interference, and thus WM retrieval differed according to the nature of the preceding concur-

rent task. Large bilateral occipital activations were engaged during retrieval after the within-

domain/lexical concurrent task, whereas only limited activity was observed in medial occipital

cortex in addition to left superior and middle temporal cortex during retrieval after the cross-

domain/face concurrent task. Interestingly, the latter cluster in temporal cortex overlapped

with regions often reported in phonological tasks and associated with language networks [48,

49]. A plausible explanation for such difference would be that the maintenance of letters relied

on a preferentially visual format when a concurrent verbal task had to be performed (i.e.,

within-domain concurrent task), hindering the use of the phonological loop for maintenance.

On the other hand, the visual concurrent task may not prevent maintenance in the phono-

logical loop, explaining a lesser involvement of visual cortex but conversely greater recruitment

of language-related areas (left superior and middle temporal) during retrieval. These interpre-

tations would accord with Baddeley and Hitch’s model previously mentioned, and the pro-

posed effect of articulatory suppression on verbal WM [59, 76, 77].

The current study is not without limitations. The study sample size could be considered rel-

atively small. We note, however, that it is comparable with previous studies exploring neural

correlates of WM [12, 67, 78]. Even if our data showed no hint of any systematic modulation
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of brain activity patterns by age or retrieval accuracy, correlation and regression analysis per-

formed here can be sensitive to small size. Nevertheless, by design, our procedure of tailoring

task difficulty to each participant according to their WM capacity precisely aimed at avoiding

age related effects and minimizing confounding effects due to individual differences in perfor-

mance. We acknowledge that the lack of variability and the high retrieval accuracy resulting

from this procedure may have limited the sensitivity of our study to activations modulated by

age or other individual factors. Another limitation is that our paradigm did not test the reverse

situation of verbal versus visual concurrent tasks on visual information held in WM. Examin-

ing both verbal and visuospatial WM in the presence of verbal and visuospatial interference

could map more precisely how the different processes subserving verbal and visuospatial WM

are influenced by different kinds of concurrent tasks.

Conclusions

Our study provides new insights into WM-related brain activity. We show a greater role of

perceptual brain systems for encoding processes, and a fronto-parietal attentional network for

retrieval processes. More critically, we show that a concurrent task during maintenance in

WM produced distinct activations not only during the concurrent task itself, but also during

subsequent retrieval. We conclude that the specific demands of the concurrent task affect the

way memory items are maintained in WM, selective verbal interference resulting in greater

reliance on visual cortex for retrieval, whereas visual interference leaves verbal systems of

maintenance unaffected, hence resulting in the involvement of language-related areas in left

temporal cortex for retrieval. These data accord with WM models postulating differentiated

cognitive processes, with distinct neural substrates, according to the concurrent material inter-

fering in verbal WM [59, 76, 77]. In addition we show that these activation patterns are robust

across different ages and different WM capacities. More generally, our work validates a new

WM paradigm derived from the Brown-Peterson task allowing us to probe for the neural

correlates of different WM processes. Because the difficulty of the task was adapted to each

participant and results were stable across age, this fMRI paradigm may be usefully applied in

developmental populations with a wide age range and also feasible in clinical paediatric popu-

lation (e.g., populations with mild intellectual difficulties).
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