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ABSTRACT

The optimal gapped local alignment score of two
random sequences follows a Gumbel distribution.
The Gumbel distribution has two parameters, the
scale parameter l and the pre-factor k. Presently,
the basic local alignment search tool (BLAST) pro-
grams (BLASTP (BLAST for proteins), PSI-BLAST,
etc.) use all time-consuming computer simulations
to determine the Gumbel parameters. Because the
simulations must be done offline, BLAST users are
restricted in their choice of alignment scoring
schemes. The ultimate aim of this paper is to speed
the simulations, to determine the Gumbel parameters
online, and to remove the corresponding restrictions
on BLAST users. Simulations for the scale parameter
l can be as much as five times faster, if they use global
instead of local alignment [R. Bundschuh (2002)
J. Comput. Biol., 9, 243–260]. Unfortunately, the accel-
eration does not extend in determining the Gumbel
pre-factor k, because k has no known mathematical
relationship to global alignment. This paper relates
k to global alignment and exploits the relationship
to show that for the BLASTP defaults, 10 000 realiza-
tions with sequences of average length 140 suffice to
estimate both Gumbel parameters l and k within the
errors required (l, 0.8%; k, 10%). For the BLASTP
defaults, simulations for both Gumbel parameters
now take less than 30 s on a 2.8 GHz Pentium 4
processor.

INTRODUCTION

Local sequence alignment is an indispensable computational
tool in modern molecular biology. It is frequently used to infer

the functional, structural and evolutionary relationships of a
novel protein or DNA sequence by finding similar sequences
of known function in a database. Arguably, the most important
sequence database search program available is BLAST (the
Basic Local Alignment Search Tool) (1,2). Using a heuristic
algorithm, BLAST implicitly performs a local alignment of a
protein or DNA query against sequences in the corresponding
database. The BLAST output then ranks each potential data-
base match according to an E-value, which is derived from the
corresponding local maximum score, given in bits. For each
local maximum score y, the corresponding E-value Ey gives
(under a random model) the expected number of false positives
with a lower rank in the output. Thus, a small E-value indicates
that the corresponding alignment is unlikely to occur by
chance alone, whereas a large E-value indicates an unremark-
able alignment. Without doubt, BLAST’s E-values contribute
substantially to its popularity.

Let us discuss the BLAST E-value Ey further here. (The
Materials and Methods section also continues the discussion.)
BLAST assumes a random model in which each unrelated pair
of sequences A[1, m] ¼ A1 ··· Am and B[1, n] ¼ B1 ··· Bn

consists of random letters chosen independently from a back-
ground distribution. BLASTP (BLAST for proteins), e.g.
assumes that random proteins are composed of amino acids
chosen independently from the Robinson and Robinson fre-
quency distribution (3). BLAST also requires an input, a
matrix s(Ai, Bj) for scoring matches between the letters Ai

and Bj. BLASTP, e.g. uses the BLOSUM62 scoring matrix
(4) as its default, offering as alternatives a few other PAM (5)
and BLOSUM matrices. BLAST also enhances its detection of
remote sequence similarities by using gapped sequence align-
ment. The cost of introducing a gap into an alignment is given
by the ‘gap penalty’ D(g), where g is the gap length. Practical
gap penalties D are usually super-additive, i.e. D(g) +
D(h) > D(g + h), so the concatenation of optimal subsequence
alignments has a score no less than the sum of their scores.
(However, our theory is not restricted to super-additive gap
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penalties). Affine gap penalties D(g) ¼ a + bg are typical in
database searches. We refer to the letter distribution, the scoring
matrix, and gap penalty collectively as ‘BLAST parameters’.

Throughout the paper, we assume a ‘logarithmic regime’ (6)
where the alignment scores of long random sequences have a
negative expectation. In the logarithmic regime, the BLAST
E-value Ey is approximately

Ey � kmne�ly 1

for large y. Under a Poisson approximation (7) for large y, the
E-value Ey yields the P-value Py ¼ 1�exp(�Ey). Because of
Equation 1, the tail probability Py corresponds to a Gumbel
distribution with ‘scale parameter’ l and ‘pre-factor’ k.

For ungapped local alignment (i.e. the special case
D(g) ¼ 1, which disallows gaps in the optimal local align-
ment), a rigorous theory furnishes analytic formulas for the
Gumbel parameters l and k (7,8). For gapped local alignment,
analytic results are scarce and usually come at a price: they
depend on approximations whose accuracy in general is
unknown (9–12). In the absence of a rigorous theory for
gapped local alignment, computer simulations have confirmed
the validity of Equation 1 (13–16), and in the absence
of formulas, they also have provided estimates of l and
k (16–19).

Because of the exponentiation in Equation 1, errors in l
have a greater practical impact than errors in k. Thus, for use in
BLAST, l must be known to within 1–4% relative error; k, to
within 10% (20). Therefore, in statements about computational
speed, the following implicitly assumes that the estimation
of l and k is carried out to these accuracies, unless stated
otherwise.

Presently, the BLAST program precomputes l and k offline,
using the so-called ‘island method’ (15,20). Because of the
precomputation, users are given a narrow choice indeed of
BLAST parameters. The choice of BLAST parameters would
be much less restricted, if l and k could be computed online
(in, say, less than 1 s) before searching a database with arbi-
trary BLAST parameters. Accordingly, much recent research
has been directed toward speeding estimation of l and k.

With the ultimate aim of estimating l and k online,
Bundschuh gave some interesting conjectures about l
(21,22). He then applied them in global alignment simulations
that estimated l as much as five faster than the island method.
Later, we extended his conjectures, reducing the sequence
length required to estimate l by almost a factor of 10 (23).

Despite their obvious promise, even with further improve-
ments in speed and global alignment simulations will remain
impractical for online estimation in BLAST, unless they can
be made to estimate k as well. To remedy the problem, we
relate k to global alignment and then exploit the relationship in
simulations that estimate both l and k.

MATERIALS AND METHODS

Notation for global sequence alignment

We denote the non-negative integers by Z+ ¼ {0, 1, 2, 3, . . .}.
Throughout the paper, the letters g, h, i, j, m, n and the letter y
are the integers.

Consider a pair A ¼ A1A2. . . and B ¼ B1B2. . . of infinite
sequences. The corresponding global alignment graph G is a

directed and weighted lattice graph in two dimensions, as
follows. The vertices of G are v ¼ i‚ jð Þ 2 Z

2
þ, the non-

negative two-dimensional integer lattice. Three sets of
directed edges e come out of each vertex v ¼ (i, j): northward,
northeastward and eastward. One northeastward edge goes
into (i + 1, j + 1) with weight s(Ai+1, Bj+1). For each g > 0,
one eastward edge goes into (i + g, j) and one northward
edge goes into (i, j + g); both are assigned the same weight
�D(g) < 0. For simplicity, we assume s(Ai, Bj) and D(g) are
always integers, with greatest common divisor 1.

A directed path p ¼ (v0, e1, v1, e2, . . . eh, vh) in G is a finite,
alternating sequence of vertices and edges that starts and ends
with a vertex. We say that the path p starts at v0 and ends at vh.
For instance, each gapped alignment of the subsequences
A[i + 1, m] ¼ Ai+1 . . .Am and B[j + 1, n] ¼ Bj+1 . . . Bn cor-
responds to exactly one directed path that starts at v0 ¼ (i, j)
and ends at vh ¼ (m, n). The alignment’s score is the ‘path
weight’ Wp ¼

Ph
i¼1 W eið Þ, the sum of the weights W(ei) of the

edges ei. By convention, any trivial path p ¼ (v0) consisting
of a single vertex has weight Wp ¼ 0.

Let Pij be the set of all paths p starting at v0 ¼ (0, 0) and
ending at vh ¼ (i, j). Define the ‘global score’ Sij ¼ max{Wp:
p 2 Pij}. The paths p starting at v0 and ending at vh with
weight Wp ¼ Sij are ‘optimal global paths’ and correspond
to ‘optimal global alignments’ between A[1, i] and B[1, j].
The Needleman–Wunsch algorithm computes the global
scores Sij (24).

Let P ¼ [ði‚ jÞ2Z2
þ
Pij be the set of all paths p starting

at v0 ¼ (0,0). Define the ‘global maximum’ M ¼ max{Wp:

p 2 P}, which is also the maximum M ¼ max fSij : i‚ jð Þ 2
Z

2
þg of all global scores. Let N yð Þ ¼ #f i‚ jð Þ 2 Z

2
þ : Sij ¼ yg

denote the number of vertices with global score y.
Define the lattice rectangle [0, n] ¼ {0, 1, . . . , n}. Our simu-

lations involved a square subset [0, n]2 of Z
2
þ. In particular

single subscripts connote quantities for the square:
Mn ¼ max{Sij : (i, j) 2 [0, n]2}, the square’s global maximum;
En ¼ max{max0<i<nSin, max0<j<nSnj}, its edge maximum;
and Nn (y) ¼ #{(i, j) 2 [0, n]2 : Sij ¼ y}, the number of its
vertices with global score y.

The formula for k from global alignment

We can show heuristically that k ¼ limy!1ky, where

ky ¼
ely

1�e�l ·
P M ¼ yð Þ2

EN yð Þ 2

(see our Appendix, online). Ultimately, the heuristics behind
Equation 2 are based on two observations about random
sequence matches. First, the two ends of a strong local align-
ment match are the mirrors of each other. Second, the right end
of a strong alignment match looks the same for both local and
global alignment.

Equation 2 computes ky from three components: the scale
parameter l, the probability P(M ¼ y) of a global maximum y,
and the expected number EN(y) of vertices with global score
Sij ¼ y. We now describe how our simulations determined the
three components.

Numerical scheme for l

First, we estimated l from random global alignments (23).
All simulations used to affine gap penalties D(g) ¼ a + bg and
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the corresponding global alignment algorithms for computing
Sij (25).

Recall the edge maximum En (defined at the end of the
notation for global sequence alignment). As shown elsewhere
(23), its cumulant generating function satisfies

ln E exp lEnð Þ½ � ¼ b0 þ b1 lð Þn þ O dnÞ‚ð 3

where 0 < d < 1. The root l ¼ l̂l of b1(l) ¼ 0 is our esti-
mate for l.

To estimate Eexp(lEn) efficiently, we used Bundschuh’s
importance sampling methods (21), which apply if the gap
penalty is affine. Briefly, importance sampling is a
variance-reduction technique for simulating rare events. In
global alignment simulations, e.g. a large edge maximum is
a rare event. By simulating optimal subsequence pairs in
‘hybrid alignment’ (a type of optimized Bayesian local align-
ment) (26), we ensured that our realizations frequently gen-
erated a large edge maximum En. Accordingly, we simulated a
pair of sequences of some ‘base length’ n ¼ l. After correcting
for biases induced by the importance sampling distribution, we
estimated Eexp(lEl).

Equation 3 corresponds to an asymptotic equality with two
free parameters to b0 and b1(l), which we estimated with
robust regression. Robust regression was originally developed
as an antidote to outliers (27), which badly skew least-square
regression (28–31). As noted elsewhere (23), however, robust
regression is also remarkably suited for extracting asymptotic
parameters like b0 and b1(l).

Robust regression requires the specification of an influence
function, to quantify the influence of potential outliers on the
regression result. Many influence functions exist (27), but the
Andrews function with a ¼ 1.339 [(27), p. 388; (29)] works
well in asymptotic regression, because it ignores points that
obviously lie outside the asymptotic regime (23).

Accordingly, we applied robust regression to Equation 3.
To solve b1(l) ¼ 0, let lu be the scale parameter for ungapped
local alignment, which can be determined analytically.
Because 0 < l < lu, with repeated bisection of the interval
[0, lu] yielded an estimate l̂ for the root of the
equation b1(l) ¼ 0. In practice, multiple roots did not occur.

Numerical scheme for k

Next, we estimated P(M ¼ y) and EN(y). Importance sam-
pling has already generated sequence-pairs of base length l
for estimating l. The bias in importance sampling tends to
yield large global scores Sij, ascending toward the global maxi-
mum M. To determine N(y), we needed to simulate and count
all vertices with global scores Sij ¼ y. Therefore, we extended
the sequence pair beyond the base length l using random letters
with the unbiased Robinson and Robinson frequencies. The
global scores Sij beyond the base length l became progres-
sively smaller, thereby permitting determination of N(y).

Given e > 0, we simulated a random number �LL of
unbiased letters in each sequence, until we found some total
length L ¼ l þ �LL such that

2L þ 1ð Þ exp f�l ML�ELð Þg < e: 4

The edge maximum EL is a maximum over 2L + 1 vertices.
Therefore, for small enough stringencies e > 0, if the edge

maximum EL of the contributing 2L + 1 vertices satisfies
Equation 4, it is probable that M ¼ ML, because elongating
the sequences is unlikely to increase the estimate of M. Simi-
larly, the elongation does not increase the estimate of EN(y)
much. After appropriate averaging, our simulations therefore
yielded estimates P̂P M ¼ yð Þ � P ML ¼ yð Þ and ÊEN yð Þ �
ENL yð Þ for P(M ¼ y) and EN(y).

With the simulation estimates l̂, P̂P M ¼ yð Þ and ÊEN yð Þ in
hand, we found that errors in l̂ were negligible in practice. In
contrast, the standard deviations sample (32) of P̂P M ¼ yð Þ and
ÊEN yð Þ, denoted by sM and sN, were not.

We calculated an estimate k̂ky for ky by substituting l̂,
P̂P M ¼ yð Þ, and ÊEN yð Þ into Equation 2. We estimated
the error s k̂ky

� �
in k̂ky from the equation

s k̂ky

� �
¼ max

el̂ly

1�e�l̂l
·
P̂P M ¼ yð Þ ± sM

� �2

ÊE N yð Þ½ � ± sN

� k̂ky

�����

�����: 5

Note that Equation 5 explicitly neglects the error in the esti-
mate l̂l.

Finally, we used robust regression to extract a summary
estimate k̂k from the estimates k̂ky ± s k̂ky

� �
for individual y.

To begin with, consider a constant regression model
h ¼ 1a + e, where h is a column vector consisting of the
values k̂ky, 1 is a column vector whose elements are all 1,
the constant a is the summary estimate k̂k, and e is the column
vector consisting of the errors s k̂ky

� �
.

Our ultimate aim is to compute k̂k rapidly, with as few
realizations as possible. Unfortunately, for small numbers
of realizations, the errors sM and sN are correlated with the
corresponding estimates P̂P M ¼ yð Þ and ÊEN yð Þ. The correla-
tions propagate to s k̂ky

� �
, noticeably biasing the summary esti-

mate k̂k, with Ek̂k < k (see Figure 1).
To avoid the bias, we applied the constant regression model

h0 ¼ 1a0 + e0 to the errors s k̂ky

� �
themselves. The elements of

the column vector h0 were the errors s k̂ky

� �
, with errors in each

s k̂ky

� �
is taken to be a constant s derived though a standard

formula [(27), p. 387], e0 ¼ 1s. Robust regression thus gave
a constant estimate a0 ¼ ŝs k̂k

� �
of the errors s k̂ky

� �
. We substi-

tuted the constant error estimate e ¼ 1a0 ¼ 1ŝs k̂k
� �

back into the
constant regression h ¼ 1a + e of k̂ky to derive a robust regres-
sion estimate k̂k for k. Although somewhat ad hoc, the constant
regression of the errors successfully reduced biases (see
Figure 3).

Even for large simulations (e.g. 106 realizations), however,
sampling of the event [M ¼ y] was inadequate for many
large y, with P(M ¼ y) likely being underestimated. Although
the corresponding average was unbiased (in theory, at least),
we suspect that it had a distribution whose skewing increased
with y. Consequently, for large y, k̂ky often slightly underesti-
mated the true k, with improbable but substantial overestima-
tions maintaining a correct expectation Ek̂ky ¼ k (see Figure 2).
The putative skewing also made the anticipated relation
P(M ¼ y) � el P(M ¼ y + 1) fail for large y. To avoid skew-
ing, we therefore restricted robust regression of k̂ky to the range
[a, b] of y that minimized the function

f a‚bð Þ ¼ 1

b � a þ 1ð Þ
Xb

y¼a

P M ¼ yð Þ
P M > yð Þ � 1�e�l

� 	����
����: 6
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Software and Hardware

Computer code was written in C++ and compiled with the
Microsoft� Visual C++� 6.0 compiler. The computer had a
single Intel� Pentium� 4 2.8 GHz processor with 0.5 GB RAM
and employed the Microsoft� Windows� 2000 operating
system.

RESULTS

Tables 1 and 2 give estimates of the Gumbel parameters l and
k for all online options of the BLASTP parameters. They
therefore confirm that our simulations and our formulas for
k produced correct results. Other figures show results for the
BLASTP default parameters, namely, the Robinson and

Robinson amino acid frequencies (3), the BLOSUM62 scoring
matrix and the gap cost D(g) ¼ 11 + g. Other BLAST para-
meters tested gave comparable results, unless indicated
otherwise (data not shown).

Empirically, simulations using BLASTP default parameters
needed a base length of l ¼ 50 and a stringency e ¼ 10�2 for
the accuracies required for (l, 1%; k, 10%). For scoring
matrices with more dominant diagonals than BLOSUM62,
shorter base lengths sufficed, (e.g. for PAM30, l ¼ 15
sufficed).

Figure 1 plots the estimates k̂ky with their standard error bars
s k̂ky

� �
against global score y, up to y ¼ 25. Each point repre-

sents 30 000 realizations. The horizontal thick line represents
the previous best estimate k � 0.041 and the dotted line, the
biased summary estimate k̂k ¼ 0:036 due to the positive cor-
relation between k̂ky and s k̂ky

� �
. Therefore Figure 1 motivated us

to regress the errors in k̂ky, to produce a constant error estimate
ŝs k̂k
� �

, as described in the Materials and Methods.
Figure 2 plots the estimates k̂ky against global score y, up to

y ¼ 100. Each point represents 106 realizations. We obtained
the estimate l̂ and used it to estimate k̂ky. The range y 2 [0, 3] is
not asymptotic, so the k̂ky do not approximate the true k very
well. The range y 2 [4, 40] is asymptotic, and it is adequately
sampled, so the k̂ky fluctuate randomly around the true k.
The range y > 40 is also asymptotic, but it is not adequately
sampled, so the k̂ky usually underestimate the true k. Figure 2
motivated us to regress only in the range [a, b] minimizing
Equation 6, as described in the Materials and Methods.

Figure 3 plots the relative errors of the summary estimate k̂k
using k̂ky ± s k̂ky

� �
(with skewed error estimates s k̂kyÞÞ

�
and those

using k̂ky ± ŝs k̂k
� �

(with constant error estimate ŝs k̂kÞÞ
�

against
different numbers of realizations). All errors in k̂k were

0.061

0.041

0.021

0.001

0 20 40
y

ky

60 80 100

Figure 2. Plot of estimates for k̂ky against the global score y for 106 realizations.
The simulation conditions were the same as in Figure 1. The error bars showing
s k̂ky

� �
for the under-sampled asymptotic regime y 2 [41 100] are large and are

omitted.

0.08

0.06

0.04

0.02

0

0 5 10
y

ky

15 20 25

Figure 1. Plot of estimates for k̂ky against the global score y for the BLOSUM62
scoring matrix with an affine gap cost of 11 + g for a gap of length g, with
random sequences whose letters are chosen according to the empirical
Robinson and Robinson amino acid frequencies (3). Each point represents
30 000 random sequence-pairs generated by the importance sampling method
with base length l ¼ 50 and extended to random length L using Equation 4 with
e ¼ 10�2. The error bars indicate the error estimate s k̂ky

� �
. The horizontal thick

line k ¼ 0.041 represents the previous best estimate of the Gumbel pre-factor k
(20). The dotted line k̂k ¼ 0:036 shows an example of the biased summary
estimate k̂k from the robust regression, which we ascribe to the correlation
between s k̂ky

� �
and k̂ky.

Table 1. Estimates of l for all online options of the BLASTP parameters

Scoring
matrix

Gap
cost D(g)

l Average
l̂l

Standard
error l̂l

Relative
error l̂l (%)

BLOSUM45 15 + 2g 0.203 0.2039 0.00061 0.30
BLOSUM62 11 + g 0.267 0.2678 0.00088 0.33
BLOSUM80 10 + g 0.299 0.3000 0.00056 0.19
PAM30 9 + g 0.294 0.2931 0.00035 0.12
PAM70 10 + g 0.291 0.2914 0.00037 0.13

All results used 100 simulations of 30 000 realizations each. In Table 1, the first
and secondcolumn give the BLASTP parameteroptions. The third column gives
l from the online BLASTP documentation. The fourth column gives the average
estimate l̂l from 100 simulations. The fifth column gives the corresponding
standard error in l̂l (so the standard error mean, the actual accuracy of our results,
is 0.1 times the standard error). The sixth column gives the percent relative error
in l̂l , as calculated from the fourth and fifth columns.

Table 2. Estimates of k for all online options of the BLASTP parameters

Scoring
matrix

Gap
cost D(g)

k Average
k̂k

Standard
error k̂k

Relative
error k̂k (%)

BLOSUM45 15 + 2g 0.041 0.0401 0.0024 5.99
BLOSUM62 11 + g 0.041 0.0410 0.0027 6.59
BLOSUM80 10 + g 0.071 0.0706 0.0044 6.23
PAM30 9 + g 0.110 0.1051 0.0108 10.27
PAM70 10 + g 0.091 0.0899 0.0079 8.79

All results used100 simulations of 30 000realizations each. Table2 has the same
format as Table 1.
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computed relative to the approximation k � 0.041. Each error
plotted is the average of the absolute relative error for 20
independent simulations, each using the indicated number
of realizations. White bars show the results for k̂ky ± ŝs k̂k

� �
;

black bars, for k̂ky ± s k̂ky

� �
. For 10 000 realizations, the constant

error estimate ŝs k̂k
� �

reduces the relative errors dramatically. As
the number of realizations increases, the difference in effici-
ency of estimation between k̂ky ± s k̂ky

� �
and k̂ky ± ŝs k̂k

� �
decreases. Figure 3 shows that 10 000 realizations estimated
k with less than 10% relative error. The same 10 000 realiza-
tions also estimated l̂l with less than 0.8% relative error (data
not shown).

The simulations of Figure 3 estimated k̂k from 10 000
realizations, in less than 30 s. For comparison, the same
simulations could have estimated l̂l in less than 7 s. For the
PAM 30 matrix with D(g) ¼ 9 + g, they estimated l and k in
less than 4 s.

DISCUSSION

BLAST programs (BLASTP, PSI-BLAST, etc.) are restricted
to specific scoring schemes, because time-consuming local
alignment simulations for estimating the corresponding
Gumbel parameters must be done offline. However, simula-
tions of global alignment can estimate the Gumbel scale
parameter l for local alignment (6). Some global alignment
methods are as much as five times faster than the best
local alignment methods (21,23), so global alignment has
considerable potential for online estimation of the Gumbel
parameter l.

This paper surmounts an obstacle to online estimation
by demonstrating that simulations of global alignment can
determine the Gumbel pre-factor k. Table 2 displays the results
of global alignment simulations over a wide range of BLAST
parameters, all of which gave correct estimates of the corre-
sponding k and supported the validity of our methods for
computing k.

Global alignment simulation therefore appears a feasible
method for estimating both Gumbel parameters, l and k.
(The BLASTP default parameters provide a standard for
quantifying speed, so the following results apply to the

BLASTP defaults, unless stated otherwise.) With local
alignment, estimates of l required 40 000 sequence-pairs of
minimum length 600 (21); with our methods, 5000 sequence-
pairs of maximum length 50 (23). In fact, our methods attained
1.3% accuracies in l with only 1000 sequence-pairs of maxi-
mum length 50. In our hands, k was more difficult to estimate
than l, with 10% relative errors requiring 10 000 sequence-
pairs of average length 140. In summary, the methods
presented here for estimating the Gumbel parameters l and
k represent at least a 3-fold improvement in speed over local
alignments.

Online computation of the BLAST P-value requires more
than the Gumbel parameters. It also requires an estimate of the
‘finite-size effect’ (10,13,33,34). Global alignment (or some
variant of it) can indeed produce the required estimate (manu-
script in preparation). Without the finite-size estimate in hand,
however, we were not strongly motivated to incorporate
technical improvements or heuristics into our methods.
Bundschuh, e.g. implemented a diagonal-cutting heuristic to
remove irrelevant off-diagonal elements in the global align-
ment matrix (21); we did not. The heuristic could probably
speed our computation by a further factor of at least three.

Online BLAST estimation of the Gumbel parameters is
likely just a few years away.
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APPENDIX

In the Appendix, we give a heuristic derivation of Equation 2.

Notation for local sequence alignment

For local alignment, consider a pair ÂA ¼ . . . ÂA�1ÂA0ÂA1 . . . and
B̂B ¼ . . . B̂B�1B̂B0B̂B1 . . . of doubly-infinite sequences. Their local

alignment graph ĜG is a directed, weighted lattice graph in
two dimensions, as follows. The vertices v of ĜG are v ¼
(i, j) 2 Z

2, the entire two-dimensional integer lattice. In
other respects, particularly with respect to the edges between
its vertices, ĜG has the same structure as the global alignment
graph G.

We base the graph ĜG on the entire two-dimensional integer
lattice Z2 because of our interest in the Gumbel distribution. In
intuitive terms, the BLAST E-value Ey follows the Gumbel
distribution, only if the local alignment does not ‘see’ the ends
of the sequences, so finite-size effects can be neglected
(13,33).

Let P̂Pij be the set of all paths p ending at vh ¼ (i, j),
regardless of their starting vertex. Define the ‘local score’
ŜSij ¼ max fWp : p 2 P̂Pijg. The paths p ending at vk ¼ (i, j)
with local score Wp ¼ ŜSij are ‘optimal local paths’ correspond-
ing to ‘optimal local alignments’ matching subsequences
of ÂA and B̂B up to and including the letters ÂAi and B̂Bj.

Unlike the singly-infinite sequences A and B, the doubly-
infinite sequences ÂA and B̂B correspond to the entire lattice Z

2.
The lattice Z

2 is invariant under translation (i.e. it appears the
same from each of its vertices). Thus, if ÂA and B̂B are sequences
with independent random letters, the corresponding local
scores ŜSij are ‘stationary’ (i.e. their joint distribution is invari-
ant under translation). Stationary scores carry a prime else-
where (i.e. ŜS

0

ij) (35), which we drop here for brevity. For many
purposes, translation invariance renders all vertices in Z

2

equivalent, so it usually suffices to define quantities below
solely at the origin, (0,0). The definition at other vertices is
usually left implicit.

If the sequences ÂA and B̂B were singly-infinite, the Smith–
Waterman algorithm could compute the corresponding local
scores ŜSij (36). Although the algorithm is unable to compute ŜSij

for ÂA and B̂B, a rigorous treatment shows that doubly-infinite
sequences pose no essential difficulties in the logarithmic
regime (35).

For efficiency, many simulations of random local align-
ments partition the vertices in Z

2 into ‘islands’ (described
below). To avoid technical nuisances, each vertex must belong
to exactly one island, so we define the following strict total
order on Z

2: (i0, j0) � (i, j), if and only if either i0 + j0 < i + j or
else, i0 + j0 ¼ i + j and j0 < j.

Let us say that a vertex i‚ jð Þ 2 Z
2
þ ‘belongs to’ the origin

if (0,0) is the greatest vertex v0 ¼ (i0, j0) (under the total order
�) such that ŜSij ¼ Wp, for some path p starting at v0 ¼ (i0, j0)
and ending at vh ¼ (i, j). The ‘island’ belonging to (0,0) is the
set B00 j Z

2
þ of all vertices (i, j) belonging to (0, 0), and we

say that (0, 0) ‘owns’ the island. [Equation 12 below uses the
translate B�i,�j of the set B00, where B�i,�j is the set of all
vertices belonging to (�i,�j)].

By the following reasoning, B00 is empty if and only
if ŜS00 > 0. First, if ŜS00 > 0, there is some path p0 ending at
(0, 0) with a positive score. If (0, 0) owned any vertex
(i, j), there would be a path p starting at (0, 0) and ending
at (i, j) with ŜSij ¼ Wp. Then, the path concatenating p and p0
would have a weight exceeding ŜSij ¼ Wp, contrary to the
definition of ŜSij. Thus, if (0, 0) owns some vertex, ŜS00 ¼ 0.
Conversely, if ŜS00 ¼ 0, then by deliberate construction, the
definition of the total order � implies that (0, 0) owns
itself [because the weight of the trivial path containing only
(0, 0) is 0].
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Accordingly, define the ‘local maximum’ [implicitly, on the
island B00 belonging to (0, 0)] as M̂M ¼ maxfŜSij : i‚ jð Þ 2 B00g,
with the default M̂M ¼ �1, if B00 is empty (i.e. if ŜS00 > 0). Let
N̂N yð Þ ¼ #f i‚ jð Þ 2 B00 : ŜSij ¼ yg denote the number of island
vertices with local score y.

To connect our quantities explicitly to the Gumbel para-
meters, define M̂Mmn ¼ max fŜSij : 0 < i < m‚ 0 < j < ng, the
maximum local score in the lattice rectangle [0, m] · [0, n].
Let ry the density of islands yielding a local score ŜSij > y,
or equivalently, the density of their owners in Z

2. Under cer-
tain conditions in the logarithmic regime, P M̂Mmn > y

� �
¼

Py � 1 � exp �Ey

� �
, where as m, n ! 1,

Ey ¼ rymn � kmne�ly: 7

Simulations indicate that to a good approximation, islands
yielding a large local score ŜSij occur independently of each
other (15). Therefore, Equation 7 asserts that ry � ke�ly. In a
Poisson approximation, ry represents the intensity of the
Poisson process on Z

2 that generates the owners of islands
yielding a local score ŜSij > y.

Because of translation invariance, the density ry equals
the probability that any particular vertex in Z

2 [e.g. (0, 0)]
owns an island yielding a local score ŜSij > y. In other words,
P M̂M > y
� �

¼ ry � ke�ly. Thus, the limit

k ¼ lim
y!1

ely
P M̂M > y
� �

8

exists and equals the pre-factor k.

Path reversal identity

To determine k from global alignments, we first relate
the global maximum M to the local scores ŜSij with a path
reversal identity. Recall the global maximum M ¼ max
{Wp : p 2 P}, where P is the set of all paths p in Z

2
þ

starting at v0 ¼ (0, 0). Recall also the local score
ŜSij ¼ max fWp : p 2 P̂Pijg, where P̂Pij is the set of all paths
p in Z

2 ending at vh ¼ (i, j).
It is believable that for any fixed (i, j) 2 Z

2, each path in P̂Pij

with random edge-weights corresponds to a reversal of a path
in P with the same random edge-weights. Thus, for every (i, j)
2 Z

2, P ŜSij ¼ y
� �

¼ P M ¼ yð Þ, i.e. the local score and the
global maximum have the same distribution. (Note: the equal-
ity is solely distributional. In any particular random instance,
the local score ŜSij and global maximum score M are unlikely to
be related.)

Because the distributional equality holds for every (i, j) 2
Z

2, we drop the subscript ij on ŜSij and write

P ŜS ¼ y
� �

¼ P M ¼ yð Þ: 9

A formal proof of Equation 9 can be found elsewhere (35).

The Poisson clumping heuristic

Consider the Poisson clumping heuristic (37)

P ŜS ¼ y
� �

¼ P M̂M > y
� �

E N̂N yð ÞjM̂M > y
� �

: 10

Equation 10 states that at any fixed vertex (i, j) 2 Z
2, the

probability that ŜSij ¼ y is the density of vertices with a local

score y. This density equals ry ¼ P M̂M > y
� �

, the density of
islands where some local score is at least y, multiplied by
E N̂N yð ÞjM̂M > y
� �

, the expected number N̂N yð Þ of island vertices
(i, j) where the local score ŜSij ¼ y, is given M̂M > y.

Equation 10 can be demonstrated as follows. First,

EN̂N yð Þ ¼ P M̂M > y
� �

E N̂N yð ÞjM̂M > y
� �

; 11

because if M̂M < y, then N̂N yð Þ ¼ 0. Equation 11 follows, because
the event M̂M < y

� �
contributes nothing to the expectation on

the left.
Next, define the indicator IA ¼ 1 if the event A occurs and

IA ¼ 0 otherwise. Then,

EN̂N yð Þ ¼ E

X
i‚ jð Þ2Z2

þ

I ŜSij ¼ y and i‚ jð Þ 2 B00

� �

¼ E

X
i‚ jð Þ2Z2

þ

I ŜS00 ¼ y and 0‚0ð Þ 2 B�i,�j

� �

¼ P ŜS00 ¼ y
� �

: 12

The first equality is essentially the definition of N̂N yð Þ,
which counts the number of vertices belonging to (0,0)
with local score ŜSij ¼ y. The second equality exploits the
translation invariance of the probabilities associated with
ŜSij. The third inequality merely notes that in the logarithmic
regime, (0,0) must belong to some vertex (35). Equation 10
follows.

Our speculations

Based on the success of our simulation results, we speculate.
First,

lim
y!1

E N̂N yð ÞjM̂M > y
� �
E N yð ÞjM > y½ � ¼ 1: 13

In fact, limy!1E N̂N yð ÞjM̂M > y
� �

and limy!1E N yð ÞjM > y½ �
are likely to exist as a common finite limit, but Equation 13
suffices for present purposes.

Equation 13 can be justified intuitively, as follows. As
y!1, any vertices satisfying Sij ¼ y become likely to cluster
on a single island that has a large maximum local score. Thus,
given M > y, the vertices with Sij ¼ y have a comparable
structure to vertices with ŜSij ¼ y on the island belonging to
(0, 0), given that the island satisfies M̂M > y. In particular, given
M > y, the number N(y) of vertices with Sij ¼ y has a similar
random behaviour to the number N̂N yð Þ of vertices with ŜSij ¼ y,
given M̂M > y. Thus, the expectations approximate each other:
E N̂N yð ÞjM̂M > y
� �

� E N yð ÞjM > y½ �.
Though hardly a ‘speculation’, we assume that c ¼ limy!1

ely
P(M > y) exists. Unfortunately, still there is no rigorous

proof of the limit’s existence.

The formula for k from global alignment

Equation 11 has an analog for global alignment, with a similar
demonstration:

EN yð Þ ¼ E N yð ÞjM > y½ �P M > yð Þ: 14
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Together, Equations 8–10, 13 and 14 yield

k ¼ lim
y!1

ely
P M̂M > y
� �

¼ lim
y!1

ely
P M¼ yð Þ

E N̂N yð ÞjM̂M > y
� �

¼ lim
y!1

ely
P M¼ yð Þ

E N yð ÞjM> y½ � ¼ lim
y!1

ely
P M¼ yð ÞP M> yð Þ

EN yð Þ :

Recall our assumption that s(Ai, Bj) and D(g) are always
integers:

lim
y!1

P M¼ yð Þ
P M> yð Þ ¼ lim

y!1

P M> yð Þ�P M> yþ1ð Þ
P M> yð Þ ¼ 1�e�l: 16

Let ky ¼ ely
P M̂M > y
� �

. From Equations 15 and 16,
k ¼ limy!1ky, where ky is given by Equation 2.
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