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Impact of tDCS on working 
memory training is enhanced 
by strategy instructions 
in individuals with low working 
memory capacity
Sara Assecondi1,2,5*, Rong Hu1,2,3,5, Gail Eskes4, Xiaoping Pan3, Jin Zhou3 & Kim Shapiro1,2

Interventions to improve working memory, e.g. by combining task rehearsal and non-invasive brain 
stimulation, are gaining popularity. Many factors, however, affect the outcome of these interventions. 
We hypothesize that working memory capacity at baseline predicts how an individual performs on 
a working memory task, by setting limits on the benefit derived from tDCS when combined with 
strategy instructions; specifically, we hypothesize that individuals with low capacity will benefit the 
most. Eighty-four participants underwent two sessions of an adaptive working memory task (n-back) 
on two consecutive days. Participants were split into four independent groups (SHAM vs ACTIVE 
stimulation and STRATEGY vs no STRATEGY instructions). For the purpose of analysis, individuals 
were divided based on their baseline working memory capacity. Results support our prediction that 
the combination of tDCS and strategy instructions is particularly beneficial in low capacity individuals. 
Our findings contribute to a better understanding of factors affecting the outcome of tDCS when 
used in conjunction with cognitive training to improve working memory. Moreover, our results have 
implications for training regimens, e.g., by designing interventions predicated on baseline cognitive 
abilities, or focusing on strategy development for specific attentional skills.

Non-invasive direct current brain stimulation (tDCS) can improve performance on a variety of cognitive tasks 
by exploiting mechanisms of synaptic long-term potentiation and depression 1,2. Crucially, these mechanisms 
are particularly efficient when the stimulated area is involved in the cognitive processes under investigation 1,3. 
An interesting application of this principle is in the context of working memory. Working memory (WM) is 
a core cognitive function that has been linked to many facets of human cognition, such as attention, memory, 
language, and general intelligence 4. WM plays an important role in many aspects of everyday life 5 but, criti-
cally, is a limited capacity system 6–8 that declines with age 9 and is compromised by several pathologies, such as 
epilepsy, schizophrenia, Alzheimer’s disease, mild cognitive impairment, and brain injury 10.

Researchers have examined interventions to improve working memory, e.g. by combining task rehearsal and 
non-invasive brain stimulation 11. Approaches have included both single- and multi-session designs, with brain 
stimulation applied concurrently or before a cognitive task and have examined both healthy as well as clinical 
populations. In spite of its potential, however, outcomes of these studies are inconsistent and highly dependent on 
methodological parameters (for a review, see 12). When multisession designs are considered, results are even less 
consistent across studies. For example, whereas an improvement in working memory performance was reported 
when combining multiple sessions of working memory training with tDCS in healthy young volunteers 13–15, 
Nilsson et al. 16 found no evidence of improvement in the young or in the elderly. Thus, researchers call for caution 
in interpreting the impact of tDCS on working memory, hence one of the motivations of the present study 17–19.

Many factors have been shown to affect the outcome of studies examining the use of tDCS to improve WM, as 
measured by the n-back task. In the n-back task, participants are requested to decide if a stimulus in a sequence 

OPEN

1Visual Experience Laboratory, School of Psychology, University of Birmingham, Birmingham, UK. 2Center for 
Human Brain Health (CHBH), University of Birmingham, Birmingham, UK. 3Department of Neurology, Guangzhou 
First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 
China. 4Departments of Psychiatry and Psychology & Neuroscience, Dalhousie University, Halifax, NS, 
Canada. 5These authors contributed equally: Sara Assecondi and Rong Hu. *email: sara.assecondi@gmail.com

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-021-84298-3&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |         (2021) 11:5531  | https://doi.org/10.1038/s41598-021-84298-3

www.nature.com/scientificreports/

matches the one appeared ‘n’ items before 20. Gill et al. 21 showed that a 3-back working memory task but not a 
1-back task led to a poststimulation performance improvement, and others have stressed that the targeted brain 
network, usually the DLPFC in working memory studies, should be engaged in a cognitive task to maximize 
the influence of brain stimulation 12,22–24. Others have suggested ceiling and floor effects should be avoided 25,26, 
that the location of the electrodes on the scalp should be congruent with the brain areas engaged in the working 
memory task 27–29, and that individual differences in age and education influence performance 30,31. As Berryhill32 
pointed out, most of the inconsistency in combined working memory training and tDCS experiments can be 
attributed to heterogeneity in parameters and experimental designs.

Importantly and relevant to the present study, the choice of a specific strategy applied to a cognitive task has 
been shown to exert a significant impact 33–35. In working memory training regimens, participants who develop 
a strategy early in a cognitive task are more likely to achieve better overall training task performance than those 
who fail to derive a consistent or useful strategy. The rationale offered is that providing strategy instructions 
reduces differences in how initial skill sets are used, compensating for the cognitive limitations of those less 
equipped to fully exploit their resources, and potentially unveiling individual differences in cognitive plasticity 
35. However, the impact of strategy on multi-session design has only recently been addressed 36, showing that 
a strategy advantage is present only in the first few sessions of training. The impact of combining tDCS and 
strategy instructions in WM training regimens is yet to be fully investigated and serves as the motivation for the 
present study. Thus, our goal was to examine the benefit of combining tDCS and strategy instructions in young 
adults performing two sessions of a working memory training task. Additionally, we hypothesized that working 
memory capacity at baseline predicts how an individual performs on a working memory task by setting limits 
on the benefit derived from tDCS combined with strategy instructions.

Material and methods
Participants.  Ninety-two (65 female) right-handed participants (mean age = 20.6 ± 3.8, range 18 to 39) were 
recruited from the University of Birmingham or community and were compensated for their time (3 h in total) 
with either course credits or £20. Participants who did not fulfil safety inclusion criteria for brain stimulation 
37, had a history of depression, or had received brain stimulation or cognitive training in the previous 6 months 
were not eligible for the study. Eight participants dropped out after the first day, resulting in a total of 84 par-
ticipants. The research procedures were approved by the University of Birmingham’s Ethics Committee and are 
in accordance with the Declaration of Helsinki. All participants gave their informed consent before starting the 
study.

Participants were randomly assigned to four groups, ACTIVE and SHAM receiving either active or sham 
stimulation and crossed with STRATEGY and NOSTRATEGY, either receiving strategy instructions, or not 
receiving strategy instructions. We obtained four groups: ACTIVE-STRATEGY, ACTIVE-NOSTRATEGY, 
SHAM-STRATEGY, SHAM-NOSTRATEGY. The SHAM-NOSTRATEGY acts as control group, as participants 
in this group received no intervention (either stimulation or strategy). We employed an adaptive spatial n-back 
paradigm (aNback), over two sessions, with concurrent tDCS of the right DLPFC (online). We evaluated the 
impact of strategy and stimulation by comparing task performance from pre- to a post- session (offline, e.g., 
without tDCS) on the same adaptive spatial n-back and on a fixed-load visual n-back (fNabck), to tease apart 
the effects of brain stimulation and strategy development.

Working memory capacity scores.  As we predicted a relationship between baseline performance and 
outcome of the intervention, at the analysis stage we divided participants according to their composite memory 
capacity score at baseline. For each participant, a composite capacity score was calculated as the mean of the 
standardized scores of the two tasks completed at baseline (the adaptive spatial Nback (aNback) and the fixed 
load visual Nback (fNabck)). The scores for the aNback (e.g., the average value n across the baseline session) 
and for the fNback (e.g. the average of d-prime for n = 2 and n = 3 at baseline) were standardized as follows: 
DVz = (DV-µ)/σ , where DVz is the standardized dependent variable, DV is the original dependent variable, µ 
and σ are the mean and standard deviation of the DV over the entire sample (84 participants). At the analysis 
stage, participants were then divided into high- (above 66th percentile), mid- (between 33rd and 66th percen-
tile) and low-capacity (below 33rd percentile) levels. When using baseline performance to split participant data 
before analysis, there is a risk of incurring regression to the mean, in turn confounding treatment effects 38–40. 
To avoid this issue, we have taken the following steps: first we used a combination of two baseline measures to 
calculate the composite scores, and secondly in each capacity level we included a control group (receiving nei-
ther stimulation nor strategy training). This approach allows us to safely carry out group comparisons within 
CAPACITY levels, as well as comparison of differential effects (TREATMENT–CONTROL) between CAPAC-
ITY levels. At the same time, we avoid comparing absolute effects between LOW and HIGH CAPACITY indi-
viduals, which are prone to regression-to-the-mean effects.

Transcranial direct current stimulation.  Transcranial direct current stimulation (tDCS) was admin-
istered using an eight-channel device (Starstim, Neuroelectrics). Participants received stimulation during two 
practice sessions over two consecutive days via two circular Ag/AgCl electrodes (NG Pistim, Neuroelectrics) of 
1 cm radius (3.14cm2 area). Electrode impedance was kept below 10 kOhm by using a conductive gel (SignaGel, 
ParkerLabs) between electrodes and scalp. The anode41 was placed over the right dorsolateral prefrontal cortex 
(rDLPFC, F429,42) with the cathode over the contralateral supraorbital site (Fp1), according to the international 
10–20 system. In the ACTIVE group the current was ramped up to 2 mA (current density = 0.64 mA/cm2) in the 
first 30 s and maintained for 20 min before ramping down to 0 mA in the last 30 s (total ACTIVE time 21 min). 
In the SHAM group current was ramped up to 2 mA in the first 30 s then immediately ramped down to 0 mA 
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in the next 30 s, where it was maintained for 20 min followed by another cycle of ramping up and down (total 
SHAM time 21 min). Participants were randomly assigned to either the ACTIVE or the SHAM tDCS condition 
and both blinding and side effects were monitored via a feedback questionnaire.

Adaptive spatial nback task (aNback).  In the adaptive N-back working memory task (aNback, see 
Fig. 1, Panel A) participants were told to monitor the position of a sequence of blue squares appearing randomly 
in one of the eight positions defined by a 3 × 3 grid on the screen (centre position excluded), and to report 
whether the current location matched a previous one ‘n’ trials ago (Brain Workshop 4.8.7, http://​brain​works​hop.​
sourc​eforge.​net/). Each square was presented for 0.4 s, followed by an empty grid for 2.6 s (total trial length 3 s). 
Participants were asked to be as accurate and as fast as possible, responding to match (target) trials by pressing 
the key “A”, whereas non-match (non-target) trials did not require a response. Participants received feedback on 
their accuracy every time a response was given. Starting from a difficulty of n = 2 (indicating ‘n’ items to remem-
ber), as participants’ performance score (True Positives/(True Positives + False Positive + False Negatives)) was at 
or above 70% in a block, difficulty would increase by one, or decrease by one if it was below 50%. Each training 
session consisted of 15 blocks or sequences of 20 + n trials each. Each block of trials included 12.5% matches and 
12.5% interference (e.g., 12.5 of non-match trials presented the target item at position n-1 or n + 1 instead of n). 
At the end of each block participants received feedback on performance and the task was appropriately adapted 
for the subsequent block.

Fixed‑load visual nback task (fNback).  Participants’ visual working memory was assessed on a nona-
daptive visual NBACK task with random shapes (fNback, see Fig. 1, Panel B)43. Stimuli consisted of ten random 
shapes presented sequentially in the centre of the screen for a total of 0.5 s, followed by a fixation cross for 2.5 s 
(total trial length 3 s). Participants were asked to be as accurate and as fast as possible while searching for shapes 
matching with ‘n’ items before, responding by pressing “A” for matches and “L” for no matches. Participants com-
pleted six blocks, or sequences, for n = 2 and six blocks for n = 3, for a total of 120 trials for each n. Each sequence 
included 30% matches and 10% interference (as defined above).

Figure 1.   Description of the two tasks used in the experiment. (A) illustrates the adaptive Nback training task 
(aNback), whereas (B) depicts the fixed Nback outcome task (fNback).

http://brainworkshop.sourceforge.net/
http://brainworkshop.sourceforge.net/
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Strategy instructions and questionnaires.  Before starting the first session with concurrent tDCS 
(ACTIVE or SHAM) and the adaptive nback training task, half of the participants were provided with clear 
instructions on how to undertake the WM task. The strategy follows Laine et al. 33, and is depicted in Fig. 2. Par-
ticipants were first asked to associate a number to each of the eight positions on the screen and were reminded 
that the central position was unavailable. Then they were briefed on the use of a strategy based on “memorize’, 
‘compare’ and ‘update’ (Fig. 2). After the last session, participants completed a questionnaire reporting on the 
strategy used (see Supplemental Material).

Mood and motivation were monitored by administering the Positive Affect/Negative Affect Schedule (PANAS 
44) at the beginning of the baseline session and at the end of the post-assessment, in addition to 5 additional 
questions on a Likert scale (1 to 5, on alertness, motivation, sadness and expectation on both the WM perfor-
mance and the effect of tDCS) to be answered based on one’s subjective ‘feeling’ before each administration of 
the adaptive Nback task.

Procedure.  The timeline of the experiment is shown in Fig. 3. Participants completed the study over two 
visits on two consecutive days. During the first visit, all participants underwent the baseline assessment, in the 
following order: PANAS, one session of the fNback, and one session of the aNback. The STRATEGY group 
received detailed instructions on a specific strategy proven to be task beneficial, while those in the NoSTRAT-
EGY group were not instructed to develop a strategy. Both groups were encouraged to achieve as high an ‘n’ as 
possible. Following the administration of strategy instructions (according to the respective group), participants 
were prepped for brain stimulation and undertook another session of the aNback with either SHAM or ACTIVE 
tDCS, which completed the first visit. On the second visit the following day, participants first completed a ses-
sion of the aNback with tDCS (ACTIVE or SHAM), followed by the post-assessment including in the following 
order: one session of the aNback (without tDCS), one session of the fNback, and the PANAS. The two tDCS ses-
sions provided data on the online effects of combining tDCS with strategy instructions, whereas offline effects 
were quantified during the post-assessment. Before each session of the aNback task, participants completed 
a motivation and expectation questionnaire, and a feedback form on the side effects of tDCS after each brain 
stimulation session (both ACTIVE and SHAM). At the end of the second visit they also completed a feedback 
form on the strategy used during both tasks (see Supplemental Material) and answered some questions about 
the blinding.

Analysis.  Our analysis of variance used a between-subject design with STIMULATION (2 levels), STRAT-
EGY (2 levels) and CAPACITY (3 levels) as independent factors. Details of each analysis are provided in the 
results section, before describing the corresponding results. Greenhouse–Geisser sphericity correction was used, 
when necessary, as well as Holm correction for multiple comparisons in post-hoc tests. Finally, for the different 
CAPACITY levels, we report the model that best explain the data, together with its associated Bayes Factor in 
support of the alternative hypothesis (BF10).

Figure 2.   Schematic of strategy instructions. Participants were asked to assign numbers to positions on the 
spatial grid, then to create in their mind a target set (grouping) of the positions as numbers as the first ‘n’ items 
are presented, then compare the new item on the screen with the appropriate recent item (depending on n level) 
in their memory set, and finally to discard the least recent item of the sequence in mind and update the target 
set with the new item. Participants in the no- strategy group were introduced to the task and instructed to “do 
their best trying to get to the highest possible n level”.



5

Vol.:(0123456789)

Scientific Reports |         (2021) 11:5531  | https://doi.org/10.1038/s41598-021-84298-3

www.nature.com/scientificreports/

Results
Initial baseline data.  A 1-way independent ANOVA showed that the four groups did not differ in age, 
gender distribution, years of education, motivation, mood, attitude or performance in the baseline session of the 
fNback and the aNback (all ps > 0.05, see Supplementary Material). A chi-square test of independence showed 
no significant association between actual and perceived stimulation, indicating that subjects were blind to the 
stimulation group (X2

(1, N=84) = 0.86, p = 0.35), see Supplemental Material for tabulated values.

Working memory capacity scores.  Scores for the two tasks were significantly related but shared only a 
small amount of variance (rp = 0.43, p < 0.001, see Fig. 4). Descriptive statistics of the capacity scores are reported 
in the Supplementary Table S1. No differences in capacity scores were found between the four groups, when 
the capacity levels are aggregated (STIMULATION × STRATEGY, p > 0.1). There was no significant association 
between the groups and the capacity membership (X2(6) = 2.79, p = 0.84). Thus, there were no factors compro-
mising the results of the independent variables under investigation.

Online effects of the intervention.  To evaluate the online effect of tDCS and strategy instructions, we 
quantified performance changes in training across the two tDCS sessions in the adaptive spatial nBack task 
(aNback) as the average difference between the mean ‘n’ within a session (excluding the first block) and the mean 
‘n’ at baseline ( �n = n− nbaseline ). We predicted that the combination of tDCS and strategy instructions would 
be particularly beneficial in the LOW CAPACITY group. To test this prediction, we conducted a 4-way mixed 
ANOVA with 3 between-subject factors (STIMULATION: ACTIVE, CONTROL × STRATEGY: STRATEGY, 
NoSTRATEGY × CAPACITY: LOW, MID, HIGH) and one within-subject factor (TIME: change at DAY 1, DAY 
2). We found a main effect of TIME (F(1,72) = 35.08, p < 0.001, η2p = 0.33) and STRATEGY (F(1,72) = 4.80, p = 0.03, 
η2p = 0.06), and significant interactions of TIME × STRATEGY (F(1,72) = 5.47, p = 0.02, η2p = 0.07) and STIMULA-
TION × STRATEGY × CAPACITY (F(2,72) = 5.83, p = 0.005, η2p = 0.14). We then focused on the higher level 3-way 
interaction, after collapsing across TIME and conducted multiple comparisons between groups (t-test, Holm-
corrected), within each CAPACITY level (LOW, MID, HIGH). The best model that describes the data included a 
main effect of STRATEGY, STIMULATION and their interaction (for LOW CAPACITY individuals, BF10 = 6.34, 
for HIGH CAPACITY individuals BF10 = 1.97).

Within low-capacity individuals, only the ACTIVE-STRATEGY group achieved performance improve-
ments significantly larger than zero (t(24) = 6.10, p < 0.001), and larger than ACTIVE-NoSTRATEGY (t(14) = 3.48, 
pH = 0.01, dCohen = 1.60) , SHAM-STRATEGY (t(11) = 2.86, pH = 0.03, dCohen = 1.16), and SHAM-NoSTRATEGY 
(t(11) = 3.24, pH = 0.02, dCohen = 1.36). No significant differences between groups were found in individuals with 
mid-capacity (ps > 0.1). For high-capacity individuals, SHAM-STRATEGY group’s improvement was significantly 

Figure 3.   Experiment’s timeline.
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greater than zero (t(25) = 5.02, p < 0.001) and larger than the SHAM-NoSTRATEGY group (t(13) = 3.22, pH = 0.021, 
dCohen = 1.42). Figure 5 shows performance changes, collapsed across the two online sessions (TIME), with respect 
to baseline, split by CAPACITY.

Offline effects of the intervention.  To examine the overall effects of the intervention on working mem-
ory (offline effects) after two sessions of brain stimulation, we analysed the changes in performance in the aNback 
task ( �n ), calculated as the change in n in the post-assessment in relation to the baseline. Again, we predicted 
the combination of tDCS and strategy instructions would be particularly beneficial in the low-capacity group. A 
3-way independent ANOVA (STIMULATION: ACTIVE, CONTROL × STRATEGY: STRATEGY, NoSTRAT-
EGY × CAPACITY: LOW, MID, HIGH) revealed a significant main effect of STRATEGY (F(1,72) = 8.40, p = 0.005, 
η2p = 0.10) with the STRATEGY group achieving larger improvement than the NO STRATEGY group (Dc = 0.63), 
and a main effect of STIMULATION trending towards significance (F(1,72) = 3.19, p = 0.08, η2p = 0.04), with the 

Figure 4.   Correlation plot between standardised aNback (x-axis) and fNback (y-axis) scores at baseline. Points 
are color-coded according to their capacity group membership.

Figure 5.   Performance change ( �n ) with respect to baseline, collapsed across day 1 and day 2 (tDCS sessions) 
for each group. Means with standard errors are reported for each group and capacity. P-values are marked as 
follows: * p < 0.05, ** p < 0.01, *** p < 0.001. Changes significantly larger than zero are marked in red.
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ACTIVE group achieving larger performance improvements than the SHAM group (Dc = 0.37). We also found 
a 3-way interaction of STIMULATION × STRATEGY × CAPACITY trending towards significance (F(2,72) = 2.71, 
p = 0.07, η2p = 0.07). The best model that describes the data includes a main effect of STRATEGY, STIMULA-
TION and their interaction (for LOW CAPACITY individuals, BF10 = 11.07, for HIGH CAPACITY individu-
als BF10 = 2.32). As our hypothesis is specific to individuals with low-capacity and the effect size of the 3-way 
interaction is medium to large 57,58, we followed up the 3-way interaction with planned multiple comparisons 
between groups (t-test, Holm-corrected), within each CAPACITY level (LOW, MID, HIGH). In individuals with 
low-capacity, the ACTIVE-STRATEGY group achieved offline performance improvements significantly larger 
than zero (t(24) = 6.47, p < 0.001) and larger than the other 3 low-capacity groups (ACTIVE-NoSTRATEGY: 
t(14) = 3.56, pH = 0.008, dCohen = 1.52; SHAM-STRATEGY: t(11) = 2.72, pH = 0.05, dCohen = 1.31; SHAM-NO STRAT-
EGY: t(11) = 3.70, pH = 0.007, dCohen = 1.91). No significant differences between groups were found within indi-
viduals with mid-capacity (ps > 0.1). In individuals with high-capacity, we found offline performance changes 
significantly larger than zero in the ACTIVE-STRATEGY (p < 0.001, t(25) = 5.28), the ACTIVE-NoSTRATEGY 
(p < 0.001, t(25) = 4.87) and the SHAM-STRATEGY (p < 0.001, t(25) = 5.26), while only the SHAM-STRATEGY 
group achieved improvements in performance significantly larger than the SHAM-NoSTRATEGY group 
(t(13) = 2.88, pH = 0.049, dCohen = 1.42). Figure 6 shows performance changes at session 4 with respect to baseline, 
split by CAPACITY.

To establish if any benefit acquired with the optimal combination of tDCS and strategy instructions trans-
ferred to a different working memory task, we evaluated post-assessment performance changes with respect to 
baseline in the fNback task. After excluding the first block from the analysis, for each ‘n’ (n = 2 and n = 3) we 
calculated d-prime as a measure of performance (d-prime = z(Hits)-z(False Alarm) 45,46). A 3-way independent 
ANOVA with 3 between-subject factors STIMULATION: ACTIVE, CONTROL × STRATEGY: STRATEGY, 
NoSTRATEGY × CAPACITY: LOW, MID, HIGH) revealed a main effect of CAPACITY trending towards sig-
nificance (F(2,72) = 2.88, p = 0.063, η2p = 0.07), showing a significant linear trend (high > mid > low, p = 0.029), but 
no significant interactions.

Retrospective strategy analysis and other questionnaires.  We found no modulation of mood, 
alertness, sadness or expectations driven either by brain stimulation, strategy instructions or their interaction 
(see supplemental material for a full description). To validate our strategy manipulation, at the end of day 2, 
we asked participants to report the strategy used in each run. After strategy instructions, only one participant 
in the ACTIVE-STRATEGY group failed to use the strategy after the first session, with two participants in the 
CONTROL-STRATEGY group reporting a failure to adopt the strategy. We also found no difference in the strat-
egy used at baseline between the four groups (X2

(30) = 29.63, p = 0.484) or between CAPACITIES (X2
(20) = 21.87, 

p = 0.348). More details on the strategy questionnaire are reported in the Supplementary material.

Power analysis.  We conducted a power analysis with the program G*Power (Erdfelder, Faul, & Buchner, 
1996) to determine if our design had sufficient power to detect a 3-way interaction effect of the same size as 

Figure 6.   Increase in mean ‘n’ ( �n ) on the aNBack at the offline POST-ASSESSMENT with respect to 
BASELINE: means with standard errors are reported for each group and capacity. P-values are marked as 
follows: * p < 0.05, ** p < 0.01, *** p < 0.001 Improvement significantly larger than zero are marked in red.
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the one found here. For the ONLINE effects, the effect size of the three-way interaction contrast was η2p = 0.14, 
assuming a power of 0.80, we would have needed 48 subjects to detect such an effect. For the OFFLINE effects, 
the effect size of the three-way interaction contrast was η2p = 0.07, assuming a power of 0.80, we would have 
needed 72 subjects to detect such an effect.

Discussion
The present study investigated the impact of strategy instructions to increase the effectiveness of transcranial 
direct current stimulation on a spatial WM task 13,42. Importantly and consistent with our prediction, the results 
reveal that the combination of strategy and stimulation is particularly beneficial for individuals with initially 
low working memory capacity.

Individual differences in age and education influence WM baseline abilities 30,31,35,47, which in turn impact an 
individual’s responsiveness to cognitive tasks and the ability to benefit from stimulation induced plasticity. The 
aptitude-by-treatment interaction theory states that the outcome of treatment is modulated by individual factors. 
Relevant to the current study, one of these factors is the ability to derive an efficient strategy 33,47.

Consistent with the above factors, we found the combination of strategy instructions and tDCS improved 
WM over and above either strategy or stimulation alone but only for individuals with low baseline capacity. As 
Lovden et al. suggest 35, individuals with high capacity likely have the cognitive resources to devise a strategy 
and adapt it to increasing task difficulty, whereas low capacity individuals require additional resources to use the 
strategy provided, which was facilitated by tDCS-induced plasticity. Low capacity individuals benefitted only 
from the combination of tDCS and strategy instructions, indicating that even when provided with a strategy 
they may not have had the cognitive resources to use it effectively. tDCS-induced plasticity may facilitate these 
additional resources. In high capacity individuals, the effect of tDCS was not evident as we speculate they may 
already have had sufficient cognitive resources to either use the provided instructions effectively or to devise 
an effective strategy on their own. To summarise, our findings suggest that tDCS acts similarly for both groups, 
but its effect is beneficial, and ‘measurable’ at the behavioural level, only when additional resources are required 
to cope with cognitive demand. Further investigations are needed, which would include neurophysiological 
markers of stimulation effects, and to understand whether our speculations are consistent with the underlying 
neurophysiology.

Importantly, individuals with low WM capacity maintained the advantage conferred by combined strategy 
instructions and brain stimulation after the stimulation ended (post-assessment offline session, see Fig. 6)15. 
Our results stand in contrast with those from Jones et al.48, who found that WM strategy with tDCS improved 
performance in individuals with high capacity. There are a few experimental design differences that likely account 
for the discrepancy between their and our results. First, while we manipulated strategy as a between-participant 
design, they manipulated it as a within-participant factor. Secondly, Jones et al. used a change detection task, 
while we used an n-back task, the latter being more likely to necessitate efficient WM updating. Finally, they 
used different stimulation parameters (5 cm × 7 cm sponge electrodes, 1.5 mA for 10 min targeting left PFC).

We did not find an effect on the visual fixed nback (transfer) task of either strategy instructions or stimula-
tion, although every group improved in the second session with improvement a function of initial capacity. It is 
worth noting that the strategy instructions could not be applied to the transfer task, therefore individuals would 
have had to adapt the taught strategy to the new task 47. Moreover, the random nature of the stimuli makes 
them difficult to encode (either verbally or using a specific strategy), therefore participants have likely to rely on 
imagery, which is a different strategy than the one they have been practising. Also, as Berryhill 32 pointed out, 
often transfer effects are found at follow-up, after a period of no contact, while they are not visible at posttest.

Motivation may play an important role in cognitive performance. The overall effect of STIMULATION and 
STRATEGY on motivation is detailed in the Supplementary material. To summarize, we found that overall, 
individuals’ positive attitude (as measured by the PANAS) significantly improved by the end of the experiment, 
as well as the expectation toward cognitive training and brain stimulation, but we found no significant differences 
between groups at baseline, overall or within capacity level (ps > 0.5). Furthermore, we investigated if motivation 
has an impact on how an individual devises a strategy in the first session (when strategy instructions were yet 
to be provided). We found that, while almost everyone reported to have used a strategy of some sort, there was 
no correlation (ps > 0.1) between motivation measures (positive attitude, motivation and expectation towards 
the cognitive training), and performance on the aNback task in the baseline session. Assuming that an effective 
strategy leads to better performance, we argue that our finding shows that motivation did not modulate strategy 
effectiveness. Moreover, we visually inspected the relationship between the effectiveness of strategies devised by 
individuals on their own in the baseline session and their motivation and found no clear relationship between 
effectiveness and motivation (more details are reported in the Supplementary Material).

Individuals undertaking a cognitive task are likely to devise a strategy they deem efficient. However, the time 
required to develop a strategy is highly variable and cognitively demanding, potentially nulling the positive effects 
of brain plasticity 49. Manipulating strategy enabled us to investigate the importance of this construct by reduc-
ing the variability that arises when participants are left to derive their own. We are confident that participants 
engaged with the strategy provided, based on feedback questionnaires.

We acknowledge that providing participants with a verbal strategy changes the nature of an otherwise spatial 
task. However, two considerations are important. First, devising a strategy requires resources that are taken away 
from the task, as participants use some of the inter-stimulus time to make an effective choice 50. Thus, when a 
strategy is provided, participants can construct a better representation of the visual stimuli, supported by the 
right DLPFC and further enhanced by stimulation over that region. Second, the right DLPFC has connections 
with other brain regions 51–54, therefore stimulation may augment brain areas subserving verbal working memory, 
such as the left DLPFC.
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A second limitation of our study is the lack of a neurophysiological measure (e.g., EEG) that could support 
the interpretation of our findings. While we acknowledge the importance of such measures (and we are under-
taking a study addressing our research question with EEG), we believe that the present results are informative 
and provide important insight into the efficacy as well as mechanisms of cognitive training combined with 
brain stimulation. Neurophysiological measures will further add to the understanding of the brain mechanisms 
underlying cognitive training in combination with brain stimulation.

Finally, we are aware that the sample size is small, however, both power analysis and the Bayesian analysis 
support our finding. Power analysis showed that a sample of 72 subjects would have been needed to detect effects 
of the same size of those found here. Furthermore, Bayesian analysis finds anecdotal to moderate evidence that 
the model best explaining the data includes both STIMULATION and STRATEGY factors, and their interaction, 
with the evidence stronger in the LOW CAPACITY individuals.

The present study reveals that initial skill set is linked to task outcome and sets limits on the effectiveness of 
brain stimulation in combination with cognitive training to improve working memory. Importantly, our find-
ings have implications for training regimens, e.g., by designing interventions predicated on baseline skill set, or 
interventions focusing on strategy development for specific attentional skills in addition to task repetition. Future 
research should investigate the impact of strategy and stimulation on the maintenance of the benefits gained dur-
ing a training regimen 36. It will also be important to determine the time frame to which stimulation can confer 
long-term advantage. Moreover, it will be important to understand how strategy instructions, combined with 
stimulation, may promote performance improvements in other tasks, in both the same and in related cognitive 
domains. Finally, while we focused on young participants, the interaction of strategy, stimulation, and baseline 
capacity in older adults remains to be investigated. Evidence shows that older adults use different cognitive 
resources in a working memory task with respect to young adults 55,56, with older adults making a more exten-
sive use of attention, verbal memory and updating than their younger counterparts. It would therefore not be 
surprising that older adults may benefit even more from strategy instructions than young participants, especially 
those whose baseline performance is impaired due to normal or abnormal ageing.

Data availability
The research protocols used in this research were approved by the ethics committee of the University of Birming-
ham, Birmingham, UK [ERN_12-1002AP18R] and was conducted in accordance with the University’s Code of 
Practice for Research. Data will be made available upon reasonable request to the authors.
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