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Spontaneous activity of cortex in vitro and in vivo has been shown to organize as neuronal
avalanches. Avalanches are cascades of neuronal activity that exhibit a power law in their
size and duration distribution, typical features of balanced systems in a critical state.
Recently it has been shown that the distribution of quiet times between consecutive
avalanches in rat cortex slice cultures displays a non-monotonic behavior with a power
law decay at short time scales. This behavior has been attributed to the slow alternation
between up and down-states. Here we further characterize the avalanche process and
investigate how the functional behavior of the quiet time distribution depends on the fine
structure of avalanche sequences. By systematically removing smaller avalanches from the
experimental time series we show that size and quiet times are correlated and highlight
that avalanche occurrence exhibits the characteristic periodicity of θ and β/γ oscillations,
which jointly emerge in most of the analyzed samples. Furthermore, our analysis indicates
that smaller avalanches tend to be associated with faster β/γ oscillations, whereas larger
ones are associated with slower θ and 1–2 Hz oscillations. In particular, large avalanches
corresponding to θ cycles trigger cascades of smaller ones, which occur at β/γ frequency.
This temporal structure follows closely the one of nested θ − β/γ oscillations. Finally we
demonstrate that, because of the multiple time scales characterizing avalanche dynamics,
the distributions of quiet times between avalanches larger than a certain size do not
collapse onto a unique function when rescaled by the average occurrence rate. However,
when considered separately in the up-state and in the down-state, these distributions are
solely controlled by the respective average rate and two different unique function can be
identified.
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1. INTRODUCTION
During sleep or under anesthesia, as well as in vitro, ongoing
or spontaneous activity in cortex alternates between active peri-
ods with high probability of action potential firing and quiescent
periods characterized by sparse firing (Plenz and Aertsen, 1996;
Cossart et al., 2003; Cunningham et al., 2006; Hahn et al., 2006).
These extracellular spiking dynamics correspond to so-called up
and down-state fluctuations in the intracellular membrane poten-
tial of cortical neurons (Steriade et al., 1993; Plenz and Kitai,
1996; Wilson, 2008). During up- states, the intracellular mem-
brane potential is close to firing threshold allowing neurons to fire
action potentials in response to synaptic input. In contrast, the
membrane potential is more hyperpolarized during the down-
state leading to low probability of firing. The up-state is generally
considered a cortical network property that arises from the prop-
agation of activity among recurrently connected neurons (Plenz
and Kitai, 1996; McCormick et al., 2003; Wilson, 2008; Millman
et al., 2010). The resulting synaptic input depolarizes neurons
beyond threshold supporting and prolonging the up-state. In that
context, the up-state should be considered a metastable state, i.e.,
the membrane potential would rapidly decay to resting value,

if network mechanisms prevented the required excitability or
excitatory synaptic drive for individual neurons.

Conversely, down-states reflect relatively quiescent network
periods during which the membrane potential of most neurons
is close to or even lower than their resting value. Down-states
generally result from disfacilitation, i.e., a substantial reduction
or lack of excitatory drive in the network (Cowan and Wilson,
1994; Timofeev et al., 2001). Transitions to the down-state can
be caused by various mechanisms such as synaptic depression at
glutamatergic synapses (Stevens and Tsujimoto, 1995; Staley et al.,
1998), an increase of a factor inhibiting glutamate release, such as
nucleoside adenosine (Thompson et al., 1992), blockage of recep-
tor channels by the presence, for instance, of external magnesium
(Maeda et al., 1995), or spike adaptation, which arises from
the intracellular accumulation of calcium entering during the
action potential and opening potassium channels (Sanchez-Vives
et al., 2000). Transitions to the up-state are generally thought
to arise from non-linear amplification following recovery from
disfacilitation. For example, spontaneous single action poten-
tials, spontaneous miniature synaptic release, and recovery from
synaptic vesicle depletion, i.e., synaptic depression, can cooperate
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to a non-linear amplification of small amplitude signals leading
to the generation of larger depolarizing events rapidly transition-
ing the network to the up- state, as observed in cortical slabs
(Timofeev et al., 2000) and slice cultures (Plenz and Aertsen,
1996).

During up-states, which usually last up to several hundreds
of milliseconds, cortical neurons have been shown to fire irregu-
larly often during nested oscillations (e.g., Plenz and Kitai, 1996).
This highly variable firing pattern at short time scales of just a
few milliseconds, over the last decade, has been found to reflect
in fact a precise, scale-invariant organization of activity, so-called
neuronal avalanches (Beggs and Plenz, 2003; Mazzoni et al.,
2007; Gireesh and Plenz, 2008; Pasquale et al., 2008; Petermann
et al., 2009; Shriki et al., 2013). Neuronal avalanches are intermit-
tent bursts of activity cascades whose sizes and durations follow
power law statistics, a typical feature of systems at criticality
(Stanley, 1971). The statistics of time intervals separating suc-
cessive avalanches has been recently studied in the spontaneous
activity of rat cortex slice cultures (Lombardi et al., 2012). In
Lombardi et al. (2012), these intervals are called waiting times and
defined as the difference between the ending and starting time of
consecutive avalanches. Here and in the following we will adopt
a slightly different notation (Sanchez et al., 2002): We call quiet
times the time intervals between the ending and starting time of
consecutive avalanches, whereas we refer to waiting times as time
intervals between starting times of consecutive avalanches.

The quiet time distribution, is widely used in the stochas-
tic analysis of natural phenomena, such as earthquakes, solar
flares (de Arcangelis et al., 2006a), and rock fractures, where it
is usually called waiting time distribution. Indeed, for these phe-
nomena the waiting times, do not differ from quiet times because
event durations can be neglected and processes can be consis-
tently treated as point processes. For neuronal avalanches this
approximation is not always valid since the shortest quiet times
are comparable with some avalanche durations, as we will show
in the following. While numerous similarities between earth-
quakes and neuronal avalanches have been found (Plenz, 2012),
the quiet time distribution has only been incompletely analyzed
so far for avalanches. Of particular interest are the universal tem-
poral scaling features observed for earthquakes. Distribution of
earthquake waiting times, in which waiting times are restricted to
earthquakes above a given magnitude threshold, depend on the
threshold, but nevertheless collapse onto a universal, i.e., thresh-
old independent, function when waiting times are rescaled by the
average rate (Corral, 2004). This property reveals that seismic-
ity has a complex organization in time with universal properties:
the removal of small events by increasing the minimal detec-
tion threshold does not affect the fundamental organization of
earthquake occurrence.

The quiet time distribution of neuronal avalanches is char-
acterized by a peculiar non-monotonic behavior, with power
law decay followed by a local minimum and a more or less
pronounced peak at a characteristic slow time scale (Lombardi
et al., 2012). Numerical simulations suggest that such a distri-
bution reflects the alternation between up and down-states in
the network, which acts as a homeostatic mechanism control-
ling network excitability (Lombardi et al., 2012). In the current

work, we analyze the functional behavior of the quiet time dis-
tribution in relation to the structure of avalanche sequences. In
particular, we examine the relationship between quiet times and
avalanche sizes by studying the distributions P(�t; sc) of quiet
times between consecutive avalanches of sizes larger than a given
threshold sc and investigate whether the non-monotonic quiet
time distribution identified in cortex cultures exhibits the uni-
versal scaling features reported for waiting time distributions of
earthquakes. We first compare quiet and waiting time statistics
for neuronal avalanches. Then we show that, (1) the avalanche
process in the up-state is solely controlled by the average occur-
rence rate and the corresponding quiet time distribution has a
universal, i.e., sample independent, power law decay. By system-
atically removing smaller avalanches from the experimental time
series, (2) we then unveil correlations between sizes and quiet
times and highlight that avalanche occurrence exhibits some of
the characteristic periodicity of θ (4–15 Hz), β (15–30 Hz), and γ

(30–100 Hz) oscillations. Indeed, in place of the original power
law, we observe several peaks at short time scales when con-
sidering only avalanches with size s above a given threshold sc.
Therefore, close in time smaller avalanches are crucial for the
power law in the quiet time distribution of up-states to emerge.
We observe that these avalanches tend to be related to short quiet
times and fast β/γ oscillations, while larger avalanches are associ-
ated with slower θ and 1–2 Hz oscillations. In particular, we notice
a sort of hierarchical structure in avalanche sequences: In the
up-states, large avalanches occurring with θ frequency trigger cas-
cades of smaller avalanches corresponding to faster oscillations.
Finally we demonstrate (3) that the distributions P(�t; sc) of
quiet times between avalanches with size s above a given threshold
sc do not collapse if quiet times are rescaled by the average rate r =
1/〈�t〉. However, when the different temporal scales that govern
up and down-states are taken into account, a proper collapse can
be obtained. Specifically, the distributions P(�t; sc) in the up-
state and in the down-state show the same functional behavior if
quite times are rescaled by the respective average avalanche rate.

2. MATERIALS AND METHODS
2.1. EXPERIMENTAL SETUP
Coronal slices from rat dorsolateral cortex (postnatal day 0–2;
350 µm thick) are attached to a poly-D-lysine coated 60-
microelectrode array (MEA; Multichannelsystems, Germany) and
grown at 35.5 C in normal atmosphere in standard culture
medium without antibiotics for 4–6 weeks before recording.
Avalanche activity is measured from cortex-striatum-substantia
nigra triple cultures or single cortex cultures as reported previ-
ously (Beggs and Plenz, 2003). In short, spontaneous avalanche
activity is recorded outside the incubator in standard artificial
cerebrospinal fluid (ACSF; laminar flow of 1 ml/min) under sta-
tionary conditions for up to 10 h. The spontaneous local field
potential (LFP) is sampled continuously at 1 kHz at each elec-
trode and low-pass filtered at 50 Hz. Negative deflections in the
LFP (nLFP) were detected by crossing a noise threshold of −3
SD followed by negative peak detection within 20 ms. nLFP times
and nLFP amplitudes were extracted. Neuronal avalanches are
defined as spatio-temporal clusters of nLFPs on the MEA (Beggs
and Plenz, 2003). A neuronal avalanche consists of a consecutive
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series of time bins of width ε that contain at least one nLFP on
any of the electrodes. Each avalanche is preceded and ended by
at least one time bin with no activity. Without loss of generality,
the present analysis is done with width ε individually estimated
for each culture from the average inter nLFP interval on the array
at which the power law in avalanche sizes s, P(s) ∼ s−α , yields
α = 3/2. ε ranged between 3 and 6 ms for all cultures. Avalanche
size is defined as the sum of absolute nLFP amplitudes (µV) on
active electrodes or simply the number of active electrodes. Size
distributions are obtained using logarithmic binning for sizes
expressed in µV. A quiet time �t is defined as the time inter-

val between the ending time of an avalanche t
f
j and the starting

time ti
j + 1 of the following one, namely �tj = ti

j + 1 − t
f
j . A wait-

ing time δt is defined as the time interval between the starting
time of an avalanche ti

j and the starting time ti
j + 1 of the following

one, namely δtj = ti
j + 1 − ti

j . Quiet (waiting) time distributions
are obtained using logarithmic binning for quiet (waiting) times
expressed in ms.

2.1.1. Up and down-state
The following procedure is used to discriminate between up
and down-states. An up-state consists of a consecutive series of
avalanches separated by a quiet time �t shorter than �t∗, where
�t∗ is defined as the local minimum between the initial power
law regime and the local peak observed between 500 and 1000 ms.
Conversely, every quiet time longer than �t∗ belongs to a down-
state and a consecutive series of avalanches separated by quiet
times longer than �t∗ is considered a down-state. The mean rate
in the up-state is defined as rup = 1/〈�t〉up, whereas the mean
rate in the down-state is defined as rdw = 1/〈�t〉dw.

2.2. NUMERICAL MODEL
2.2.1. Network and dynamics
We consider N = 64000 neurons at random positions, character-
ized by their potential vi. Neurons are connected by a scale-free
network of synapses. More precisely to each neuron i we assign
an out-going connectivity degree, kouti ∈ [2, 100], according to
the degree distribution P(k) ∝ k−2 of the functional network
measured in Eguiluz et al. (2005). Choosing different network
topologies, the model exhibits the same scaling behavior of
avalanche size and duration distributions (de Arcangelis et al.,
2006b; Pellegrini et al., 2007; de Arcangelis and Herrmann, 2012).
The universality class of the neuronal avalanche process is the
one of the mean field branching process (Zapperi et al., 1995;
Lauritsen et al., 1996). To each synaptic connection we assign an
initial random strength gij ∈ [0.15, 0.3] and to each neuron an
excitatory or inhibitory character. Outgoing synapses are excita-
tory if they belong to excitatory neurons, inhibitory otherwise.
The network has a fraction pin of inhibitory synapses, which is
fixed. Each synapse is directed, meaning that it can be used by
neuron i to send a signal to neuron j but not viceversa. As a
consequence gij �= gji and in general out-degree and in-degree of
a neuron do not coincide. Therefore, once the network of out-
put connections is established, we identify the resulting degree
of in-connections, kinj , for each neuron j, namely we identify the
number of synapses directed to each neuron j. The number kinj

of in-going synapses can be considered as the dentritic tree of
neuron j. We then assume that each neuron j has a soma whose
surface is proportional to kinj .

Whenever at time t the value of the potential in neuron i
is above a certain threshold, vi ≥ vmax, the neuron fires and its
potential vi arrives at each of the kouti connected neurons. In
our simulations we use vmax = 6. However, as in every SOC-like
model, this parameter is not relevant and results are independent
of this particular choice.

For real neurons the production of neurotransmitters at the
presynaptic terminals, and then the charge entering the postsy-
naptic neuron, is controlled by the frequency of action potentials,
which depends on the integrated stimulation received by the neu-
ron. Here the integrated stimulation is given by vi, the membrane
potential of the firing neuron. Therefore, we assume that the total
charge qi that can enter into connected neurons is proportional
to vi · kouti . The change in the intracellular membrane potential of
the postsynaptic neuron j is proportional to the relative synaptic
strength gij/

∑
l gil,

vj(t + 1) = vj(t) ± vi · kouti

kinj

gij
∑kouti

l = 1 gil

. (1)

In Equation 1 it is assumed that the received charge is distributed
over the surface kinj of the soma of the post-synaptic neuron. The
plus or minus sign is for excitatory or inhibitory synapses respec-
tively. After firing, the neuron is set in a refractory state lasting
tref = 1 time step, during which it is unable to receive or transmit
any charge, and its membrane potential is set to vrest = 0.

2.2.2. Avalanche activity
When a neuron fires, it may bring to threshold some of the con-
nected neurons thus generating an avalanche, a cascade of activity
which propagates through the network involving a variable num-
ber of neurons. During an avalanche there is no further external
stimulation. As soon as no more neurons are able to fire, the
avalanche ends and size is recorded as the number of firing neu-
rons s, or, alternatively, as the sum s�V of all positive potential
variations (depolarizations) δv+

i occurred in the network, namely

s�V = ∑
i δv+

i . By definition a single neuron firing does not con-
stitute an avalanche. Avalanches are also characterized by their
duration T, which is defined as the number of iterations taken by
the activity propagation. The numerical time step for each iter-
ation corresponds to the real time between the triggering of an
action potential in the presynaptic neuron and the change of the
membrane potential in the postsynaptic neuron, therefore it is of
the order of 4–6 ms. After an avalanche ends, an external stimulus
triggers further activity in the system. Distributions of sizes and
durations are shown in Supplementary Figure 1.

2.2.3. Synaptic plasticity
We implement a Hebbian-like plasticity rule at the end of each
avalanche. The strength gij of the used connections is increased
proportionally to the membrane potential variation |δvj| of the
postsynaptic neuron j induced by the presynaptic neuron i during
the avalanche,

gij = gij + |δvj|/vmax, (2)
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whereas the strength of all inactive synapses is reduced by the
average strength increase per bond

�g =
∑

ij

δgij/NB, (3)

where NB is the number of bonds. We set a minimum and a
maximum value for the synaptic strength gij, gmin = 0.0001 and
gmax = 1.0. Whenever gij < gmin, synapse gij is pruned. Since cor-
tical plasticity such as long-term potentiation acts on time scales
of seconds to minutes, which is much longer than the duration of
avalanches, we apply the plasticity protocol for a certain num-
ber of stimulations and then study avalanche activity without
further changing synaptic strengths. Specifically, since we don’t
want to alter the scale-free connectivity of the initial network,
we apply plasticity rules until the first few synapses are pruned.
After this plastic adaptation the gij are distributed as shown in
Supplementary Figure 2.

2.2.4. Up-down state dynamics
Alternation between the up and down-state was simulated on the
basis of two concepts. First, the transition from one state to the
other has a high degree of synchronization. Second, a down-state
occurs when activity in the up-state reaches a level at which the
up-state can’t sustain itself anymore. Such a decrease in activity
can result from either the exhaustion of available synaptic vesi-
cles (Staley et al., 1998) or the increase of factors inhibiting their
release (Thompson et al., 1992). For simplicity, we assume that
the transition happens after a sufficiently large avalanche, which
causes a lack of available neurotrasmitters and a sufficiently strong
network inhibition.

Accordingly, at the end of each avalanche we measure its size
in terms of the sum of depolarizations δv+

i of all neurons, s�V . As

soon as avalanche is larger than a threshold smin
�V , s�V > smin

�V , the
system transitions into a down-state and neurons become hyper-
polarized proportionally to their previous activity; namely, we
reset

vi = vi − h · δvi. (4)

This rule models the local inhibition experienced by a neuron,
due to spike adaptation (Sanchez-Vives et al., 2000), adenosine
accumulation (Thompson et al., 1992), synaptic vesicles deple-
tion (Staley et al., 1998) or blockade of receptor channels by the
presence of external magnesium (Maeda et al., 1995). The down-
state ends whenever a new avalanche occurs, namely the system
transitions in an up-state. When in the up-state, all neurons fir-
ing in the previous avalanche of size s�V are set to the depolarized
value

vi = vmax(1 − s�V/smin
�V ) . (5)

This equation states that the neuron’s intracellular membrane
potential depends on the response of the whole network via s�V

and implements an homeostatic mechanism at the single neu-
ron level: When avalanche sizes s�V are close to the threshold
smin
�V , the ratio s�V/smin

�V is close to 1 and membrane potentials
are reset closer to a zero resting value, thus avoiding an explosive
growth of the following avalanche. Conversely, the network does

sustain the depolarized state of the single neuron and the mem-
brane potential stays closer to the firing threshold. We wish to
stress that this mechanism is driven by the whole network activity,
following the idea that the up-state in the cortex is a coopera-
tive network state (Wilson, 2008). Furthermore, it is in agreement
with measurements of the neuronal membrane potential, which
remains significantly depolarized in the up-state (Wilson, 2008),
and, at the same, keeps activity balanced. Through Equation (5),
the threshold smin

�V controls the level of excitability of the system.
At the network level, the high activity in up-states is sus-

tained by a stimulation which has a random value in the interval
du = [0, smin

�V /s�V ): After an avalanche, at each time step we ran-
domly choose a neuron and increase its membrane potential by
rad · du, where rad is a random number in the interval [0, 1). We
notice that the amplitude of du depends on past network activity
through the size of the previous avalanche s�V . As for Equation
5, the stimulation in the up-state is based on an homeostatic
principle: The larger the previous avalanche the smaller du and
viceversa.

Conversely, during the down-state, the system experiences a
general disfacilitation mimicked by weak random stimulation: At
each time step we randomly choose a neuron and increase its
membrane potential by a small constant quantity (30–40 smaller
than vmax). This drive reproduces the effect of the small depo-
larizations due to miniature potentials (minis) from spontaneous
synaptic release observed in the down-state (Timofeev et al.,
2001). The drive slowly brings the system back in an up-state not
correlated to past activity (Lombardi et al., 2012).

During the avalanche propagation the drive is stopped, as in
usual SOC models. This procedure implements the separation of
time scales between fast avalanche propagation and slow neuron
stimulation.

Equations 4 and 5 each depend on a single parameter, h and
smin
�V , which introduce a memory effect at the level of single neuron

activity and the entire system, respectively. In order to reproduce
the experimentally observed behavior we only need to control the
ratio R = h/smin

�V , as shown in Lombardi et al. (2012).

3. RESULTS
3.1. WAITING TIME AND QUIET TIME DISTRIBUTIONS
The definition of quiet time and waiting time is sketched in
Figure 1A and can be summarized in the following equality:

δtj = �tj + Tj, (6)

that is the jth waiting time is obtained summing up the jth
quiet time and the duration Tj of the jth avalanche. It follows
that δt 
 �t if the relation T � �t holds. In case of neu-
ronal avalanches durations T range from a few to few tens of
milliseconds (Figure 1B) and are then comparable with the short-
est �ts (Lombardi et al., 2012). As a consequence, we expect
quiet time and waiting time distribution to differ at short time
scales. In Figure 1 we show the distribution P(�t) of quiet times
between successive avalanches in six different cortex slice cultures
(Lombardi et al., 2012) and compare them to the corresponding
distributions P(δt) of waiting times. The quiet time distribution
has been extensively discussed in Lombardi et al. (2012), where
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FIGURE 1 | Distributions of duration T , quiet times �t and waiting

times δt for six cortex slice cultures. (A) Definition of avalanche, quiet
time and waiting time. nLFPs in the same time bin ε or consecutive bins
define an avalanche. Avalanche duration T is given by the number n of
consecutive non-empty bins times the bin amplitude ε, namely T = n · ε. A
quiet time �t is the time interval between the end of an avalanche and the
start of the following one. A waiting time δt is the time interval between
the start of an avalanche and the start of the following one. The following
equality holds: δt = �t + T . (B) Duration distributions. For better
comparison duration T is expressed in multiples of ε. The initial power law
regime extends for about one order of magnitude and is followed by an
exponential cutoff. (C) Distribution of quiet times: All curves show an initial
power law regime with an exponent μ ranging between −2.0 and −2.5. For
larger �t, distributions are characterized by a local minimum followed by a
more or less pronounced maximum at �t 
 1 − 2 s. Upper inset:
Distributions of waiting times. Lower inset: illustrative comparison between
quiet (cyan) and waiting (blue) time distribution for the blue curve in the
main panel. The two distributions only differ at short time scales where
durations are comparable to quiet times.

it was called waiting time distribution. Here we briefly recall
its main features, namely the power law behavior at short time
scales, from few to 200–300 ms, and a local maximum situated
at longer time scales, which leads to a peculiar non-monotonic
behavior. The initial power law decay indicates that avalanches
are temporally correlated if sufficiently close in time, which
requires a sustained synaptic and firing activity in the network,
namely an up-state. Conversely longer quiet times correspond to
down-states and sparse synaptic activity in the network.

This non-monotonic behavior, with the same general features,
can be still observed in the waiting time distributions (Figure 1C,
upper inset). However, the power law exponent is generally

slightly lower than the one measured for P(�t), as shown in the
lower inset of Figure 1C. On the other hand, for time intervals
larger than 200–300 ms, which are related to down-states, the two
distributions basically coincide (Figure 1C, lower inset), mean-
ing that, for this range of values, T � �t and δt 
 �t is a good
approximation. From 6 it follows that the waiting time distribu-
tion P(δt) results from the combination of two quantities, quiet
times and durations. While for long time scales P(δt) is domi-
nated by the former, at short time scales both of them contribute
to its functional behavior. In this range of values both �t and T
are power law distributed and add up to give again a power law:
Short durations significantly couple with short quiet times and,
due to lack of characteristic values, the net results is a power law
with a larger slope. Is this power law carrying the same informa-
tion as the statistics of time intervals without activity, i.e., quiet
times? Evidently it does not, for the following reason: Durations,
which are power law distributed, are not negligible and conclud-
ing that avalanches are temporally correlated from the power laws
in waiting time distribution would be misleading (Sanchez et al.,
2002). Indeed in Lombardi et al. (2012) only quiet time statistics
has been considered. Nevertheless, some specific information can
be extracted from waiting time distributions, as we will discuss in
the following.

3.2. TEMPORAL FEATURES OF UP AND DOWN-STATE
In Lombardi et al. (2012) we have used numerical simulations
to investigate the origin of the non-monotonic behavior in the
quiet time distribution and concluded that it arises from the slow
alternation of up and down-state. Accordingly, in this section we
systematically isolate each contribution to the overall quiet time
distributions (see Materials and Methods) and further investigate
the temporal features of these two network states.

In Figure 2A we show the experimental distributions of quiet
times between consecutive avalanches in the up-states (panel a)
(see Materials and Methods): After rescaling �t by the mean rate
rup in the up-state, distributions collapse onto a unique power law
with exponent μ 
 −2.2. This implies that the avalanche pro-
cess in the up-state is solely controlled by the average occurrence
rate and the corresponding quiet time distribution has a univer-
sal, i.e., sample independent, power law decay (Figure 2A). On
the other hand, down-states produce long quiet times mostly con-
tributing to the tail of the overall P(�t), exhibiting a distribution
with a characteristic value τd, as found numerically (Lombardi
et al., 2012). This behavior has a simple interpretation: The recur-
rence of up-states has a more or less pronounced characteristic
time. If the distribution of quiet times in the down-state is peaked
around a particular value τd and is sufficiently narrow, then a
non-monotonic behavior can be observed in the quiet time dis-
tribution of the entire avalanche activity. Although distributions
of quiet times in the down-states do exhibit common features
across samples, they do not generally collapse onto a unique func-
tion after rescaling δt by rdw, the mean rate in the down-state
(Figure 2B).

To complete the investigation of up and down-state tempo-
ral features, we consider the distributions P(Tup) and P(Tdw) of
up and down-state durations, respectively (Figure 3). Numerical
curves are over plotted with experimental results. We notice

Frontiers in Systems Neuroscience www.frontiersin.org October 2014 | Volume 8 | Article 204 | 5

http://www.frontiersin.org/Systems_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Systems_Neuroscience/archive


Lombardi et al. Temporal organization of neuronal avalanches

A

B

FIGURE 2 | Experimental distribution of quiet times in the up-state and

in the down-state. (A) Distribution of quiet times between successive
avalanches occurring in the up-state. The curves, rescaled by the mean rate
rup , show a universal power law scaling. The dashed line represents a
power law with exponent −2.2. (B) Distribution of quiet times between
successive avalanches occurring in the down-state. In this case, rescaling
by the mean rate rdw does not lead to a universal behavior.

here that, both numerically and experimentally, the two states
are characterized by time scales that differ by about one order
of magnitude. Moreover, their respective duration distributions
exhibit a distinct functional behavior. On average, the durations
of down-states are distributed around Tdw 
 2000 ms and the tail
of the distribution is well fitted by an exponential (Millman et al.,
2010). This property characterizes most of the analyzed samples
(Supplementary Figure 3). Conversely, the distribution P(Tup)
exhibits a tail compatible with a power law. However, in this case,
the power law behavior arises by averaging over many cultures
and does not necessarily characterize the up-state duration in
each culture (Supplementary Figure 4).

3.3. TEMPORAL STRUCTURE OF AVALANCHE PROCESS
We have shown that different quiet time distributions of distinct
experimental samples show a qualitatively similar behavior. In
particular, at short time scales, the distributions of quiet times are
all characterized by the same power law (Figure 2), a general and
robust feature of up-states. Here we go further in the characteri-
zation of the avalanche process and question how the functional

10
3

10
4

Tdw (ms)

10
-4

10
-3

P(Tdw)

experimental
numerical

10
1

10
2

10
3

T up(ms)

10
-4

10
-3

10
-2

10
-1

P(Tup)

A

B

FIGURE 3 | Distribution of durations of up-states (A) and down-states

(B) averaged over 100 configurations of a network of N = 64000

neurons with pin = 0.1 (black symbols). Experimental data are averaged
over all samples (green curves).

behavior of the distribution P(�t) depends on the fine structure
of avalanche sequences. In order to do that, we study the distri-
butions P(�t; sc) of quiet times between consecutive avalanches
of size larger than a given threshold sc. In this way we remove
smaller avalanches from the time series and analyze how the dis-
tribution changes as a function of sc. If the different distributions
P(�t; sc) collapse onto a unique function, then the temporal
properties of the avalanche process are invariant under the afore-
said removal procedure. This specific point will be addressed in
the next section.

In Figure 4 we show the distribution P(�t; sc) for different
values of sc. By removing avalanches we are making the time
series sparser and, as a result, we would expect the distribu-
tions P(�t; sc) to become broader and broader as we increase sc.
Indeed this effect is observed but it is minor for a wide range
of sc values, which suggests that large quiet times tend to sep-
arate large avalanches. On the contrary, as a main effect, we
observe that the distributions P(�t; sc) show peaks that were not
present in the original P(�t). These peaks become pronounced
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FIGURE 4 | Experimental quiet time distributions for different values of

the threshold sc on avalanche size. Already for sc = 80 µV, distributions
clearly exhibit one or more additional peaks. Beside the one at large time
scales, �t 
1000–2000 ms, which is related with the characteristic time of
up-state recurrence, at least one peak between 60 and 250 ms is always
visible on time scales originally characterized by the power law decay and
corresponds to the period of β or θ oscillations. This is particularly

pronounced in (B,C,D,F), less in (A,E). The distributions in (B,C) exhibit one
more peak around 500 ms, related to 2 Hz oscillations. It is worth to notice
that the probability P(�t) for �t corresponding to the θ (B,C,D,F) and 1–2 Hz
oscillations (A,B) is nearly a fixed point for this transformation. Insets:
Experimental distributions of waiting times δt, for different values of sc . In
this case one more peak appears around 20–30 ms, which corresponds to γ

oscillations.
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for values of sc larger than 40 µV and are either located at the time
scales within the power law regime or at very long quiet times.
The first peak appears at �t 
 40 − 60 ms (�tβ in the following)
and can be related to the period of β oscillations (Figure 4C). The
second one arises at �t ∈ [80, 250] ms (�tθ in the following) and
corresponds to the period of θ oscillations. This peak is visible in
all samples. In particular it is very pronounced in Figures 4B–D,F.
Quiet times around �tθ seem to play a special role with respect
to our removal process: While the probability increases with sc

for �t longer than �tθ and decreases for the shorter ones, it stays
nearly constant in a neighborhood of �tθ (Figures 4B–D,F). This
means that the ratio N(�tθ ; sc)/N(sc) 
 const, namely the num-
ber of quiet times corresponding to θ period scales with the total
number N(�t; sc). Since the number of avalanches larger than sc

is simply given by the number of quiet times plus one, then the
number Nθ (sc) of avalanches related to θ oscillations scales with
the total number N(sc) of avalanches, namely it decreases propor-
tionally to N(sc) for increasing values of sc. On the other hand, the
number of avalanches separated by longer and shorter quiet times
decreases slower and faster than N(sc), respectively. This point
can be understood as follows. If, for a given �t, the probability
P(�t; sc) increases (decreases) with sc (Figures 4B–D,F), then the
numerator of the ratio N(�t; sc)/N(sc) decreases slower (faster)
than the denominator and so does the corresponding number of
avalanches. Alternatively, one can look at the quantity N(�t; sc),
which we show in the Supplementary Figure 5, and notice that it
decreases faster for small than for large �ts. Therefore, long quiet
times tend to occur between large avalanches whereas shorter
quiet times tend to separate the smaller ones. From Figure 4 we
notice that, whenever the peak around �tθ is not pronounced
(Figures 4A,E), the �t characteristic of slow 1 Hz oscillations
between up and down-states plays the role of fixed point. Finally
a further peak appears at �t 
400-500 ms, which corresponds
to a ≈ 2 Hz oscillation (Figure 4B). This peak behaves as the
one at �tθ , namely it behaves as a fixed point for our removal
procedure.

Since avalanche durations and periods of fast oscillations are
of the same order of magnitude, in order to capture their relation
with avalanche sizes we have considered the distributions P(δt; sc)
of waiting times between consecutive avalanches of size larger sc,
which are shown in the insets of Figure 4. The picture emerg-
ing from the analysis of the quantity δt is basically the same we
have drawn looking at the quiet times, except for a peak corre-
sponding to the faster γ oscillations, which can be now clearly
observed in the insets of Figures 4A,B,D–F of Figure 4. The prob-
ability associated with this peak, which is situated at very short
δt, decreases with sc whenever it coexists with very pronounced
θ peaks (Figures 4B–D,F), indicating that, at least in this par-
ticular case, faster oscillations tend to be associated with smaller
avalanches.

To summarize, our removal procedure uncovers a rich tempo-
ral structure hidden behind the scale free behavior in the quiet
time distribution: Beside the characteristic time associated with
down-state duration, avalanche occurrence keeps the temporal
features of θ and β/γ oscillations. They jointly emerge in most
of the analyzed experimental samples (Figures 4B–D,F). While
short quiet times and fast β/γ oscillations tend to be associated

with smaller avalanches, slower oscillations are in general related
to larger avalanches, but without any characteristic size. Indeed,
varying the threshold sc in a range of values within the power law
regime of the size distribution P(s), typically between 30 µV and
400 µV (Figure 5B), the probability P(�t; sc) of �t associated
with θ (Figures 4B–D,F) or slower oscillations (Figures 4A,E)
remains nearly unchanged. In particular, the θ peak coexists with
a faster decrease of the probability of γ period, thus suggest-
ing that a sort of hierarchical structure for avalanche sequences,
which follows closely the temporal organization of nested θ −
β/γ oscillations: Within up-states, large avalanches occur with θ

frequency and trigger smaller ones in a faster γ cycle (Figure 5A).
Remarkably, within γ cycles the quiet times have no characteris-
tic value. Indeed the quiet time distributions do not show peaks
at very short time scales. Then, quiet times and durations, which
are both power law distributed, show a peculiar coupling in the

FIGURE 5 | Neuronal avalanches organize into a hierarchical structure

corresponding to temporal organization of nested θ − β/γ oscillations.

(A) During up-states large avalanches (blue bars) occur with θ frequency
and trigger smaller avalanches related to faster γ oscillations (green bars).
Here bar widths indicate durations: Avalanche start is at the right side of the
bar. Bar heights indicate sizes. Spacing between blue bars corresponds to a
θ period. Spacing between the starting points of green bars corresponds to
γ period. γ cycles do not show characteristic quiet times. Sizes s of
avalanches related to θ cycles tend to fall within the blue region of the size
distribution P(s) plotted in (B), whereas the ones corresponding to nested γ

oscillations fall within the green region. Therefore, the relationship between
avalanches and oscillations does not imply characteristic sizes. In particular,
for sc ≥ 80 µV, the number of avalanches Nθ related to θ cycles scales with
sc as the total number N of avalanches, namely Nθ /N 
 const. (B)

Distributions of avalanche sizes for the experimental samples in Figure 1.
Same color is used here for each sample.
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γ cycles. δts corresponding to these oscillations are short, which
implies that both T and �t are short. Considering the scaling rela-
tion between duration T and s (Friedman et al., 2012), this is the
same that saying small avalanches are associated with short quiet
times.

Figure 4 indicates that quiet times and avalanche sizes are
correlated. The analysis of the scatter plots between �t and the
relative previous and following avalanche also provides some evi-
dence that correlations exist (Supplementary Figures 6, 7). In
order to further validate this result, we reshuffle avalanche sizes
while keeping the sequence of starting and ending times fixed.
More precisely, we reassign to each avalanche a size taken at
random from the measured size distribution. Then, we apply
the same procedure described above. If no correlations existed
between sizes and waiting times, then we should still observe the
same peaks in the distributions P(�t; sc). As shown in Figure 6,
in this case no peaks emerge in the power law regime, which
implies that, in the up-state, waiting times are strongly corre-
lated with sizes. In particular, periods of θ , β, and γ oscillations
are correlated with sizes of corresponding avalanches. On the
other hand, for longer waiting times we observe the same qual-
itative behavior discussed for the original time series. Therefore,
we can state that correlations with avalanche sizes are weak, but
a more quantitative analysis is needed to exclude that they are
significant.

3.3.1. Up and down-state
From the analysis performed above it is evident that the func-
tional behavior of the quiet time distribution arises from the
superposition of many dynamic mechanisms. In Section 3.2 we
have argued that non-monotonicity results from the alternation
between up and down-state, which implies already two differ-
ent mechanisms governing avalanche activity at the short and
large time scales. Then we have shown that also the character-
istic times of θ , β, and γ oscillations enter in the process. As a
consequence, we do not expect the distribution P(�t; sc) being
controlled by a single parameter, as observed in other stochastic
time series (Corral, 2004). Indeed, rescaling the quiet times by the
mean avalanche rate r = 1/〈�t〉, does not lead to a collapse of the
curves onto a single one (not shown).

However, one can apply the same removal procedure sep-
arately to up and down-states and then rescaling quiet times
by the respective average occurrence rate, rup and rdw, in
order to find universal features for each of the two network
states. We start considering the distributions P(�t; sc) in the
down-state and we rescale them by rdw = 〈�t〉dw. As shown in
Figure 7, distributions collapse onto a unique function, which
shows a characteristic value and an exponential tail. This func-
tional behavior is common to all samples except the one in
Figure 7E, whose departure from an exponential could be inter-
preted as an effect of the very sharp peak at �t 
 1 s and
not as a result of a different dynamics in the down-state.
The existence of a universal function implies that the quiet time
distribution in the down-states is uniquely controlled by rdw. On
the other hand, following the same procedure for the up-state
does not provide a good data collapse (not shown). Peaks that
emerge at short �t after the removal of smaller avalanches, tell

us that avalanche occurrence in the up-state is not solely con-
trolled by one time constant, that is 1/rup. Nevertheless, here we
show that the distributions of quiet times shorter than �tθ are
solely controlled by rθ

up = 1/〈�t〉�t<�tθ , where 〈·〉�t<�tθ indi-

cates the average over �t < �tθ . Indeed, rescaling them by rθ
up

leads to a data collapse onto a unique function which follows a
power law with an exponent μ 
 −2 (Figure 8). This collapse is
particularly good in samples that show a clear power law behav-
ior for quiet times shorter than �t corresponding to θ and 1 Hz
oscillation period (Figures 8B–E,F). Conversely, curves do not
collapse whenever a further, shorter characteristic time is present
(Figure 8C).

We obtain a similar result for numerical distributions.
However, in this case removing avalanches according to their size
does not lead to many peaks at short quiet times, which implies
that there are only two characteristic time scales for numerical
avalanches. In this case, we just need to consider separately up
and down-state and rescale the quiet times by respective average
occurrence rate, rup and rdw. As shown in Figures 7E,F, 8E,F we
obtain a good data collapse in both cases.

4. DISCUSSION
The distribution of quiet times between consecutive avalanches
in cortex slice cultures displays a power law decay at short time
scales, namely from few to 200–300 ms, and is generally charac-
terized by a local maximum at longer quiet times, which leads
to a non-monotonic behavior. Numerical simulations show that
this non-monotonic distribution results from the slow alternation
between up and down-states (Lombardi et al., 2012). The model
suggests that in the up-state, where neurons mutually sustain
their spiking activity, network mechanisms act as a form of short-
term memory, which produces clusters of correlated avalanches
and thus gives rise to the initial power law regime in the quiet
time distribution. On the other hand, the synaptic activity dur-
ing down-state can be modeled as a random process that slowly
brings the system back into the up-state, with no memory of past
activity. Indeed numerical distributions exhibit an exponential
tail similar to the ones observed experimentally (Lombardi et al.,
2012).

Accordingly, here we have defined as up-state (down-state) a
consecutive series of avalanches separated by �t shorter (longer)
than the longest �t falling within the power law regime of P(�t)
and systematically evaluated the quiet time distribution for up
and down-state. We have shown that, while a power law with
exponent μ 
 −2 is a property of up-states in all analyzed sam-
ples, the recurrence of up-states has a characteristic time τd which
is sample dependent (
 1 s on average). Indeed, the lasting times
of down-states, which are simply quiet times between successive
up-states, are distributed around a certain value 1 s < T < 2 s, the
tail of the distribution being well fitted by an exponential. Since
the exponential behavior is characteristic of Poisson processes, we
conclude that consecutive up-states are basically not correlated.
Moreover, from the properties of Poisson processes it follows
that, given the sequence of quiet times �t between successive
up-states, the jumps, i.e., the differences between two consecutive
�ts, are also exponentially distributed. The distribution of jumps
is commonly used to characterize stochastic processes. It has been
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FIGURE 6 | Quiet time distributions evaluated for the reshuffled avalanche time series and for different values of the threshold sc on avalanche size.

In this case no additional peaks arise at short time scales. Distributions still exhibit peaks at longer time scales, as the ones shown in Figure 4.

analyzed for burst sequences in spontaneous activity of dissoci-
ated cultures of cortical neurons (Segev et al., 2002) and has been
approximated with a symmetric Levy distribution. While Levy is
indicative of self similarity in the process, spectral analysis was

consistent with long range temporal correlation. Beside differ-
ences with cultures considered here, discrepancies can be also due
to the definition of burst adopted in Segev et al. (2002), which
substantially differs from our definition of up-states.
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FIGURE 7 | Distributions of quiet times P(�t; sc ) in the down-state for

the experimental data samples of Figure 1C and the numerical samples

reproducing blue squares and red diamonds curve of Figure 1C.

Distributions are rescaled by the mean rate rdw in the down-state. In five of
the analyzed samples the tail of the distribution is well fitted by an

exponential (black dashed line in A–D,F). Numerical data are shown in (E,F)

together with the corresponding experimental curves of Figure 1C and
shifted by 1 order of magnitude to the left, for clarity. Numerical distributions
are averaged over 100 configurations of a network of N = 64000 neurons
with pin = 0.1.
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FIGURE 8 | Distributions P(�t < �tθ ; sc ) of quiet times shorter than �tθ

in the up-state for the experimental data samples of Figure 1C and the

numerical samples reproducing blue squares and red diamonds curve of

Figure 1C. �tθ is sample dependent and its value varies in the interval
[80, 250] ms. Distributions are rescaled by the mean rate rθ

up. Numerical data

are shown in (E,F) together with the corresponding experimental curves of
Figure 1C and shifted by 1 order of magnitude to the left, for clarity.
Numerical distributions are averaged over 100 configurations of a network of
N = 64000 neurons with pin = 0.1 and are rescaled by rup . The dashed line is
a power law with exponent −2.2.
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We have shown that beside the characteristic recurrence time
τd between consecutive up-states, the analysis of quiet time distri-
butions is able to capture the presence of θ , β, and γ oscillations
in avalanche occurrence. The connection between nested oscilla-
tions and neuronal avalanches has been pointed out in Gireesh
and Plenz (2008). Investigation of spontaneous neuronal activity
in the rat cortex layer 2/3 has revealed that, during the second
week postnatal, bursts develop a temporal organization of higher
frequency oscillations, β and γ , nested into lower frequencies
θ oscillations, while the spatio-temporal organization of LFPs
is characterized by the scaling behavior of neuronal avalanches.
Here we have further enlightened the relation between avalanche
sizes and the temporal structure of the avalanche process. When
avalanches of all sizes are considered, the distribution of quiet
times in the up-state is scale free. On the contrary, disregarding
avalanches smaller than 
 80 µV, peaks corresponding to oscilla-
tions in θ , β, and γ frequency bands are clearly visible. Smaller
avalanches (60–160 µV) tend to be associated with shorter quiet
times and faster β/γ oscillations, larger ones to longer quiet times
and slower θ or 1–2 Hz oscillations. Of considerable interest is the
behavior of the θ and 1 Hz peaks under the removal procedure,
which are nearly independent of the threshold sc on avalanche
sizes: It doesn’t matter how many avalanches are removed, the
probability for quiet times around the period of θ or 1 Hz oscil-
lation does not change for a large range of sc values. Equivalently,
avalanches corresponding to these frequency bands are a con-
stant fraction of the total number, which implies that they have
no characteristic size. This suggests a special role in the tempo-
ral organization of spontaneous activity. In particular, we have
noticed that large avalanches occurring with θ frequency trig-
ger cascades of smaller avalanches corresponding to the higher
frequency oscillations, in a sort of hierarchy which is reminis-
cent of the temporal organization of nested θ − β/γ oscillations
(Gireesh and Plenz, 2008; He et al., 2010).

These results indicate that correlations between quiet times
and avalanche sizes could be relevant and deserve further inves-
tigation. This point is intimately related to the existence of
a universal scaling function for the distributions P(�t; sc). A
stochastic process for which such a universal function exists is
a fixed point of the transformation which has been illustrated
and performed in Section 3 (Corral, 2007). It can be shown that
the only process without correlations which is invariant under
this transformation is the Poisson process (Daley and Vere-Jones,
1988). More precisely, if sizes are independent of any other vari-
able, the removal of events is equivalent to a so called random
thinning and, under certain conditions, the resulting process con-
verges to a Poisson process. Here we have demonstrated that the
distributions P(�t; sc) do not collapse onto a unique function
when �t is rescaled by the average occurrence rate r. This is
because of the multiple time scales in avalanche dynamics, which
result from different mechanisms governing avalanche triggering
during up and down-states. Indeed distributions P(�t; sc) for the
down-state are simply controlled by the respective average rate:
When �t is rescaled by rdw, the distributions P(�t; sc) for the
down-state collapse onto the same curve with an approximately
exponential tail, which therefore implies that sizes of avalanches
separated by large quiet times are either independent or weakly

correlated, as well as sizes and quiet times. On the other hand,
in the up-state we observe that the peak associated with period
of θ oscillations and those corresponding to the β/γ scale dif-
ferently with sc and therefore cannot be controlled by the same
time scale, rup. In other words oscillations introduce additional
characteristic times in the up-state. However, we have shown that
the power law for short quiet times is universal and controlled
by 〈�t〉�t<�tθ . A similar analysis has been recently performed
for spike avalanches in freely behaving (FB) and anesthetized rats
(AR) (Ribeiro et al., 2010), where the quiet time distributions
show consistently a monotonically decreasing behavior. Universal
scaling features are observed for FB rats when quiet times are
rescaled by the average occurrence rate, whereas curves for AR do
not collapse onto a unique function. Our analysis suggests that
the different behavior between anesthetized and freely behaving
rats could be due to different dynamic mechanisms characterizing
spontaneous activity in AR.

Waiting time distribution and its universal features have been
widely investigated for earthquakes (Corral, 2004; de Arcangelis
et al., 2006a). In this case the distribution is not exponential,
but monotonic and solely controlled by r, except for correc-
tions at short waiting times (Bottiglieri et al., 2010). On the
other hand, many similarities between neuronal avalanches and
earthquakes can be recognized, which have suggested a com-
mon interpretation in term of self organized criticality (SOC).
SOC was originally proposed as an explanation for long range
correlations emerging in processes far from equilibrium (Tang
et al., 1988) and has rapidly become a useful interpretative scheme
for many stochastic natural phenomena that exhibit scale free
statistics. As for neuronal avalanches and earthquakes, in many
cases, e.g., solar flares (Boffetta et al., 1999), waiting time dis-
tributions are not exponential. Conversely, in the original sand
pile model introduced by Bak, Tang and Wiesenfeld (BTW) to
exemplify SOC idea, waiting times are exponentially distributed
(Boffetta et al., 1999) and this fact was used to question SOC
as an interpretation for solar flares (Boffetta et al., 1999) and
earthquakes (Yang et al., 2004). However, Paczuski et al. (2005)
have argued that an experimental sequence of bursts can arise
from a single avalanche observed at a finite detection threshold,
which would give rise to a power law in the waiting time distri-
bution of the BTW model. In addition, several different models
have been proposed in order to show that SOC-like dynam-
ics can provide temporal correlations among avalanches (Rios
and Zhang, 1999; Baiesi and Maes, 2006) and a non-exponential
distribution of waiting times (Sanchez et al., 2002; Lippiello
et al., 2005; Baiesi and Maes, 2006). In particular, it has been
shown that in the so called running sand pile (Sanchez et al.,
2002), waiting times between avalanches with size above a large
enough threshold are power law rather than exponentially dis-
tributed. Non-exponential waiting time distributions also arise
if avalanches are triggered on the basis of the entire history of
local stimulations (Lippiello et al., 2005). Here we have shown
that our model, inspired in SOC, is able to capture the pecu-
liar, non-exponential and non-monotonic behavior of the waiting
time distribution for neuronal avalanches recorded in cortex slice
cultures (Lombardi et al., 2012). Moreover, numerically generated
up and down-states, exhibit the same universal features found
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experimentally. This point is particularly important because it
indicates that the lack of universality in the waiting time distribu-
tion for spike avalanches in anesthetized rats (Ribeiro et al., 2010)
could be due to the coexistence of different dynamic mecha-
nisms, each one controlling ongoing activity at different temporal
scales. Indeed, in freely behaving rats, where no down-states are
observed, the waiting time distribution is controlled by the aver-
age occurrence rate (Ribeiro et al., 2010), which, for our model,
is equivalent to rup. From our simulations it emerges that the
crucial features of this temporal evolution are (1) the different
single neuron behavior in the two phases, namely the ability to
oscillate between a very depolarized and hyperpolarized state,
(2) the homeostatic mechanism driving activity in the up-state
and (3) the network disfacilitation following up-states. The good
agreement with experimental data indicates that the transition
from an up-state to a down-state has a high degree of synchro-
nization, whereas the onset of up-states is usually more gradual.
According to our numerical results, the alternation between up
and down-states is the expression of an homeostatic regulation
which, during a burst, is activated to control the excitability of the
system and avoid pathological behavior.
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