
EDITORIAL
published: 31 October 2017

doi: 10.3389/fgene.2017.00162

Frontiers in Genetics | www.frontiersin.org 1 October 2017 | Volume 8 | Article 162

Edited by:

Michael Eccles,

University of Otago, New Zealand

Reviewed by:

Joel D. A. Tyndall,

University of Otago, New Zealand

*Correspondence:

Suzie Chen

suziec@pharmacy.rutgers.edu

Specialty section:

This article was submitted to

Cancer Genetics,

a section of the journal

Frontiers in Genetics

Received: 06 September 2017

Accepted: 12 October 2017

Published:

Citation:

Chen S (2017) Editorial: GPCRs and

Cancer. Front. Genet. 8:162.

doi: 10.3389/fgene.2017.00162

Editorial: GPCRs and Cancer

Suzie Chen 1, 2*

1 Susan Lehman Cullman Laboratory for Cancer Research, Ernest Marion School of Pharmacy, Rutgers University,

Piscataway, NJ, United States, 2 Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States

Keywords: PCR, cancer, excess ligand, targets for treatment, genetic predisposition

Editorial on the Research Topic

GPCRs and Cancer

In this special e-book “GPCRs and Cancer” there are a collection of comprehensive reviews
describing the involvement of GPCRs in cancer. Although the description of the first oncogenic
GPCR was over 30 years ago the concept is still relatively foreign to most people. G-protein coupled
receptors (GPCRs) comprise a diverse and large group of receptors found in most eukaryotic
organisms. There are a variety of ligands which bind and stimulate the receptor including
neurotransmitters, chemokines, biogenic amines, peptide and non-peptide hormones, prostanoids,
growth factors, nucleosides, lipids, and odorant molecules. Stimulation of the receptor is mediated
through the activation of heterotrimeric G proteins. It has become clear within the last few years
that GPCRs could function as an oncogene with the identification of the transforming function of
MAS in 1986 (Young et al., 1986). Unlike most oncogenes identified at that time, the oncogenic
activity of MAS was not conferred by genetic mutations. Additional studies revealed that GPCRs
possess transforming activity by either elevated levels of circulating ligand/agonist or aberrant
expression. There are GPCRs with transforming activity by mutation(s) in critical residues without
ligand or agonist binding to the receptor (Knox et al., 1969; Hamm, 1998; Li et al., 2005; Lundstrom,
2006; Lee et al., 2008; Lappano and Maggiolini, 2011). Furthermore, the expression level of GPCRs
is not as essential in oncogenesis as the receptor simply being expressed. The following is a summary
of the reviews from each contributor for this special issue of “GPCRs and Cancer.”

In the first article in this e-book, Swope and Abdel-Malek reviewed the critical roles of two
GPCRs, melanocortin 1 receptor (MC1R) and the endothelin B receptor (EDNBR) in melanocytes,
specifically their responses to UV-irradiation. Molecular cloning of theMC1R gene and subsequent
population studies revealed the highly polymorphic nature of MC1R, particularly some of its
variants are non-functional receptors, which are associated with red hair, fair skin, and poor
tanning ability phenotypes that have increased melanoma risk (Abdel-Malek et al., 1999, 2000).
Normally, functional MC1R when activated by its agonist α-melanocyte-stimulating hormone
stimulates eumelanin synthesis and initiates signaling cascades of antioxidant that regulate growth,
differentiation, proliferation, apoptosis, DNA repair, and survival. While activation of EDNBR by
endothelin-1 reduces the induction of UV-induced DNA photoproducts, in parallel it promotes the
repair of such DNA photoproducts (Abdel-Malek et al., 2014).

In the next article, Horrell et al. reviewed structure and function of MC1R and the molecular
mechanisms of MC1R signaling in the nucleotide excision repair (NER) pathway. This group
demonstrated earlier that MC1R, a Gs-coupled receptor, mediates its signaling through cAMP
and protein kinase A (PKA) (Dorsam and Gutkind, 2007). Upon activation, MC1R promotes
PKA-mediated phosphorylation of ataxia telangiectasia and rad3-related (ATR) protein at serine
residue 435. This results in enhanced NER via recruitment of NER factor XPA and together with
ATR-pS435, localizes to sites of UV-induced photo-damage (Jarrett et al., 2014). In the absence of
PKA-mediated phosphorylation of ATR at serine 435, there is no enhancement of NER, suggesting
MC1R mediates genomic stability through this specific phosphorylation of ATR (Jarrett et al.,
2015).
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In the third article of this e-book, Rosero et al. described
another GPCR, protease-activated receptor (PAR). Unlike other
GPCRs where activation occurs via binding of a ligand, PAR
activation is mediated through proteolytic cleavage of the
N-terminal domain of the receptor by a serine protease.
Such cleavage leads to irreversible conformational changes and
establishes a new amino terminus that acts as a tethered ligand
for activation of the receptor (Vu et al., 1991). There are four
types of PARs, PAR1-4. PAR-1 is expressed in many cell types
including platelets, endothelial cells, fibroblasts, neurons, T-cells,
smooth muscle cells, astrocytes, and others (Macfarlane et al.,
2001). It is also detected in a wide variety of cancer cells such
as colon, melanoma, prostate and breast (Jin et al., 2016). When
stimulated, the PAR family activates numerous intracellular
signaling pathways including the well-known MAPK and PI3K
pathways that participate in critical cellular processes such as
cell proliferation, and cell survival. PAR-1 is involved in the
interactions between tumor cells and their microenvironment
including cell adhesion, angiogenesis, invasion, and metastasis
(Braeuer et al., 2011; Zigler et al., 2011). Targeting PAR-1
with silencing RNA led to reduced tumor cell growth and
metastasis (Villares et al., 2008), further suggesting PAR and
melanomagenesis.

In the next article by Urtatiz and Van Raamsdonk described
the involvement of two specific heterotrimeric G-protein α

subunits, GNAQ and GNA11 in melanoma. Frequent oncogenic
mutations have been described in these subunits in mouse
mutants with a dark dermis from an N-ethyl-N-nitrosourea
mutagenesis screen of mice (Hrabe de Angelis et al., 2000; Fitch
et al., 2003; Van Raamsdonk et al., 2004). These mutations
increased the number of melanocytes in the dermis throughout
the life of the mice but did not induce tumor formation. In
humans, mutations in GNAQ and GNA11 occur at two hotspots
at glutamine 209 and arginine 183. Melanocytic lesions affected
by these mutations include development of blue nevi, uveal
nevi, uvealmelanomas, and leptomeningealmelanocytomas (Van
Raamsdonk et al., 2009). Subsequent studies suggest that the
developmental lineage of a melanocyte determines if constitutive
activation of GNAQ and GNA11may be oncogenic (Huang et al.,
2015).

Finally, in this e-book, Isola and Chen describe the
possible involvement of exosomes in tumor metastases. The

dissemination of primary tumor cells to distant vital tissues is
a major life-threatening complication and the major cause of
death in most cancer types. Various host-tumor interactions
determine the formation of a secondary metastatic tumor. What
determines which distal organ(s) the tumor cells will eventually
reside in remains largely unknown. Exosomes are naturally
occurring small membrane enclosed microvesicles generated by
normal and tumor cells and released by different cell types but
more so from tumor cells into the circulation (Baj-Krzyworzeka
et al., 2006; Iero et al., 2008). Several reports have proposed that
exosomes have the ability to educate bone progenitor cells to
become receptive and support tumor cell growth and metastasis
(Peinado et al., 2012). Possible involvement of metabotropic
glutamate receptor (GRM1), a GPCR that was shown previously
to participate in human melanoma (Yu et al., 2014), in exosomal
production and/or release was being investigated. Exosomes
could be isolated from blood, thus the potential of using this
relatively non-invasive means to evaluate outcomes to treatment
and provide reliable information for patients’ benefit is a possible
and practical goal.

We now know that cancer is a genetically heterogeneous
disease contributed by mis-regulated expression of many
genes and the interactions between them. Numerous GPCRs
have been key players in the development and progression
of tumors (Bar-Shavit et al., 2016). Emerging evidence in
GPCR biology points to the regulation of the receptors
by many agonists and antagonists, and these are the most
sought-after targets for the treatment of various human
diseases. A better grasp on the molecular mechanisms of
GPCRs in tumorigenesis will contribute to the development
of GPCR therapeutic approaches for the treatment of human
cancers.
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