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Figure 1: Genetic modifiers of huntingtin protein aggregation in C. elegans.: A) Representative fluorescent confocal
micrographs of a parental strain (EAK103) expressing Htt513(Q128)::YFP in body wall muscle cells, or of three
independent EMS-derived mutants referred to herein as modifiers of Htt aggregation (mha). B) Quantification of the
number of Htt513(Q128)::YFP protein aggregates in each of the mha mutants compared to both the parental strain and to
strain EAK102, which expresses the protein Htt513(Q15)::YFP as a negative control for aggregation. Mean aggregate
number for at least 50 individuals is shown for each indicated time point. Animals were sacrificed at the time of scoring;
therefore each day represents a completely independent experiment. Error bars represent standard error of the mean.
Student t-tests were performed, comparing aggregation in each mha strain to that of the parental strain. Because no
statistically significant differences were observed over time, data for each of the three days were pooled for the purpose of
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further statistical analyses. The symbol *** denotes a p-value less than 0.0001. C) Representative western blot of
Htt513(Q128)::YFP protein detected with an anti-polyQ antibody or α-tubulin as a loading control. N2 and YFP-
expressing animals (AM134) are shown as negative controls. D) Western blot quantification using Image J analysis
software. Mean Htt protein levels are shown for three biological replicates, error bars represent standard error of the mean,
and the p-value is the result of a student t-test.

Description
Huntington’s disease (HD) is an autosomal dominant monogenic neurodegenerative disorder caused by a CAG
trinucleotide repeat expansion in the gene encoding the protein huntingtin (Htt) (MacDonald et al., 1993). The resultant
disease-associated Htt protein harbors a polyglutamine (polyQ) repeat that renders it metastable with respect to folding
(Carrell and Lomas, 1997). Htt protein misfolding, characterized by the accumulation of misfolded protein aggregates and
neurotoxicity, is first observed in mid- to late-life for most HD patients (Becher et al., 1998). The age-of-onset for HD is
inversely proportional to CAG repeat length (Becher et al., 1998). Nonetheless, genetic variation between HD patients is
attributed to slight differences in age-of-onset, even when repeat length is the same (Gusella and MacDonald, 2000). Thus,
genetic background seems to be an important modifier of Htt protein aggregation and toxicity. We are interested in
identifying genes/proteins that enhance or suppress the folding defect of human Htt.

To model Htt toxic-gain-of-function in the genetically tractable Caenorhabditis elegans, we previously characterized
transgenic animals expressing a YFP-tagged polyQ-expanded disease-associated fragment of human Htt in C. elegans
body wall muscle cells (Lee et al., 2017). More specifically, the first 513 amino acids of the human Htt protein were fused
to YFP for visualization. Two different polyQ tract lengths (Q15 and Q128) were utilized, resulting in the proteins
Htt513(Q15)::YFP and Htt513(Q128)::YFP, corresponding to the strains EAK102 and EAK103, respectively (Lee et al.,
2017). For simplicity, these proteins are referred to herein as Htt513(Q15) or Htt513(Q128). As reported, only
Htt513(Q128), not Htt513(Q15), formed protein aggregates in body wall muscle cells (Lee et al., 2017), consistent with
only longer polyQ tracts being associated with disease.

Here, we describe the identification and characterization of genetic modifiers of Htt aggregation (mha). To this end,
EAK103 animals expressing Htt513(Q128) were grown to the L4 larval stage and exposed to the alkylating agent ethyl
methanesulfonate (EMS) at a final concentration of 50mM for 4hrs, according to established protocols (Brenner, 1974). In
short, F1 individuals derived from the mutagenized parents were allowed to self-fertilize for one generation, yielding an
F2 population, for the purpose of homozygosing recessive alleles and thereby uncovering mutant phenotypes. Screening
of the F2 animals for those with increased or decreased aggregation was performed by eye with a fluorescent
stereomicroscope.

Using this strategy, we obtained three independently-derived mha alleles, mha-1(eee1), mha-(eee2), and mha-(eee3) all
displaying either increased or decreased Htt513(Q128) protein aggregation. Independence was assured by generating
separate pools of F1 progeny with no more than one mutant individual selected from any given pool for further analysis.
However, because allelism tests were not performed, we cannot say that our three alleles necessarily represent three
different genes. Therefore, we are assigning only one allele, eee1, the specific gene name mha-1. Qualitatively, mha-
1(eee1) displayed decreased Htt513(Q128) aggregation whereas mha-(eee2) and mha-(eee3) displayed increased
aggregation (Fig. 1A). To determine the extent of aggregation suppression or enhancement, the number of Htt513(Q128)
protein aggregates in each of the three mha mutant strains was quantified at days 1, 4, and 8 of adulthood and compared to
that of the Htt513(Q128) parental strain (EAK103) and the Htt513(Q15) negative control strain (EAK102) (Fig. 1B). The
aging time-course was to determine whether our new mutants had early or late effects or whether they worked in a
synergistic manner with the aging program. We found that while the parental strain accumulated ~15 aggregates in body
wall muscle cells on all days examined, mha-1(eee1) accumulated <10 aggregates, whereas mha-(eee2) and mha-(eee3)
accumulated >20 aggregates. These numbers of aggregates were statistically different from the parental strain, but not
affected by age in any of the mutants examined (Fig. 1B).

Because aggregation is a concentration-dependent phenomenon, we needed to rule out the trivial possibility that changes
in aggregation were simply due to higher or lower transgene expression levels. To address this, we performed western blot
analysis with an antibody raised against expanded polyQ or against α-tubulin as a loading control (Fig. 1C). Briefly, total
protein from animals grown to day 1 of adulthood was extracted and loaded on a 10% SDS-polyacrylamide gel,
transferred to a PVDF membrane, and incubated in the presence of the indicated antibodies. Visualization was with a Li-
Cor Odyssey imaging system (Lincoln, NE). Quantification of protein levels from three independent experiments was
performed with Image J. The analysis revealed that mha-1(eee1) accumulated more, not less, Htt513(Q128) protein than
the parental control (Fig. 1D). This means that the underlying genetic lesion in mha-1(eee1) decreases aggregation
without decreasing protein levels. In contrast, mha-(eee2) and mha-(eee3), in which Htt513(Q128) aggregated more than
the control, also accumulated more total protein. Thus, the observed increase in aggregation could be due to a higher
concentration of available Htt513(Q128) protein. Alternatively, these aggregates themselves may be highly stable, such
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that increased aggregation may equate to less protein turnover, a longer half-life, and, consequently, higher steady-state
protein levels.

Together, our data describe a screening strategy for the successful identification of genetic modifiers of Htt513(Q128)
protein aggregation. Prior to this study, we were uncertain whether the long polyQ tract length and early aggregation of
Htt513(Q128) in body wall muscle cells would render it impossible to suppress aggregation. However, mha-1(eee1) only
forms a few aggregates in the muscles surrounding the head, but is otherwise completely diffuse. Thus, the mutants
characterized herein are not only interesting in their own right as modifiers of protein aggregation, but they serve as a
proof of principle, opening up the possibility for larger-scale studies in the future.

Reagents
C. elegans were maintained on Nematode Growth Media (NGM) that was seeded with E. coli strain OP50 as a food
source according to established protocols (Brenner 1974).

The mha mutant strains described herein are available by request. They are:

EAK104 mha-1(eee1) eeeIs2[Punc-54::Htt513(Q128)::YFP::unc-54 3’UTR]

EAK105 mha-(eee2) eeeIs2[Punc-54::Htt513(Q128)::YFP::unc-54 3’UTR]

EAK106 mha-(eee3) eeeIs2[Punc-54::Htt513(Q128)::YFP::unc-54 3’UTR]

The following previously published strains used in this study are available from the C. elegans Genetic Center (CGC):

N2 Wild type, Bristol, (Brenner 1974)

AM134 rmIs126[Punc-54::Q0::YFP] X, (Morley, Brignull et al. 2002)

EAK102 eeeIs1[Punc-54::Htt513(Q15)::YFP::unc-54 3’UTR], (Lee, Ung et al. 2017)

EAK103 eeeIs2[Punc-54::Htt513(Q128)::YFP::unc-54 3’UTR], (Lee, Ung et al. 2017)

For SDS-PAGE and western blot analysis, total protein from 10 nematodes was extracted directly into Laemmli sample
buffer and loaded on a 10% SDS-PAGE gel. After electrophoresis, protein was transferred to an Immun-Blot Low
Fluorescence PVDF membrane (Bio-Rad, Irvine, CA). The primary antibodies were the anti-expanded polyglutamines
antibody 3B5H10 and the anti-alpha-tubulin antibody B-5-1-2, both from Millipore Sigma (Carlsbad, CA). The secondary
antibody was the IRDye® 800CW Goat anti-Mouse IgG Secondary Antibody from Li-Cor (Lincoln, NE).
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