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Abstract. Gastric cancer is a leading cause of cancer‑ 
associated deaths worldwide and is considered to be an age‑related 
disease. In younger patients, gastric cancer is biologically more 
aggressive, and prognosis is worse compared with that in elderly 
patients. In the present case report, the whole genome and tran‑
scriptome was sequenced in a 26‑year‑old patient with gastric 
cancer who presented with gastric cancer‑related symptoms and 
was admitted to the First Affiliated Anhui Medical Hospital 
(Hefei, China) in December 2016. In total, 9 germline and 4 
somatic mutations were identified in the patient, and there were 
more deleterious sites in the germline mutated genes. Genes with 
somatic mutations, such as MUC2, MUC4, SLC8A2, and with 
structural variations, including CCND3, FGFR2 and FGFR3, 
were found to be differentially expressed. Cancer‑associated 
pathways, such as the ‘calcium signaling pathway’, ‘cGMP‑PKG 
signaling pathway’ and ‘transcriptional mis‑regulation’ were 
also enriched at both the genomic and transcriptomic levels. 
The genes found to have germline (SFRP4), somatic (MUC2, 

MUC4, SLC8A2) mutations, or structural variations (CCND3, 
FGFR2 and FGFR3) were differentially expressed in the patient 
and could be promising precision therapy targets.

Introduction

Gastric cancer (GC) is a leading cause of cancer‑related deaths 
worldwide and is known to be an age‑related disease  (1). 
The mean age of patients with GC at diagnosis is ~60 years 
and <3% of GC cases are reported in patients <30 years of 
age (2,3). Several reports have found that younger patients 
(~30 years) are often diagnosed with advanced stages of GC 
and have worse prognosis compared with that in elderly patients 
(~60 years) (4,5). In younger patients, the cancer was found 
to spread rapidly and was biologically more aggressive (6). 
Integrative genomic approaches, which associate genomic 
and transcriptomic analysis have been found to increase the 
identification of numerous events and processes associated 
with tumor aggressiveness and may assist in selecting candi‑
date genes from normal and pathological samples for targeted 
therapy (7). A previous study aimed to investigate the biological 
and genomic mechanisms in the progression of GC has led to 
the development of target‑oriented therapy for advanced GC to 
be used in a clinical setting, with base substitution mutations 
in genes such as tumor protein p53 (TP53), AT‑rich interac‑
tion domain 1A (ARID1A), KRAS proto‑oncogene, GTPase 
(KRAS), phosphatidylinositol‑4,5‑bisphosphate 3‑kinase cata‑
lytic subunit alpha (PIK3CA), ring finger protein 43 (RNF43), 
APC regulator of WNT signaling pathway (APC), RAS p21 
protein activator 1 (RASA1) and erb‑b2 receptor tyrosine 
kinase 2 (ERBB2) identified as important therapeutic targets 
in anti‑cancer treatments (8). Developing personalized therapy 
for optimal individual cancer patient outcome has become 
more feasible due to the rapid advancement in next‑generation 
sequencing techniques and technologies that enable fast and 
comprehensive characterizations of tumors at the molecular 
level (9‑12). As every patient harbors a unique combination of 
variants that influence the risk, onset, and progression of the 
disease, an effective personalized therapy is dependent on a 
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well‑profiled genome from the individual patient with cancer 
and understanding the oncogenic mechanisms that regulate 
the progression of the tumor (13). With a view to identifying 
potential clinically actionable therapeutic targets that may 
inform individualized treatment strategies, the whole genome 
was sequenced in a 26‑year‑old patient with advanced stage 
GC, by integrating the whole genome and whole transcriptome 
sequencing data.

Materials and methods

Sample collection and preservation. A 26‑year‑old female 
patient was admitted to the First Affiliated Anhui Medical 
Hospital in December 2016 having presented with GC‑related 
symptoms. The patient felt uncomfortable in the upper left 
quadrant of her abdomen and had repeated black melena for 
one month. This symptom recurred and became more serious 
for 2 weeks. The patient felt full and uncomfortable in the 
upper left quadrant of her abdomen repeatedly following a 
meal, one month prior to the development of black melena. 
She also had nausea, although there was no hematemesis or 
hematochezia. The abdominal discomfort worsened and the 
patient received treatment in Luan Jinkai Hospital. Thereafter, 
the patient visited the First Affiliated Hospital of Anhui 
Medical University where the present study was conducted. 
The gastroscopy of the patient indicated GC with obstruction, 
while pathology indicated antrum considered as carcinoma 
mucocellulare. Pathological examination of the samples was 
performed using hematoxylin and eosin staining. Briefly, 
tissues were sliced with a dimension of 1.5x1.5x0.2‑0.3 cm and 
soaked in 40˚C warm water. The sections were deparaffinized 
in xylene and were gradually hydrated through graded ethanol 
(100, 95, 80 and 70%) each for 3 min at 25˚C. The sections 
were stained in hematoxylin solution for 10 min at 25˚C and 
differentiated in 1% hydrochloric alcohol. Then the slides 
were rinsed with tap water and distilled water until the nuclei 
became blue, and dehydrated in 95% ethanol. The sections 
were counterstained in 1% eosin solution for 5 min at 25˚C, 
washed with 70% ethanol twice and absolute ethanol, and were 
cleared in two washes of xylene. The sections were mounted 
with neutral balsam and observed under a light microscope 
magnification, x400 (x40 objective and x10 ocular magnifica‑
tion; BX‑42; Olympus). An abdominal computer tomography 
scan + enhancement showed that both armpits had multiple 
small lymph nodes and the gastric antrum had thickened walls 
along with multiple swollen lymph nodes in the surrounding 
area. The patient was diagnosed with a T3N3bM0 (advanced 
stage IIIC) GC using AJCC TNM staging system 7th 
edition (14).

The patient underwent a gastrostomy for tumor removal. 
Tumor tissue and adjacent normal tissue ~5‑cm away from the 
tumor were resected and preserved in liquid nitrogen until use.

DNA and RNA extraction and library preparation. Genomic 
DNA was isolated from the resected tissues using a genomic 
DNA isolation kit (Bioo Scientific; http://www.biooscientific.
com) according to the manufacturer's recommendations. 
Extracted DNA was quantified using a NanoDrop ND‑1000 
spectrophotometer (NanoDrop Technologies; Thermo 
Fisher Scientific, Inc.) and the integrity was assessed using 

1% agarose gel electrophoresis and visualized in gel imager 
(Tanon; http://www.biotanon.com). RNA was extracted 
from the tumor and adjacent normal tissue using TRIzol® 
(Invitrogen; Thermo Fisher Scientific, Inc.), and eluted in 
RNAse‑free water. RNA quantity and quality were assessed 
using an Agilent 2100 Bioanalyzer (Agilent Technologies Inc.). 
DNA and RNA libraries were prepared according to standard 
protocols according to Bioo Scientific.

Whole transcriptome sequencing and pre‑analysis. For 
whole transcriptome sequencing, raw sequencing reads were 
produced using an Illumina X10 sequencer (Illumina Inc.) 
with 150‑bp paired‑end reads according to the manufacturer's 
instructions. Raw RNA‑Sequencing (RNA‑Seq) data was 
trimmed by removing the adaptors and low quality reads using 
trim_galore v0.4.4 software (15). The data was subsequently 
aligned to the human reference genome GRCh37.p13 using 
STAR v2.6.1a software (16) in a 2-pass mapping. Read count 
in the tumor and adjacent normal tissues was calculated using 
htseq‑count v0.10.0 software (17), and differentially expressed 
genes were detected using edgeR v3.24.3 software (18). Genes 
with P≤0.001 and log2 fold change ≥1 were considered as 
differentially expressed. 

Whole genome sequencing and pre‑analysis. Whole genome 
sequencing of the prepared libraries was performed using the 
Illumina X10 sequencer (Illumina Inc.) with 150‑bp paired‑end 
reads according to the manufacturer's instructions. The raw fastq 
data was mapped to the human reference genome (b37) provided 
by the Broad Institute with the Burrows‑Wheeler Aligner 
v.7.0.12 (19). Read duplications were marked using the Picard 
tool v.2.10.10; local realignment and base quality score recalibra‑
tion was performed using Genome Analysis ToolKit (GATK) v. 
3.8‑0 (20) and the final bam files were used for variant calling.

Somatic and germline variants detection. Germline variants 
were called using the GATK HaplotyperCaller joint v3.8 
software (21) and then filtered using GATK variant quality 
score recalibration (VQSR). Variants that passed using the 
VQSR module with coverage ≥6X and supporting reads ≥0 
were retained, while the variants showing genotype ‘0/0’ or 
‘./.’ in the tumor sample were filtered out. For somatic variant 
calling, three different types of software were used: GATK 
HaplotypeCaller joint v3.8, Mutect v1.1.4 and MuTect2 
v3.8  (22). In Mutect and MuTect2, all variants that were 
flagged as ‘PASS’ were kept. Other variants were retained with 
a coverage ≥5X and supporting ≥3 reads, if they were flagged 
among a subset of ‘alternative (23) allele in normal’, ‘triallelic 
site’, ‘possible contamination’, ‘clustered read position’ in 
Mutect, or ‘germline risk’, ‘alt allele in normal’, ‘t lod fstar’ 
(tumor does not meet likelihood threshold), ‘str contraction’ 
(site filtered due to contraction of short tandem repeat region), 
‘triallelic site’ (site filtered because > two alternate alleles pass 
tumor likelihood threshold) in MuTect2. Germline variants 
were removed from both the Mutect and MuTect2 output data. 
In all three softwares, variant allele frequency in the tumor 
sample had to be 3 times higher compared with that in the 
normal sample, and >5% of the variant reads in the tumor 
sample was required. Functional annotations for both germline 
and somatic variants were added to each mutation using the 
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ANNOVAR software v.2018Apr16 (17) and several publicly 
available databases, such as 1,000 Genome Project  (24), 
the Exome Aggregation Consortium  (25), the Genome 
Aggregation Database (26) and the compiled scores prediction 
system dbnsfp33a (27), dbSNP (28) and COSMIC (29).

Transition to transversion ratio calculation. The transition 
to transversion ratio for germline variants was calculated by 
dividing total transitions by total transversions. Transitions 
refer to variations that involve a change from purine to purine, 
while transversions refer to variations that involve a change 
from purine to pyrimidine or vice versa (30). The transition 
to transversion ratio between homologous strands of DNA is 
generally ~2, and for human, the ratio is ~2.1 (31).

Copy number alternation and structural variation analysis. 
Copy number variants (CNV), tumor purity and ploidy was 
analyzed using cnv_facets software (https://github.com/dari‑
ober/cnv_facets) based on FACETS v0.5.14 (32), and run with 
the ‘‑cval 25 400’ command. Duplicated and deleted segments 
were retained and annotated using an ENCODE gene symbol 
in R v3.5.1 (33). iCallSV (https://github.com/rhshah/iCallSV), 
which applied Delly v0.7.5 prediction method (34) was used to 
detect structural variations and fusions using default param‑
eters. Inter‑ and intra‑chromosomal fusions >50  kb were 
retained and only in‑frame deletions, duplications and fusions 
were selected for subsequent analysis.

Mutation signif icance analysis. The 1,000 Genome 
Project (24), the Exome Aggregation Consortium (25) and 
the Genome Aggregation Database (26) provided alternative 
allele frequency data in different populations that ANNOVAR 
software applied to the present variations. Annotations using a 
set of algorithm scoring system from dbNSFP v.33a, including 
FATHMM, LRT, Mutation Assessor, Mutation Taster, M‑CAP, 
Polyphen2, PROVEAN and SIFT (35), were also applied to 
the variations. Then the common variants were filtered out, 
which are sites with a minor allele frequency ≥1%, to get the 
most informative ones. Mutations predicted to be deleterious 
by at least two algorithms of dbNSFP were considered to be 
potential pathogenic sites of these informative variants.

Identification of mutations in cancer associated genes. 
To identify genes with a high possibility of involvement in 
cancer development, the Cancer Gene Census (CGC) (https://
cancer.sanger.ac.uk/census) (36) and Cancer Predisposition 
Genes (CPG) (37) databases were used. In total, 850 candidate 
genes from cancer‑associated databases (723 genes from CGC 
and 114 genes from CPG with 87 overlapping genes), were 
investigated. The gene lists were downloaded directly from the 
two databases with no specific selection criteria.

Pathway analysis. Gene enrichment was performed using 
the R package clusterProfiler v3.10.1 software  (38), which 
implements a hypergeometric model to test for gene set over‑
representation relative to a background gene set. Enrichment 
was analyzed using the functions: ‘Enriched Kyoto 
Encyclopedia of Genes and Genomes (KEGG)’, ‘gseKEGG’ 
(Gene Set Enrichment Analysis (GSEA) (39) of KEGG, and 
a function of clusterProfiler), P<0.05, OrgDb=org.Hs.eg.db (a 

database for Genome Wide Annotation for Human, referenced 
by clusterProfiler). 

Integrated analysis of whole genome and transcriptome 
sequencing data. The differentially expressed genes were 
compared with mutated genes identified by whole genome 
sequencing. To achieve this, genes that were mutated and with 
differentially expressed transcripts were merged in R v3.5.1 (33).

Analysis of public GC RNA‑Seq data. The RNA‑Seq data from 
The Cancer Genome Atlas stomach adenocarcinoma (TCGA 
STAD) was downloaded from TCGAbiolinks online tool 
(https://github.com/BioinformaticsFMRP/TCGAbiolinks). To 
identify the most significantly differentially expressed genes 
in GC, the results from three RNA‑Seq differential expres‑
sion analysis tools, including limma v3.42.2  (40), DEseq2 
v1.26.0 (41) and edgeR v3.28.1 (18), were combined and the 
overlapping genes were separated for further analysis. For all 
three tools, P<0.05 and the average log2 fold change ± standard 
deviation were used as the cut‑off values. Gene Ontology (42) 
enrichment analysis was performed using the Database for 
Annotation, Visualization and Integrated Discovery (DAVID) 
v6.7 functional annotation clustering tool to determine the 
potential functions of the differentially expressed genes. 
The KEGG pathway analysis was performed to determine 
the involvement of differentially expressed genes in different 
biological pathways. The‑log10 (P) denotes the enrichment 
score, indicating the significance of the pathway associations.

Kaplan‑Meier plotter (KM‑Plotter) analysis. KM‑plotter 
(https://kmplot.com/analysis/) is an online database and tool 
which can be used for the discovery and validation of survival 
biomarkers (43). It contains cancer gene expression data and 
survival information from Gene Expression Omnibus (44), 
European Genome‑phenome Archive (EGA) (https://www.
ebi.ac.uk/ega/home), and TCGA (https://www.cancer.gov/
tcga), and uses each percentile of mRNA expression between 
the lower (25%) and upper quartiles (75%) of expression as a 
cut‑off point to divide patients into high and low expression 
groups. The KM‑plotter software, which included available 
transcriptome and survival data (both overall and disease‑free 
survival times), was used to analyze a total of 1,440 patients 
with GC, based on default parameters.

Results

Tumor purity and coverage statistics. The proportion and 
the ploidy of tumor cells in the sample were ~22% and 1.74, 
respectively. Using whole genome sequencing, the total number 
of paired reads were 8.13 and 8.34 billion, the mean read 
coverage was 37.16 and 35.48, while the mean library insert 
size was 319 and 323 bp for normal and tumor tissue samples, 
respectively. For the consensus coding sequence region, ~90% 
of the bases had over 30X coverage. Using whole transcriptome 
sequencing, 1.04 and 1.11 billion clean reads were obtained 
with an average input read length of 253 and 261 bp for normal 
and tumor tissue, respectively. 

Gene expression analysis. The RNA‑Seq pipeline was used 
(Fig. S1A) for the whole transcriptome sequencing. Genes 
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with P≤0.001 and absolute log2 fold change value ≥1 were 
considered as significantly differentially expressed genes. In 
total, 766 down‑ and 765 upregulated genes were obtained 
(Fig. S1B). The RNA‑Seq result was subsequently matched to 
the whole genome sequencing data for further analysis.

Germline mutation analysis. Germline mutation analysis 
revealed a total of 4,228,339 single nucleotide polymorphisms 
(SNPs) and Indels with 95.03% of the sites previously reported 
in the dbSNP database. The transition to transversion ratio 
was 2.05, indicating that the germline analysis had high 
confidence, as the empirical value for whole genome analysis 

is ~2.1 (31). Among the germline variants, 21,405 SNPs/Indels 
were located in the exonic regions, of which 10,136 were 
predicted to alter the protein, including 9,504 non‑synonymous 
single nucleotide variations (SNVs), 112 frameshift deletions, 
90 frameshift insertions, 173 non‑frameshift deletions, 169 
non‑frameshift insertions, 78 stop‑gain, and 10 stop‑loss. 
More than 1% minor allele frequency variants from publicly 
available databases were removed, as those sites are common 
in the population. Of the candidate genes from the CGC 
and CPG databases, 13 SNPs and two Indels were identified 

Table I. Functional assessment of the germline mutations and prediction of their effect.

				    Reference			   AA.		  Final
Gene	 Databse	 Chromosome	 Position	 allele	 Alteration	 Type	 Change	 Cosmic82	 prediction

AKAP9	 CGC	 7	 91739445	 C	 T	 Non‑SNV	 p.T3899I	 N	 U
DOCK8	 CPG	 9	 286491	 G	 A	 Non‑SNV	 p.D63N	 Y	 D
HIF1A	 CGC	 14	 62207747	 C	 A	 Non‑SNV	 p.T669N	 N	 U
HLF	 CGC	 17	 53345172	 T	 C	 Non‑SNV	 p.V59A	 N	 D
KMT2D	 CGC	 12	 49446404	 C	 T	 Non‑SNV	 p.V401M	 N	 P
MLLT3	 CGC	 9	 20414344	 CTG	 ‑	 Non‑FS DEL	 p.163_164del	 Y	 U
MN1	 CGC	 22	 28194933	 ‑	 TGCTGC	 Non‑FS	 p.Q533delins	 N	 U
					     TGCTGC	 INS	 QQQQQ
NKX2‑1	 CGC	 14	 36986635	 C	 T	 Non‑SNV	 p.G322S	 N	 D
NRG1	 CGC	 8	 32505286	 C	 G	 Non‑SNV	 p.S17C	 N	 D
PRDM2	 CGC	 1	 14107360	 T	 A	 Non‑SNV	 p.S823T	 Y	 D
PTPRC	 CGC	 1	 198675962	 A	 G	 Non‑SNV	 p.N101S	 N	 U
RAD51D	 CPG	 17	 33428245	 G	 A	 Non‑SNV	 p.A181V	 N	 P
RNF213	 CGC	 17	 78346531	 C	 A	 Non‑SNV	 p.P4250T	 N	 U
ROS1	 CGC	 6	 117662652	 C	 G	 Non‑SNV	 p.E1605Q	 N	 P
WNK2	 CGC	 9	 96015284	 T	 C	 Non‑SNV	 p.C652R	 N	 D

Non‑SNV, non‑synonymous single nucleotide variation; non‑FS DEL, non‑frameshift deletion; non‑FS INS, non‑frameshift insertion; CGC, 
Cancer Gene Census; CPG, Cancer Predisposition Genes; P, possibly damaging; D, deleterious; U, uncertain significance; Y, yes; N, no; AA, 
amino acid.

Figure 2. Gene Set Enrichment Analysis revealed dysregulated pathways in 
RNA‑seq. Upregulated genes are indicated by blue and the downregulated by red.

Figure 1. Differentially expressed genes with structural alternations. 
Structural variation and copy number alternation analysis identified 21 
genes, which were differentially expressed. The angular axis shows log2 fold 
change between tumor and adjacent normal tissues.
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in 15 genes (Table I). A deleterious score evaluation of the 
15 variants revealed that mutations in DOCK8 (p.D63N), 
HLF (p.V59A), NKX2‑1 (p.G322S), NRG1 (p.S17C), PRDM2 
(p.S823T), WNK2 (p.C652R) were deleterious, while muta‑
tions in KMT2D (p.V401M), RAD51D (p.A181V) and ROS1 
(p.E1605Q) were possibly damaging.

Somatic mutation analysis. A total of 3 softwares from the 
Broad Institute were used to identify the somatic variants and 
114 variants in the exonic regions were found. This included 
45 non‑synonymous SNVs, 6 frameshift deletions, 11 frame‑
shift insertions, 17 non‑frameshift deletions, 3 non‑frameshift 
insertions, 2 stop‑gain and 30 synonymous SNVs. Similar to 
the germline mutation analysis, common variants were filtered 
out with publicly available datasets to select the most infor‑

mative somatic variants. In total, 29 variants were obtained, 
including 13 mutations which were reported in the Catalogue 
of Somatic Mutations in Cancer database (Table  SI). Of 
these, 3 protein‑truncating variants (BPNT1, p.S144I; FRG1, 
p.N153D; and TAS2R31, p.L59F) were predicted to be delete‑
rious and one variant (KRTAP5‑3, p.C185S) was predicted to 
be possibly damaging. However, for transcriptional regulation, 
3 genes (MUC2, MUC4 and SLC8A2) were found to be differ‑
entially expressed.

Large‑scale variation analysis. To identify large‑scale varia‑
tions in the patient, the copy number alterations and complex 
structural events in the tumor sample were investigated. 
The structural variant discovery tool, DELLY, reported 701 
structural events; however, only in‑frame events or fusions 

Figure 3. Genomic features in the young patient in the present study compared with that in patients from TCGA STAD dataset. (A) Heatmap of the 27 genes, 
which were dysregulated in both TCGA STAD and in the present study. Counts per million (CPM) indicates the expression level of each gene and log (CPM+1), 
which ranged from ‑2 (blue) to 6 (red), was used for sample clustering and visualization. (B). Gene Ontology enrichment analysis and KEGG pathway analysis 
identified several significant pathways. *P<0.05 and **P<0.01. DEG, differentially expressed gene; KEGG, Kyoto Encyclopedia of Genes and Genomes; MF, 
molecular functions; CC, cellular components; BP, biological processes; TCGA, The Cancer Genome Atlas; STAD, stomach adenocarcinoma; hydrogen:potas 
... ATPase activity, hydrogen:potassium‑exchanging ATPase activity.
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over 50 kb between two genes were retained. Ultimately, 20 
significant structural variations were reported (Table SII). 
Another sensitive tool, FACETS, detected 58 large segments, 
of which 62 were deletions and 112 were duplications found in 
the coding regions (Table SIII). Combining the results from 
the two tools, nine genes (CDKN1B, FBXW7, MUC4, CCND3, 
ETV6, FGFR2, FGFR3, TFEB and KMT2C) were reported 
in either the CGC or CPG databases. CDKN1B, FBXW7 
and MUC4 showed duplications, and there were deletions in 
CCND3, ETV6, FGFR2, FGFR3 and TFEB. Although KMT2C 
rearranged with BAGE2, the latter was not reported in the 
2 databases. The mRNA expression levels of the genes with 
structural variations was also investigated and 21 were found 
to be differentially expressed in the tumor sample (Fig. 1).

Integrated pathway analysis results. RNA‑Seq and mutation 
data were analyzed to characterize the genomic alterations in 
known signaling pathways. The GO enrichment for somatic 
mutated genes revealed terms, which included 3 mucin family 
genes, MUC2, MUC4 and MUC6, and were enriched in ‘main‑
tenance of gastrointestinal epithelium’, ‘O‑glycan processing’, 
and digestive system process, while KRTAP5‑3, TCHH, RPTN, 
POU3F1 were enriched in epidermal cell differentiation 
pathway (Table SIV). The KEGG enrichment analysis revealed 
SLC8A2 and SLC25A5 were enriched in calcium signaling 
and cGMP‑PKG signaling pathways (Table SIV). From the 
RNA‑Seq data, GSEA showed that the upregulated genes were 
enriched in ‘cGMP‑PKG signaling’, ‘calcium signaling’, and 
‘oxytocin signaling’ pathways, while the downregulated genes 
were enriched in ‘cell cycle’ pathway, ‘oxidative phosphory‑
lation’ pathway, ‘transcriptional mis‑regulation in cancer’ 
pathway and ‘GC pathway’ (Fig. 2). 

Comparison with TCGA STAD GC features. To ensure the 
present study was representative and valuable, the genomic 
features of the patient was compared with data from TCGA 
STAD dataset, which was downloaded from TCGAbiolinks, 
and 329 (136 up‑ and 193 downregulated genes) differen‑
tially expressed genes were identified, which were also found 
in the RNA‑Seq analysis. A total of three tools were used 
to identify the most significantly differentially expressed 
genes, and 136 up‑ and 193 downregulated genes were iden‑
tified (Fig. S2A), and were subsequently investigated in the 
tumor tissue sample obtained from the patient with GC and 
compared with that in the adjacent normal tissue. In total, 
27 genes were identified, including five that were up‑ and 22 
that were downregulated (Fig. 3A). GO and KEGG pathway 
enrichment analysis revealed one (GO:MF) and three 
(KEGG) significant terms, respectively, including digestion 
and gastric acid secretion (Fig. 3B). 

To determine the associated functional genomic altera‑
tions of these 27 genes, the previous studies that reported them 
were analyzed. In the present study, there were no somatic 
mutations in the 27 genes, however, 12 of the genes, including 
gastrokine 2 (GKN2), prosaposin‑like 1 (PSAPL1), ethanol‑
amine‑phosphate phospho‑lyase (ETNPPL), cytochrome P450 
family 2 subfamily W member 1 (CYP2W1), SFRP4, collagen 
type XXII α 1 chain, prostate stem cell antigen, lipase F, 
gastric type, solute carrier family 15 member 1 (SLC15A1), 
ATPase H+/K+ transporting subunit β (ATP4B), aldehyde 

dehydrogenase 3 family member A1 (ALDH3A1) and cystatin 
SN (CST1) were mutated in germline. Notably, two (SFRP4 
and SLC15A1) of the 12 germline mutated genes have been 
reported in previous studies. Germline mutations in SFRP4 
(P320T and R340K) were reported to be strongly associated 
with human cancer types (45) while mutations in SLC15A1 
were linked with bowel diseases (46).

The KM plotter database was subsequently used with 
the log‑rank test to investigate the association between the 
expression level of the 27 genes and clinical outcomes (both 
disease‑free and overall survival times). In the database, 
patients with GC are divided into high and low expression 
groups, with each percentile of mRNA expression between 
the lower (25%) and upper quartiles (75%) used as a cut‑off 
point. A total of 10 genes (ALDH3A1, ETNPPL, activity 
regulated cytoskeleton associated protein (ARC), ATP4B, 
CST1, CYP2W1, GKN2, PSAPL1, SFRP4 and SLC15A1) with 
differential expression were significantly associated (P<0.05) 
with survival times. In all the 10 genes, those with high expres‑
sion (red curve) were correlated with a poorer survival while 
genes with low expression (black curve) correlated with higher 
survival in patients with GC (Fig. S2B).

Discussion

In an attempt to improve the understanding of the pathobiology 
of GC in young patients and provide insights for personal‑
ized treatment strategies, the genome of a 26‑year old patient 
with GC was performed using both whole genome and whole 
transcriptome sequencing. Germline and somatic mutations 
analyses of the whole genome sequencing data revealed 15 
cancer related genes with germline mutations, 27 genes with 29 
informative somatic mutations and nine genes with structural 
events that could underlie the progression of GC in the patient. 
Of the 27 genes containing somatic mutations, 26 have not 
been previously reported as driver genes in TCGA (42). Only 
MUC6, a immunohistochemical marker used to support the 
diagnosis of gastric‑type EA (47), has been reported as a driver 
gene. In the mutation significance analysis, a set of scoring 
system was used to predict deleterious amino acid substitu‑
tions. This analysis revealed nine germline variants and four 
somatic mutations with potentially pathogenic sites. Compared 
with somatic mutations, more deleterious germline sites were 
detected and genes containing these sites were all found to be 
cancer‑associated, suggesting that inheritance disorders might 
be a key risk factor for the development of GC in the patient. 

To improve the understanding of the inter‑relationships 
between genomic alterations and the transcriptome, the mutated 
genes at the transcriptional level were also investigated. It was 
found that genes with somatic mutations, such as MUC2, MUC4, 
SLC8A2, and with somatic structural mutations, such as CCND3, 
FGFR2 and FGFR3, were differentially expressed, suggesting 
that they could be promising precision therapy targets. 

Mucin genes are known to maintain the gastrointestinal 
epithelium, and persistent mucosal inflammation increase the 
risk of developing GC (48). In addition, the fibroblast growth 
factor receptor (FGFR) pathway plays a key role in GC patho‑
genesis, and detection of FGFR2 copy number in the plasma 
circulating tumor DNA are potential predictive biomarkers to 
FGFR inhibition (49). 
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With respect to heterogeneity of GC, it was hypothesized 
that mutations in different genes that are involved in the 
same pathway could result in similar clinical phenotypes. 
Therefore, different pathways were investigated that could be 
dysregulated in the patient with GC. The calcium signaling 
pathway, cGMP‑PKG signaling pathway and transcriptional 
mis‑regulation were enriched at both the genomic and 
transcriptomic levels, suggesting that these pathways might 
play crucial roles in young patients with GC. Notably, these 
pathways were not found from the analysis of TCGA STAD 
dataset (42), suggesting that the pathogenesis of GC in young 
individuals, particularly in the patient in the present study may 
be different. Nevertheless, the genomic features of the young 
patient with GC was compared with TCGA STAD data and 
27 differential expression genes were identified, particularly 
germline mutations in SFRP4 (P320T and R340K), which 
are strongly associated with human cancers  (45). SFRP4 
is a member of the SFRP family  (50). SFRP4s contain a 
cysteine‑rich domain homologous to the putative Wnt‑binding 
site of Frizzled proteins (50) and act as soluble modulators of 
Wnt signaling, which is a well‑known pathway that is involved 
in tumorigenesis of GC (51). This indicates that such germline 
mutations could be informative in designing patient specific 
therapies. Several germline mutations were found in the 27 
genes; however, no somatic alterations or structural events 
were identified, suggesting that genetic factors may be impor‑
tant in the development of early GC. 

Notably, the youngest patient in TCGA STAD dataset 
was 30‑years‑old and >99% (439/443) of the patients were 
>40 years old, thus, TCGA STAD data could have originated 
from elderly patients with GC. This supports the requirement to 
investigate the genome in younger patients with GC to identify 
possible therapeutic targets. The patient in the present study 
was diagnosed at age 26, which was much younger compared 
with patients in TCGA STAD dataset. TCGA‑STAD RNA‑seq 
data was reanalyzed and 331 dysregulated genes were found 
(138 were up‑ and 193 were downregulated), however, only 
27 of these were found in the patient in the present study, 
suggesting that there was a considerable difference between 
GC in young and elderly patients. There may be indications 
that the pathogenesis of the patient was substantially different 
from typical patients with GC, as cancer‑related pathways, 
which were significantly enriched at both genomic and tran‑
scriptomic levels in the patient were also not found in TCGA 
STAD dataset. 

In conclusion, genes with germline (SFRP4), and somatic 
mutations (MUC2, MUC4, SLC8A2), and those with structural 
variations (CCND3, FGFR2 and FGFR3), which were differ‑
entially expressed in the patient could be promising precision 
therapy targets. 
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