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Abstract: (1) Background: Alanine aminotransferase (ALT) is used to screen for non-alcoholic
fatty liver disease (NAFLD) in children; however, the optimal age to commence screening is not
determined. Our objective was to describe whether ALT trends from 9–24 years were associated with
hepatic steatosis at 24 years in a population-based UK cohort. (2) Methods: The sample included
1156 participants who were assessed for hepatic steatosis at 24 years and had at least two ALT
measurements at 9, 15, 17, and/or 24 years. Controlled attenuation parameter scores were used to
assess steatosis (low (<248 dB/m), mild/moderate (248–279 dB/m), severe (>279 dB/m)). Sex-stratified
mixed-effects models were constructed to assess the liver enzyme trends by steatosis level. (3) Results:
The final sample was 41.4% male and 10.4% had severe steatosis. In both sexes, ALT trends from 9 to
24 years differed in those with low vs. severe steatosis at 24 years (p < 0.001). There was no evidence
of differences prior to puberty. At 17 years, the low vs. severe geometric mean ratio (GMR) was 0.69,
95% CI: 0.57–0.85 in males and (0.81, 0.65–1.01) females. At 24 years, the GMR was (0.53, 0.42–0.66) in
males and (0.67, 0.54–0.84) females. (4) Conclusions: Higher ALT concentration in adolescence was
associated with hepatic steatosis at 24 years. The increased screening of adolescents could strengthen
NAFLD prevention and treatment efforts.
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1. Introduction

Non-alcoholic fatty liver disease (NAFLD) is the hepatic manifestation of metabolic syndrome [1].
NAFLD is defined as having steatosis involving greater than 5% hepatocytes, typically assessed by
liver biopsy or imaging, in the absence of other causes of hepatic steatosis including heavy alcohol
intake [2]. Established risk factors for NAFLD include age, male sex, and obesity. The prevalence of
NAFLD has increased considerably over recent decades in youth in parallel with the rise of obesity [3].
This is concerning because pediatric NAFLD can progress to nonalcoholic steatohepatitis (NASH),
which is characterized by inflammation, as well as cirrhosis and end stage liver disease in adulthood [4].
NAFLD is also associated with an increased risk of diabetes, cardiovascular disease and pregnancy
complications [5,6].
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The onset and subsequent natural history of NAFLD in childhood and adolescence is not well
characterized [2]. Despite reports of infants with hepatic steatosis [7–10], little is known about the
disease in pre-pubertal children. Most children with NAFLD typically present clinically between
10 to 13 years old [11]. If the disease is caught early, outcomes can be improved through drugs or
lifestyle changes, primarily by improving diet quality (e.g., reducing sugar) and increasing physical
activity [2,12]. Therefore, the ability to detect NAFLD in its earliest stages is crucial to mitigating the
consequences of childhood NAFLD.

Currently, the recommended screening method for NAFLD in children includes elevated alanine
aminotransferase (ALT) serum concentration, concurrent with obesity and other risk factors for
metabolic disease, such as a family history of diabetes [2]. While the other two primary liver enzymes,
aspartate aminotransferase (AST) and gamma-glutamyl transferase (GGT) are not used as screening
markers for NAFLD in children, they are associated with a worse histology of the disease when they
are elevated along with ALT [2,13].

Due to the sparsity of studies on the incidence and natural history of pediatric NAFLD, especially
prior to its diagnosis, the ideal age for screening for NAFLD is not known [2]. No studies using serial
measurements have been published on the trajectory of liver enzymes from childhood to adulthood.
Additionally, the association between liver enzyme trends from childhood into adulthood and the
risk of NAFLD has not been previously explored. In this paper, we describe the trends in ALT and
other liver enzyme concentrations in the UK population-based Avon Longitudinal Study of Parents
and Children (ALSPAC) birth cohort from 9 to 24 years and determine whether these trends differ by
category of hepatic steatosis at 24 years.

2. Materials and Methods

2.1. Study Design and Population

We used the data from a population-based birth cohort study (ALSPAC) based at the University
of Bristol (Bristol, UK) that has previously been described in detail [14–16]. Briefly, ALSPAC enrolled
15,454 pregnant women in the greater Bristol area with expected delivery dates between 1 April 1991
and 31 December 1992. Of their children, 14,901 were alive at one year of age. When the offspring
were 24 years of age, 10,018 participants were invited to a clinic visit (that wave was known locally
as Focus@24) between 5 June 2015 and 31 October 2017, which included the collection of biological
samples and anthropometric measures, and 4021 attended. Other waves of fieldwork occurred when
the participants were ages seven through 17 years. Data from the 24 year clinic were collected and
managed using REDCap electronic data capture tools hosted at the University of Bristol [17,18].
The study website contains details of all the data that are available through a fully searchable data
dictionary and variable search tool [19].

Ethical approval for the study was obtained from the ALSPAC Ethics and Law Committee and
The data from the 24 Year Clinic was approved by the National Research Ethics Service Committee
South West—Frenchay: 14/SW/1173 ALSPAC Focus at 24+ (24 February 2015, confirmed 20 March
2015) Informed consent for the use of collected data via questionnaires and clinics was obtained from
participants following the recommendations of the ALSPAC Ethics and Law Committee at the time.

2.2. Assessment of Liver Outcomes

Participants were asked to fast overnight or for at least six hours prior to phlebotomy and transient
elastography. Blood samples were immediately centrifuged and frozen at −80 ◦C. Fasting serum ALT,
AST, and GGT liver enzyme concentrations were obtained through standard clinical chemistry assays
at ages 9 (non-fasting), 15, 17 and 24 years as previously described [20]. At 24 years, elevated ALT was
defined as >19 U/L in women and >30 U/L in men [21].

At 24 years old, the participants were assessed by transient elastography for the non-invasive
quantification of liver steatosis and fibrosis (FibroScan 502 Touch, Echosens, Paris, France). Individuals
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with an active implant, liver ascites, or who were pregnant were excluded from the liver scan. Transient
elastography provides a controlled attenuation parameter (CAP) measure of steatosis and a measure
of liver stiffness to quantify fibrosis. Manufacturer and machine indications were used to determine
whether the M or XL probe would be used to conduct the scan. Ten readings were required for each
patient to derive a CAP score and fibrosis result. CAP values outside the 100–400 dB/m range were
considered invalid and coded as missing. Additionally, median fibrosis results greater than or equal to
15 kPa or with an IQR to median ratio greater than or equal to 30% were considered invalid and coded
as missing.

We categorized participants by level of steatosis at 24 years based on CAP scores and using
cut-off values derived from a meta-analysis by Karlas, et al. [22]. Low steatosis (<10%) was defined
as <248 dB/m, mild/moderate steatosis (10–66%) was defined as 248–279 dB/m, and severe steatosis
(>66%) was defined as >279 dB/m. We categorized the fibrosis values into two groups. The first group
included those with no fibrosis or portal fibrosis without septa (F0–F1, <7.9 kPA) and the second group
included those with any fibrosis: portal fibrosis, septa, or cirrhosis (F2–F4, >7.9 kPA) [23].

2.3. Covariates

We calculated the body mass index (BMI) as weight in kilograms divided by height in meters
squared [24]. We classified BMI at 24 years as underweight (<18.5 kg/m2), normal weight (18.5 to
<25 kg/m2), overweight (25 to <30 kg/m2), and obese (≥30 kg/m2). We used the highest level of maternal
education reported during pregnancy as a proxy for socioeconomic status [25]. Mothers self-reported
one of five categories: none/CSE (certificate of secondary education), vocational (vocational courses
after 16 years of age), O (ordinary level exams at 16 years), A (advanced level exams at 18 years),
and university degree and above [26]. Ethnicity was based on maternal ethnicity and categorized as
White or Other.

2.4. Inclusion/Exclusion

We included all participants that had liver enzyme measures (ALT, AST, and GGT serum
concentrations) available at two of the four available time points (9, 15, 17, and 24 years) and that had
valid transient elastography measures at 24 years. We excluded women who self-reported pregnancy
at 17 or 24 years. We excluded the respondents with hazardous alcohol consumption defined by an
Alcohol Use Disorder Identification Test for Consumption (AUDIT-C) score greater than or equal to 4
(women) and 5 (men) [27,28].

2.5. Statistical Analysis

We calculated the median and interquartile range (IQR) values for continuous variables and
counts and percentages for categorical variables for the full sample and stratified by level of hepatic
steatosis (low, mild/moderate, or severe) at 24 years. Kruskal–Wallis tests were used to compare
differences in continuous variables across steatosis levels. Chi-squared tests were used to compare
differences between categorical variables. For cell counts less than five, Fisher’s exact tests were used.
We reported sex-stratified ALT, AST, and GGT medians and inter-quartile ranges by age and hepatic
steatosis level at 24 years.

Due to non-normal distributions assessed by the Shapiro–Wilk test for normality, we analyzed ALT,
AST, and GGT as log-transformed outcomes in all regression analyses. We used repeated-measures
linear mixed models to assess the trend differences of log-transformed ALT, AST, and GGT levels from
ages 9 to 24 years by hepatic steatosis level at 24 years. We also modeled differences of log-transformed
ALT by fibrosis. We included the fixed effects for categorical age, random effects for the intercept,
and an unstructured error covariance structure. To back-transform the log-transformed means from
the models, we exponentiated them to geometric means. We then calculated geometric mean ratios
(GMR) to assess the differences between steatosis levels at each age. Comparisons were made using
Tukey-adjusted pairwise tests. We checked all model residuals for normality.
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We decided to conduct a sex-stratified analysis a priori. Covariates were adjusted for in a stepwise
manner, whereby model 1 was unadjusted, model 2 included BMI at age 24 years as a covariate, and
model 3 included maternal education and ethnicity as covariates.

A sensitivity analysis was performed to compare the characteristics of the original cohort to those
in our analytic sample. In addition, to understand the impact of alcohol consumption, we (1) analyzed
the association between high AUDIT-C score and hepatic steatosis, and (2) ran the models with the
AUDIT-C score as a covariate instead of an exclusion criterion.

We conducted statistical analyses in SAS version 9.4 (Cary, NC, USA).

3. Results

Of the 10,018 active ALSPAC participants who were invited to participate in the Focus@24 +

clinic, 3877 participants had Fibroscan performed (Figure 1). Of these, 3766 participants had a valid
CAP score and 3600 participants had a valid fibrosis score. After exclusions for having ALT measures
obtained on no or only one occasion (n = 590), pregnancy (n = 7), and high AUDIT-C score (n = 2013),
our analytic sample size was 1156.
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Figure 1. Flowchart of the participants included in final analysis. Of the 10,108 participants invited to
Focus@24 year clinic, we excluded those that did not attend the clinic or did not get a liver scan because
they were ineligible or excluded due to an active implant, liver ascites, or pregnancy. We also excluded
participants with missing or non-valid controlled attenuation parameter (CAP) scores, who had a high
alcohol intake, were pregnant at the 17 or 24 year clinic, and had less than 2 alanine aminotransferase
(ALT) values measured at 9, 15, 17, and/or 24 years. Our final sample size was 1156.

Selected demographic and clinical characteristics of the study sample are presented in Table 1.
Most of the participants were female (58.6%) and reported being of White ethnicity (97.4%). The majority
(77.8%) had low hepatic steatosis, but 11.9% had mild to moderate and 10.4% had severe hepatic
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steatosis (Table 1). There was a positive association between liver enzymes and hepatic steatosis at
24 years (p < 0.001). All the clinical biomarkers measured at 24 years had a positive association with
hepatic steatosis, except for high-density lipoprotein (HDL) which had a negative association (p < 0.001).
In sensitivity analysis, there was no association between high alcohol intake and hepatic steatosis level
(Chi-square = 2.4, p = 0.30). Compared to those enrolled in the original cohort, participants in our
sample were more likely to be female and have mothers with a higher education status (both p < 0.001).

Table 1. Demographic and clinical factors at 24 years according to hepatic steatosis level (n = 1156) 1.

Total
(n = 1156)

Low
(n = 899;
77.8%)

Mild/Moderate
(n = 137;
11.9%)

Severe
(n = 120;
10.4%)

p-Value

Age 24 (23, 35) 24 (23, 25) 24 (24, 24) 24 (23, 25) 0.751
Sex

Male 479 (41.4) 348 (38.7) 65 (47.5) 66 (55.0)
Female 677 (58.6) 551 (61.3) 72 (52.6) 54 (45.0) <0.001

Ethnic Group
White 1041 (97.4) 812 (97.8) 124 (96.1) 105 (95.5)
Other 28 (2.6) 18 (2.2) 5 (3.9) 5 (4.6) 0.086

Mother’s education
CSE/None 111 (10.4) 83 (10.0) 17 (13.3) 11 (11.5)
Vocational 70 (6.5) 55 (6.6) 10 (7.8) 5 (4.5)

O-level 372 (34.8) 280 (33.7) 48 (37.5) 44 (39.6)
A-level 327 (30.6) 266 (32.0) 32 (25.0) 29 (26.1)
Degree 190 (17.8) 147 (17.7) 21 (16.4) 22 (19.8)

BMI, kg/m2 23.6 (21.2, 27.0) 22.8 (20.7, 25.3) 27.4 (24.5, 29.9) 32.1 (28.5, 35.9) 0.580
BMI category

Underweight/Normal 659 (62.4) 608 (73.2) 42 (33.6) 9 (9.0) <0.001
Overweight 260 (24.6) 178 (21.4) 53 (42.4) 29 (29.0)

Obese 137 (13.0) 45 (5.4) 30 (24.0) 62 (62.0)
CAP, dB/m 204 (175, 242) 193 (166, 213) 261 (255, 270) 313 (292.5, 343)

Fibrosis, kPA 4.6 (3.9, 5.5) 4.6 (3.9, 5.4) 4.5 (3.8, 5.4) 5 (4, 6) <0.001
Any Fibrosis 3 29 (2.6) 21 (2.4) <5 2 6 (5.3)

ALT, U/L 20.7 (15.5, 30.0) 19.6 (15.0, 27.9) 20.8 (16.5, 30.8) 35.2 (23.3, 64.0) <0.001
Elevated ALT 437 (41.0) 308 (36.8) 52 (41.3) 77 (75.5) 0.015

AST, U/L 23.9 (20.5, 29.3) 23.4 (20.3, 28.6) 24.4 (20.0, 28.5) 29.3 (23.9, 36.7) 0.175
GGT, U/L 15.0 (12.0, 21.0) 15.0 (12.0, 19.0) 17.0 (13.0, 22.0) 23.5 (16.0, 35.0) <0.001

Cholesterol, mmol/L 4.3 (3.8, 4.9) 4.3 (3.8, 4.9) 4.2 (3.9, 4.9) 4.6 (4.1, 5.2) <0.001
Triglycerides, mmol/L 0.8 (0.6, 1.1) 0.8 (0.6, 1.1) 0.9 (0.7, 1.2) 1.1 (0.8, 1.9) <0.001

HDL, mmol/L 1.5 (1.2, 1.7) 1.5 (1.3, 1.8) 1.4 (1.1, 1.6) 1.1 (1, 1.4) <0.001
LDL, mmol/L 2.4 (1.9, 2.9) 2.4 (1.9, 2.9) 2.4 (2.2, 3.2) 2.8 (2.3, 3.2) 0.004

VLDL, mmol/L 0.4 (0.3, 0.5) 0.4 (0.3, 0.5) 0.4 (0.3, 0.5) 0.5 (0.4, 0.8) <0.001
Insulin, mu/L 7.7 (5.4, 11.3) 7 (5, 9.7) 10.8 (7.2, 15.2) 16.6 (10.8, 25.1) <0.001

Glucose, mmol/L 5.3 (5.0, 5.6) 5.3 (5, 5.6) 5.4 (5.1, 5.7) 5.5 (5.3, 5.8) <0.001
1 Values represent the median (IQR) or number of participants (%). Chi-squared tests were used to compare the
differences between categorical variables. For cell counts <5, Fisher’s exact tests were used. Kruskal–Wallis tests
were used to compare the differences across steatosis levels for continuous variables. Some variables had missing
values: ethnic group (n = 87), mother’s highest education level (n = 86), BMI (n = 9), fibrosis (n = 56), and biomarker
values (n = 91). 2 Groups with less than five participants are expressed as n < 5 in line with the Avon Longitudinal
Study of Parents and Children (ALSPAC) confidentiality policy. 3 Any fibrosis includes those with portal fibrosis,
septa, or cirrhosis (F2–F4, >7.9 kPA). Abbreviations: CSE = certificate of secondary education, BMI = body mass
index, CAP = controlled attenuation parameter, ALT = alanine aminotransferase, AST = aspartate aminotransferase,
GGT = gamma-glutamyl transferase, HDL = high-density lipoprotein, LDL = low-density lipoprotein, VLDL = very
low-density lipoprotein.

The trends of ALT, AST, and GGT over time differed across levels of steatosis for both sexes
(Table 2). Figure 2 shows the geometric means and 95% CIs of each liver enzyme plotted over time
and stratified by steatosis level at 24 years for each sex from model 1. ALT values increased with
age in both sexes, with strong evidence for higher ALT values in those with severe vs. low hepatic
steatosis starting at 17 years in males and 24 years in females (Figure 2A,B, Table 3). AST levels
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declined in both sexes until 17 years when they started to increase. In both sexes, strong evidence for
differences in AST between those with severe vs. low hepatic steatosis at 24 years were only apparent
at 24 years and not in childhood and adolescence (Figure 2C,D, Table 3). In both sexes, GGT values
were higher throughout childhood and into adulthood in those with severe vs. low steatosis at 24 years
(Figure 2E,F). Adjusting for BMI at 24 years attenuated the estimates of differences in liver enzymes
towards the null, although strong differences between those with severe vs. low hepatic steatosis levels
remained at 24 years (Table 3). Additionally, adjusting for ethnicity and maternal education did not
meaningfully change differences. Differences between all levels of hepatic steatosis and for models 1–3
are presented in Table S1. In males, ALT levels did not differ at any age between those with any vs. no
fibrosis at 24 years (Figure 3A). In females, ALT levels were higher at 17 years, which was maintained
at 24 years, in those with any vs. no fibrosis at 24 years (Figure 3B).

Table 2. ALT, AST, and GGT by age and hepatic steatosis at 24 years (n = 479 males, 677 females) 1.

9 Years 15 Years 17 Years 24 Years p-Value

Hepatic Steatosis ALT, U/L

Males <0.001
Low 11.8 (9.0, 15.3) 16.9 (13.5, 20.6) 15.0 (12.3, 20.6) 24.4 (18.2, 32.8)
Mild/Moderate 11.8 (8.5, 16.0) 17.5 (14.1, 22.7) 17.7 (13.0, 21.2) 28.2 (20.6, 39.7)
Severe 11.9 (8.8, 14.0) 17.9 (14.2, 23.5) 22.6 (15.3, 30.4) 46.8 (34.6, 73.3)

Females <0.001
Low 11.7 (9.2, 14.8) 13.5 (10.6, 17.0) 13.7 (11.1, 17.2) 17.2 (13.4, 23.0)
Mild/Moderate 11.2 (8.8, 13.9) 13.8 (10.9, 16.1) 14.5 (11.3, 20.1) 16.9 (14.7, 23.6)
Severe 12.0 (8.6, 15.0) 13.1 (9.9, 19.2) 15.9 (12.3, 27.2) 25.4 (17.9, 32.9)

AST, U/L

Males <0.001
Low 32.1 (28.4, 35.6) 22.9 (19.6, 26.9) 20.2 (17.2, 23.4) 26.1 (21.7, 31.2)
Mild/Moderate 30.8 (28.0, 34.2) 23.1 (20.8, 29.4) 20.5 (17.5, 27.1) 26.5 (24.1, 31.6)
Severe 32.0 (28.2, 35.3) 22.9 (19.9, 27.4) 21.7 (18.2, 25.6) 33.8 (25.9, 38.7)

Females <0.001
Low 30.5 (27.1, 34.7) 19.5 (17.2, 22.0) 18.6 (16.2, 22.0) 22.2 (19.5, 26.0)
Mild/Moderate 29.4 (27.1, 33.3) 18.5 (16.4, 21.7) 17.8 (15.5, 22.2) 21.9 (18.9, 26.0)
Severe 29.1 (25.8, 32.2) 19.2 (15.7, 22.3) 17.6 (16.6, 21.9) 25.5 (22.2, 31.3)

GGT, U/L

Males <0.001
Low 15.0 (14.0, 18.0) 16.0 (14.0, 18.0) 17.0 (14.0, 21.0) 16.0 (14.0, 21.0)
Mild/Moderate 17.0 (14.0, 22.0) 17.0 (15.0, 23.0) 21.0 (16.0, 25.0) 20.5 (15.0, 30.5)
Severe 17.0 (14.0, 22.0) 19.0 (16.0, 23.0) 21.0 (16.0, 32.0) 27.0 (19.0, 38.0)

Females 0.002
Low 15.0 (13.0, 18.0) 14.0 (11.0, 16.0) 14.0 (12.0, 18.0) 14.0 (11.0, 18.0)
Mild/Moderate 16.0 (14.0, 20.0) 14.0 (12.0, 19.0) 17.0 (13.0, 22.0) 14.0 (12.0, 18.0)
Severe 18.0 (14.0, 22.0) 14.0 (12.0, 19.0) 17.0 (13.0, 20.0) 19.0 (14.0, 31.0)
1 Median (IQR). p-value from a type 3 test of fixed effects interaction between age and hepatic steatosis level in model
1. Steatosis is defined from the controlled attenuation parameter scores: low (<248 dB/m), mild/moderate (248–279
dB/m), severe (>279 dB/m). Abbreviations: ALT = alanine aminotransferase, AST = aspartate aminotransferase,
GGT = gamma-glutamyl transferase.
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Figure 2. ALT, AST, GGT geometric mean and 95% CI trends by hepatic steatosis level and sex. Sample
size was 479 males (A,C,E) and 677 females (B,D,F). Steatosis is defined from controlled attenuation
parameter scores: low (<248 dB/m), mild/moderate (248–279 dB/m), severe (>279 dB/m). Low is marked
by filled green circles, mild/moderate by blue filled triangles, and severe by filled red squares.
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Table 3. Geometric mean ratios and 95% CIs of liver enzymes for low vs. severe hepatic steatosis level
at each age (years) and by sex 1.

Males (n = 479) Females (n = 677)

ALT Unadjusted Fully Adjusted 2 Unadjusted Fully Adjusted 2

9 years 1.02 (0.82, 1.27) 1.15 (0.90, 1.48) 1.02 (0.82, 1.26) 1.13 (0.89, 1.44)
15 years 0.89 (0.74, 1.07) 1.01 (0.81, 1.26) 1.01 (0.83, 1.24) 1.15 (0.91, 1.45)
17 years 0.69 (0.57, 0.85) 0.8 (0.64, 1.01) 0.81 (0.65, 1.01) 1.01 (0.79, 1.29)
24 years 0.53 (0.42, 0.66) 0.63 (0.5, 0.81) 0.67 (0.54, 0.84) 0.75 (0.59, 0.96)

AST

9 years 1.01 (0.91, 1.13) 1.03 (0.91, 1.18) 1.08 (0.95, 1.22) 1.08 (0.93, 1.24)
15 years 1.01 (0.89, 1.15) 1.02 (0.88, 1.19) 1.07 (0.94, 1.22) 1.02 (0.88, 1.18)
17 years 0.92 (0.79, 1.06) 0.93 (0.79, 1.10) 0.99 (0.87, 1.13) 1.02 (0.88, 1.18)
24 years 0.81 (0.70, 0.94) 0.86 (0.72, 1.01) 0.86 (0.75, 0.97) 0.84 (0.73, 0.97)

GGT

9 years 0.87 (0.76, 1.00) 1.01 (0.86, 1.18) 0.86 (0.75, 0.99) 1.00 (0.85, 1.18)
15 years 0.82 (0.71, 0.96) 0.99 (0.85, 1.16) 0.87 (0.75, 1.02) 0.99 (0.82, 1.19)
17 years 0.76 (0.66, 0.89) 0.90 (0.75, 1.07) 0.87 (0.71, 1.07) 1.03 (0.82, 1.30)
24 years 0.62 (0.51, 0.76) 0.73 (0.59, 0.89) 0.66 (0.53, 0.83) 0.77 (0.61, 0.98)

1 Steatosis is defined from controlled attenuation parameter scores: low (<248 dB/m), mild/moderate (248–279 dB/m),
severe (>279 dB/m). 2 Adjusted for BMI at 24 years, maternal ethnicity and education. Abbreviations: ALT = alanine
aminotransferase, AST = aspartate aminotransferase, GGT = gamma-glutamyl transferase.
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Any fibrosis (red square) includes those with portal fibrosis, septa, or cirrhosis (F2–F4, >7.9 kPA).

In the sensitivity analysis, controlling for alcohol intake using the AUDIT-C score, instead of
excluding those with hazardous alcohol intake, did not meaningfully change estimates (Table S2).

4. Discussion

We found that young adults with severe hepatic steatosis as measured by CAP had a steeper
ALT trend from 9 to 24 years compared to those with low hepatic steatosis, with the largest increase
occurring from the late teen to young adult years. In males, the differentiation of ALT trends appears
to coincide with the beginning of puberty. The association between puberty and increases in steatosis
and ALT has been described in previous studies [29,30]. In girls, differences in trend first appeared
in late adolescence and with stronger differences occurring in young adulthood. Interestingly, girls
with mild/moderate and low steatosis had nearly identical trajectories for ALT, perhaps indicating that
ALT is not as sensitive of an indicator in girls, unless they have severe steatosis. NAFLD is known
to be a sexually dimorphic disease. Evidence specific to young women indicates that they are better
able to partition fatty acids towards ketone body production rather than very-low-density lipoprotein
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(VLDL)-triacylglycerol packaging compared to young men, leading to protection from dysmetabolic
conditions such as NAFLD [31,32].

Concentrations of GGT were consistently higher in those with severe vs. low steatosis over time.
However, we found that most associations, particularly for GGT, were attenuated after controlling for
BMI at 24 years. The strong association of BMI with ALT and GGT has been previously shown [30,33].
This finding supports the current recommendation that screening for NAFLD be performed using
elevated ALT in at-risk populations including overweight and obese children and adolescents [2].
ALT is an inexpensive, widely available, minimally invasive blood test with acceptable sensitivity,
making it a useful screening tool in at-risk pediatric populations [2]. Additionally, these results indicate
that more research should be conducted to see if GGT should play a larger role for NAFLD screening
in childhood and adolescence.

At 24 years, 10.4% of the ALSPAC sample had severe and 11.9% had mild or moderate hepatic
steatosis. Abeysekera, et al., using the same cohort, also found a similar 20.7% prevalence of
steatosis [34]. This represents a large increase from a NAFLD prevalence of 2.5% (defined as moderate
or severe steatosis) in the cohort as measured by ultrasound at the age of 17–18 years [34,35]. This likely
partially reflects a true increase in the prevalence. Other possible explanations for the increased
prevalence include selection bias and poorer diagnostic ability of the ultrasound technology compared
to transient elastography and CAP measures for the assessment of hepatic steatosis. Estimates of the
prevalence of NAFLD in adolescents in the US and Australia defined by a variety of methods including
autopsy, ultrasound, and ALT, range from 10% to 17% [3,29,36].

Heavy alcohol consumption is of concern in young adults, particularly in the UK [37].
Approximately half of the sample reported hazardous alcohol consumption at 24 years, a known risk
factor for hepatic steatosis. To limit potential confounding by alcohol consumption, we excluded all
participants with an elevated AUDIT-C score, an instrument used to identify hazardous drinkers.
Our criteria led to the exclusion of almost half the sample, therefore, we conducted a sensitivity analysis
including participants with any level of drinking and controlling for the AUDIT-C score. We found
no meaningful changes to our results. Similar to Abeysekera, et al., we also found no evidence of
an association between hazardous alcohol consumption and hepatic steatosis [34]. Future studies
should focus on the impact of high alcohol consumption in this population on hepatic steatosis, fibrosis,
and other health outcomes.

The largest strength of our study was the use of serial measurements in a large, population-based
longitudinal cohort study from childhood to young adulthood. We also used the CAP score based on
transient elastography to define hepatic steatosis levels at 24 years, which is a validated and accurate
marker of hepatic steatosis in adults [22]. An additional strength is the use of the AUDIT-C score to
exclude individuals with hazardous alcohol consumption, increasing our confidence that participants
in our analysis with severe hepatic steatosis had non-alcoholic fatty liver disease. The AUDIT-C has
been shown to perform well among adolescents with good internal consistency and accuracy [38].
The AUDIT-C has also been shown to be more useful than the AST/ALT ratio, an indicator of alcoholic
fatty liver disease (vs. NAFLD), for predicting hazardous drinking [39].

While we did not exclude participants with other liver conditions, a previous report from this
population reported that no participants had viral hepatitis or were taking nucleos(t)ide analogues or
direct-acting antivirals and very few were taking medications for autoimmune hepatitis [34]. Therefore,
we are confident that there was little, if any, confounding by other liver disease.

A limitation of this study was the relatively homogenous nature of the sample, of primarily White
ethnicity, and therefore, results may not be generalizable to other populations. We expect that the
associations we found would differ in samples with a larger proportion of higher-risk individuals,
such as Hispanics [40]. Individuals with adipogenic genes such as Patatin-like phospholipase
domain-containing protein 3 (PNPLA3), which is more common in Hispanics, are more susceptible to
NAFLD [41]. Additionally, there was differential loss to follow-up within the cohort, whereby females
and participants with mothers with higher education were more likely to be followed-up.
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5. Conclusions

This is the first description of liver enzyme trends extending from childhood to adulthood and
their relation with later hepatic steatosis. ALT trends were associated with hepatic steatosis level in
young adulthood. Higher ALT and GGT levels in adolescence were associated with severe hepatic
steatosis at 24 years, whereas, prior to puberty, liver enzymes may not be a useful indicator of future
risk. The increased testing of liver enzymes in adolescents could strengthen early NAFLD prevention
and treatment efforts. There is a need for further quality longitudinal data on the natural history of
pediatric NAFLD.

Supplementary Materials: The following are available online at http://www.mdpi.com/2227-9067/7/9/117/s1,
Table S1: Geometric mean ratios and 95% CIs of liver enzymes for hepatic steatosis levels at each age stratified by
sex, Table S2: Geometric mean ratios and 95% CIs of liver enzymes for hepatic steatosis levels at each age stratified
by sex including participants regardless of AUDIT-C.
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