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Abstract

Background: The evaluation of exposure to ambient temperatures in epidemiological studies has generally been
based on records from meteorological stations which may not adequately represent local temperature variability.
Here we propose a spatially explicit model to estimate local exposure to temperatures of large populations under
various meteorological conditions based on satellite and meteorological data.

Methods: A general linear model was used to estimate surface temperatures using 15 LANDSAT 5 and LANDSAT 7
images for Quebec Province, Canada between 1987 and 2002 and spanning the months of June to August. The
images encompassed both rural and urban landscapes and predictors included: meteorological records of
temperature and wind speed, distance to major water bodies, Normalized Differential Vegetation Index (NDVI), land
cover (built and bare land, water, or vegetation), latitude, longitude, and week of the year.

Results: The model explained 77% of the variance in surface temperature, accounting for both temporal and
spatial variations. The standard error of estimates was 1.42°C. Land cover and NDVI were strong predictors of
surface temperature.

Conclusions: This study suggests that a statistical approach to estimating surface temperature incorporating both
spatially explicit satellite data and time-varying meteorological data may be relevant to assessing exposure to heat
during the warm season in the Quebec. By allowing the estimation of space- and time-specific surface
temperatures, this model may also be used to assess the possible impacts of land use changes under various
meteorological conditions. It can be applied to assess heat exposure within a large population and at relatively
fine-grained scale. It may be used to evaluate the acute health effect of heat exposure over long time frames. The
method proposed here could be replicated in other areas around the globe for which satellite data and
meteorological data is available.

Background
Heat waves and urban heat islands have been associated
with increased mortality, particularly among persons
with social or physical vulnerability [1-3]. With an
increasing proportion of the world population living in
urbanized regions, aging vulnerable populations, and cli-
mate change signalling increased frequencies of extreme
climatic events and heat waves [4,5], the need to better

understand ambient temperature determinants and asso-
ciated health risks is important. Whereas the effect of
elevated temperatures on human health has been widely
studied over recent decades [6], epidemiological studies
analysing acute health risks associated with exposure to
elevated ambient temperature have mostly relied on
meteorological stations to estimate temperature expo-
sure. Yet, because meteorological stations are often
located in sparsely inhabited areas - such as airports and
parks - they provide only a partial representation of
ambient temperatures in heterogeneous urban, suburban
and rural landscapes where populations live [7]. Yet,
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variations in vegetation densities, open spaces, concrete
surfaces, building disposition and height condition lead
to micro-climatic variations in diurnal and nocturnal
temperatures [7-9] within a same city [10,11]. As such,
ambient air temperature measured at meteorological sta-
tions or simple interpolations between temperatures
measured at stations may offer misleading measures of
true exposure to local heat experienced in residential
settings and so may bias the estimation of associated
health risks. In support of this, we have shown that the
risk of death associated with high daily temperatures at
meteorological stations, was greater in areas with higher
surface temperatures than in areas with lower surface
temperatures [3].
Because the existing network of ambient temperature

sensors only provides information at a few selected loca-
tions, remotely sensed thermal infrared (TIR) data has
been used to estimate intra-urban variations in ambient
temperatures, and to identify “hot spots” referred to here
as “micro-urban heat islands”. Various satellite or air-
borne sensors including NOAA-AVHRR [12], MODIS
[13] and LANDSAT [14], have been used to that purpose.
Among these, the 60 m spatial resolution of LANDSAT
7ETM+ in the thermal IR band provides a useful resolu-
tion for analysing spatial variations in surface temperatures
within cities, as well as along the urban-rural continuum.
Concordance between satellite-derived surface tem-

perature estimates and ambient temperatures measured
at meteorological stations can be strong in certain atmo-
spheric conditions [15,16] (e.g. clear skies and mixing of
any surface-based inversion layer [17]). This holds for
various land cover configurations (accuracy to within ±
3-5% on average) [14,18,19]. Hence, surface tempera-
tures derived from satellite images offer an interesting
basis for establishing local measures of exposure to heat,
and may be used in epidemiological studies of the asso-
ciation between exposure to temperatures and acute
mortality or morbidity. However, satellite images are
usually available for a limited set of dates, which prevent
direct connection between daily vital statistics and satel-
lite-derived land surface temperatures (LSTs). Further-
more, relations between meteorological measures and
satellite-derived LSTs may differ depending on areas.
Land-use regression techniques allow to model values of
a spatially continuous phenomenon like air quality or
surface temperature using local characteristics of the
built environment. Early applications have modeled road
salt contamination [20] or soil depths [21], but most
applications concern the modelling of intra-urban varia-
tions in air pollution as a mean to improve precision in
exposure for epidemiological models [22-24]. The aim
of this paper is to develop a land-use regression of local
surface temperatures using land cover, meteorological,
and locational and temporal predictors, which can be

used for both surveillance and for epidemiological ana-
lyses of acute heat-related population health outcomes
over large territories.

Methods
Satellite Images
We used a total of 15 LANDSAT multispectral images.
Eight LANDSAT 7ETM+ images, taken between 1999
and 2002, covered different but partially overlapping
extents in the southern portion of Quebec Province,
Canada (See Figure 1: extents correspond to areas of
roughly 200 km × 200 km, for which images provide 30
m cell-sizes for non-IR channels, and 60 m for IR chan-
nels). The regions covered, as listed below, included the
main inhabited and urban areas of the province of Que-
bec: Montreal, Quebec City, Rimouski, Sept-Îles, Sher-
brooke, Saguenay, Gatineau, and Rouyn-Noranda,
representing some 90.3% of the total province population
according to the 2006 Census (See Table 1 and Figure 1).
In addition to these images, seven LANDSAT 5TM
images, taken between 1987 and 1999, and covering part
of the extent 014-028 over the greater Montreal region,
were also used (cell size of 60 m for non-IR channels,
and 120 m for IR channels); this extent selection covered
urban, rural and suburban areas. Given the number of
images used for part of this extent, our model best pre-
dicts surface temperatures for these regions, even if it
extends to other inhabited regions of Quebec. All images
where taken during June, July and August, under clear
sky conditions, and contained less than 10% cloud cover-
age. Further hand removal of cloud pixels was done to
retain only pixels representing surface temperature. The
LANDSAT 7ETM+ image covering the Montreal region
overlapped partly with the LANDSAT 5TM images of
Montreal, but each image was treated separately. Image
locations, dates, and times are given in Table 1. Given
the varying spatial resolution of the different maps, pixels
for all channels were re-sampled to 30 m, so as to keep
the highest resolution when available.

Surface temperature calculation
LANDSAT images were processed using the automated
cloud cover assessment (ACCA) algorithm [25]. We
retained images with less than 10% cloud coverage.
Remaining cloud-contaminated pixels were further
removed by a research assistant using a GIS before the
analysis.
Spectral radiance (R) was calculated from the LAND-

SAT thermal channel digital numbers (DN), using gain
and bias values included in the LANDSAT image pro-
duct according to:

R G DN B= +( )
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where G (gain) and B (bias, or offset) are calibration
values included in the LANDSAT image product. Radi-
ance values of all pixels were then converted to surface
temperature (T) values according to:

LST
K
K
R

=
+

2

1 1ln( )

where K1 is 607.76 for TM and 666.09 for ETM+ and
K2 is 1260.56 for TM and 1282.71 for ETM+ [14].

Predictors of calculated surface temperatures
Land cover
Land cover types were determined using the maximum
likelihood algorithm provided by PCI Geomatics, with a
supervised classification scheme using all channels

Figure 1 Map indicating location of extents used in Quebec Province with dates of images used.
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except the thermal IR band (band 6). Three land cover
categories were defined: built and bare land, vegetation,
and water. Stable sites, such as the Olympic stadium
and Botanical Gardens in Montreal, were used as refer-
ence points for land cover specification while controlling
for inter-annual variability in images.
NDVI
The Normalized Differential Vegetation Index was cal-
culated based on LANDSAT bands 3 (Red) and 4
(Near-Infrared) according to standard practice [26].
Using images taken between the first week of June and
the last week of August allowed us to limit inter-
seasonal variation in vegetation density and chlorophyll
activity throughout the summer season.
Meteorological data
Meteorological data from all available Environment
Canada stations [27] providing hourly data within each
extent was simply averaged, to obtain image-specific
measures of ambient temperature and wind speed at the
time the images were taken as well as for the three-day
average, that is, for the day the image was taken and the
two previous days. This simple approach was used with
the view of easily reproducing the method in future
model use. Between two and fifteen meteorological sta-
tions with complete hourly data were available per
image (see Table 1).
Complementary spatial and temporal measures
Because proximity to large water bodies is known to
influence LST [28], the Euclidian distance to the nearest
of three main water bodies in Quebec (St. Lawrence
River, Saint-Jean Lake, and Abitibi Lake) was computed
for each pixel. Latitude and longitude was derived
within a projected Universal Transverse Mercator

coordinate system (UTM, NAD83 zone 19N). A dummy
variable relating to each image was further used to cap-
ture any possible inter-image variations not accounted
for by the other predictors. Week number was used to
account for temporal variation.

Statistical analyses and validation
We used a random subsample of 2% of the total number
of pixels (n = 480,000 points) done to reduce the large
number of total pixels of the 15 images in our analysis
(n = 246,590,536). Within each map, the number of
points sampled was proportional to the area. Using GIS,
we computed LST and predictor data for each of the
480,000 sampled 30 m resolution pixels.
A general linear model (GLM) was developed to esti-

mate land surface temperatures of the sampled pixels
using land cover, NDVI, meteorological data and com-
plementary spatial and temporal information described
above (see Formula 1).

LST M LC XY

T E
m lc xy

t e

= + +

+ + +

  

  
(1)

With M being a matrix of meteorological indicators
(air temperature, wind speed), LC a matrix of land cover
indicators (land cover categories and NDVI), XY a
matrix of latitude longitude indicators, and T a matrix
of temporal indicators (Week number in our case), E a
matrix of extent indicators, all Betas being vectors of
corresponding regression coefficients, and epsilon the
error term.
Inter-variable correlation was tested using Pearson’s

correlation coefficient, whereas spatial autocorrelation

Table 1 Satellite image data summary1

Area Extent Date Hour Average
surface
temperature

Maximum
surface
temperature

Number of
meteorological
stations used

Landsat 5TM Montreal 014-028 1987/06/17 10:00 am 19.33 55.26 2

Montreal 014-028 1990/07/27 10:00 am 22.90 35.78 2

Montreal 014-028 1994/08/07 10:00 am 20.24 56.29 4

Montreal 014-028 1995/08/10 10:00 am 23.26 37.73 5

Montreal 014-028 1996/07/11 10:00 am 18.58 31.39 5

Montreal 014-028 1998/08/02 10:00 am 21.83 37.35 4

Montreal 014-028 1999/07/20 10:00 am 22.03 41.94 5

Landsat 7ETM+ Montreal 014-028 2001/06/08 10:00 am 16.40 32.52 13

Gatineau 015-028 2001/06/15 11:00 am 19.48 30.94 10

Quebec 013-027 2002/06/20 10:00 am 16.57 31.20 10

Rimouski 012-026 2002/06/29 10:00 am 16.61 27.71 9

Rouyn-Noranda 019-026 2000/08/27 11:00 am 13.77 28.53 3

Saguenay 014-026 1999/08/22 10:00 am 15.64 25.78 9

Sherbrooke 013-028 2002/06/20 10:00 am 17.40 31.47 2

Sept-Iles 011-025 2002/06/22 10:00 am 14.32 27.17 2
1 Times are given using Eastern Standard Time.
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(SA) of residuals was assessed using Moran’s I to evaluate
possible unexplained spatial variation in surface tempera-
tures. The minimum distance considered for SA was 120
m, the size of the IR channel cell in LANDSAT 5. We
calculated SA for each map separately and present the
average for all maps. The predictive ability of the model
was evaluated by applying the model to the whole dataset
(n = 246,590,536) and computing the standard error of
the estimate.

Results
From the 480,000 sampled points, 8 points with negative
surface temperature value were removed and an addi-
tional 298 points were excluded due to edge effects on
the maps or missing data in one or more other layers.
The remaining 479,694 points were used to build the
model. The surface temperature of the sampled points
had a similar distribution to those of the complete data-
set, with a slightly higher mean value, that is, 16.9°C
(SD = 2.97, Min = 6.2°C, Max = 37.3°C) compared to
16.6°C (SD = 3.02, Min = 6.2°C, Max = 37.4°C) for the
whole sample. Table 2 presents descriptive statistics of
the explained and predictive variables for the subsample
of points used to build the model with the 15 images.
Land cover classification resulted in characterising
73.51% of pixels as vegetation, 22.87% as built or bare
land, and 3.60% as water surface.
Inter-variable correlation tended to be relatively weak

(r = 0.27, SD = 0.07). The highest correlation was found
between week number and wind speed (r = 0.54). LST
correlations between overlapping images ranged from
0.212 to 0.685.
The GLM explained a relative high proportion of the

variation in surface temperature (R² = 0.77), and
resulted in a relatively low residual standard error

(1.42°C; Table 3). Predicted temperatures ranged
between 7.9 and 29.0°C.
Coefficients for model parameters are given in

Table 3. All predictors were significant at the 0.0001
level. Overall, when comparing the entire data ranges of
the predictors, it was found that NDVI had the stron-
gest effects, with a 95% effect range of 9°C - or, in other
words, 95% of the variation in NDVI explained up to
9°C variation in surface temperature. Land cover, week
number, three-day average temperature, and our
dummy map predictor also showed large effect ranges,
with 95% effect ranges of 5°C. Other parameters tended
to have smaller effects.

Model Analysis and Validation
Spatial autocorrelation among surface temperatures was
high, and significant up to a 2 km range, beyond which
SA decreased significantly. However, the Moran’s I
values for the model’s residuals were significantly
reduced, but remained significant in the 0-2 km range,
suggesting additional environmental factors would need
to be accounted for to fully explain variations in LST.
As mentioned earlier, spatial autocorrelation does not
influence our prediction of surface temperatures. A clo-
ser look at local spatial autocorrelation may be useful to
raise new hypotheses identifying additional relevant
environmental determinants.
Estimates of surface temperatures were comparable to

observed LANDSAT-derived point data. Figure 2 shows
the distribution of residuals of the point data. The pre-
dictive capabilities of the model was evaluated by apply-
ing the model to the whole dataset (n = 246,590,536)
and comparing predicted to observed values. The mean
difference between observed and predicted temperatures
was 1.42°C (Standard deviation = 2.67).

Table 2 Descriptive summary of surface temperatures, meteorological data, and time and location information for the
15 images covering parts of Quebec Province

Min Q1 Median Q3 Max Pixel level
(P, n = 479694),
or image level

(I, n = 15)

Surface T° 6.2 15.08 16.29 18.37 37.35 P

Ambient T° 10.85 17.27 19 20.2 31 I

3-day mean T° 14.71 15 16.86 17.92 23 I

Wind (km/h) 0.8 6.2 7.33 10.88 15 I

Normalised Differential Vegetation Index -0.83 0.21 0.38 0.5 0.82 P

Week No. 22 24 24 31 35 I

Distance to Water (m) 0 10642 36192 66104 148202 P

X (km) -852.28 -392.48 -257.66 -140.72 241.12 P

Y (km) 0.00 233.74 340.15 576.88 804.90 P

Water Built/Bare Vegetation

Land Cover (proportion of land use per category) 3.60% 22.87% 73.51% P
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Discussion
This paper presents a statistical model of surface tem-
peratures computed with some 15 satellite images taken
during the 1987-2002 period covering the main inhab-
ited areas of Quebec Province. Using basic meteorologi-
cal, land cover, and time predictors, this model allows
local estimation of surface temperatures in the most
populated areas of Quebec for the three warmest
months of the year. Such a model is particularly useful
because existing observed ground temperatures are only
available for specific locations - that is, where

meteorological stations are installed - and satellite
derived temperature readings are only available for spe-
cific dates. In the context of land use and climate
change, such a model provides local estimates of surface
temperature that can be used in epidemiological studies
on acute heat-related health outcomes, and as a plan-
ning and prevention tool.
As expected, meteorological indicators of air tempera-

ture, especially the three day average, were strong pre-
dictors of LST. Also consistent with the literature, land
cover predictors (i.e. NDVI and land cover categories)
were significantly and strongly associated with surface
temperatures [29-31]. The cooling impact of NDVI has
been well documented [29,30], and variations in LSTs
within urban areas have been linked to the spatial con-
figuration of land use and land cover [30,31].
Application of surface temperature estimates to epide-

miological models of heat-related health outcomes has
often been limited by the availability and the relatively
low resolution of surface temperature maps that cover
large areas. The use of a spatio-temporal model is there-
fore advantageous as it allows matching between high
spatial and temporal resolutions of temperature esti-
mates and at-risk populations or health events. By pro-
viding surface temperature estimates for any location
and time, it overcomes the potential temporal and spa-
tial discrepancy between either available images or

Table 3 Parameter coefficients of multiple regression model predicting Land Surface Temperature within 15 Landat
Images in populated areas of Quebec Province between June and August, 1987-2002

Coefficient St. Error t

Parameters Intercept 0,53 0.81 6.59

Ambient T° -0.061 0.04 -17.19

3-day mean T° 0.557 0.04 148.14

Wind (km/h) -0.075 0.01 -52.10

Built and Bare Land 5.884 0.13 45.58

Vegetation 5.542 0.14 40.44

NDVI -5.541 0.13 -42.62

Week No. 0.324 0.02 145.29

Distance to Water (1000 km) -0.011 0.001 -148.45

X (1000 km) -0.08 0.004 -187.14

Y (1000 km) -0.27 0.044 -62.27

Extents Outer Montreal -1.05 0.02 -66.13

Gatineau -2.09 0.03 -67.44

Quebec -0.29 0.02 -12.65

Rimouski -0.24 0.02 -9.69

Rouyn-Noranda -7.58 0.04 -188.83

Saguenay -5.32 0.02 -250.24

Sherbrooke -0.43 0.02 -21.44

Sept-Iles -3.40 0.03 -102.92

Number of observations: 479694 Adjusted R-Square: .77 SE: 1.42°

NB: All variables significant at p < 0.0001.

Figure 2 Residual distributions of 2% modelling sample (grey)
and 98% validation dataset (black). Mean values shown by
vertical lines.
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available meteorological data and health outcome events.
Meteorological data has usually been used as a proxy of
heat conditions across a large region, with temperature
from such stations either considered uniform or simply
interpolated across an extent [7]. Because our model
explicitly integrates spatial terms, like land-cover and
greenness, micro-variations in temperatures - that is,
differences at the urban lot size scale - can be explored.
The use of a relatively large set of images - covering
most of the inhabited areas of the Quebec province,
including summer’s intra-seasonal variations - allows for
the creation of calibrated models across the province.
These models are representative of June to August sum-
mer days, but were not specifically calibrated for
extreme heat event conditions. Further work is needed
to assess the robustness of this model for prediction of
surface temperatures under extreme heat events.
There are other limitations inherent to both the model

and to the use of satellite imagery for our capacity to
predict LSTs.First, our outcome measure, LST, can be
calculated in different ways, and may for example
account for emissivity or other parameters. Here we
used the simplest but classic and validated formulae for
LST determination [14]. The effect of downscaling to a
resolution of 30 m on the association between LST esti-
mates and health outcomes deserves further attention.
The model itself can be improved by refining or better
describing physiographic features of the landscape. For
instance, elevation or orientation was not considered in
our model, although the use of such measures for sur-
face temperature modelling is relatively common [32].
However, studies using satellite imagery to examine sur-
face temperatures have not explicitly looked at the rela-
tion with elevation or orientation [29,33]. One of the
limitations to such data integration relates to the resolu-
tion of available digital elevation models (DEM), espe-
cially when covering such large areas. We only had
access to a coarse Canadian-wide DEM providing a 100-
point per latitude/longitude elevation matrix (10 points
of latitude * 10 points in longitude). Use of more fine-
grained DEM may improve the performance of our
model.
The land cover classes used were also relatively gen-

eral. Although coarse classification does limit our capa-
city to assess micro-level variations in LST, because
local structural differences within land cover classes are
not accounted for, the use of broad categories does
reduce the risk of misclassification. It has been docu-
mented that areas of urban-rural transition are espe-
cially prone to such classification errors [34], and the
potential benefit of increasing classification precision,
with an associated risk of misclassification, is still
unclear. Yet, interesting novel methods suggest possible
increased precision in land cover classification based on

TM images, with possibility to discriminate residential
from commercial and industrial land, account for den-
sity, and specifically identify urban green space [35].
The fact that significant residual spatial autocorrela-

tion remained in our models, suggests that further addi-
tion of spatial predictors would be required to improve
the predictive capacity of the model and limit coefficient
bias. As an example, integrating wind directions may be
useful to account for the cooling effect of water bodies
in downwind areas [28]. Alternatively, explicit spatial
modelling strategies, like inclusion of autoregressive
terms or use of Geographically Weighted Regression
models for example, could be used. “When obtaining
point predictions, it matters little if we model the spatial
variation entirely through the covariates, entirely as
small-scale variations characterized by the semivario-
gram or sigma, or through some combination of covari-
ates and residual autocorrelation. Our choice of
covariates mainly affects the interpretation of our model
and the magnitude of the prediction standard errors”
[36].
While our model does predict outdoor surface tem-

peratures, heat exposure that may be relevant for epide-
miological models would need to account for both
outdoor and indoor temperatures. As such, remotely
sensed surface temperatures provide only a fraction of
true exposure, and complementary analysis using build-
ing characteristics may be used to further provide esti-
mates of indoor exposure to heat. Previous work on the
subject revealed a relatively linear relation between
indoor and outdoor surface temperatures, with a posi-
tive influence of building height [37], for dwellings that
were not equipped with air conditioning.
Limitations in the use of satellite imagery for estab-

lishing models of land surface temperatures are also
inherent to the absence of precise surface geometry
information. Surface geometry of buildings can induce
strong micro-urban temperature patterns due to differ-
ential solar heating [38-41]. An associated directional
bias is discussed by Nichol [39], where near-nadir view-
angle of satellite sensors may yield temperatures that are
warmer or cooler than off-nadir views, depending on the
view direction relative to solar position, time of day, and
surface characteristics of the environment such as build-
ing disposition and height. While the effect of surface
geometry on temperature was not considered in our
study, its effects can be pronounced and could be con-
sidered in future developments. Lagouarde et al. [40]
have reported temperature differences upwards of 12°C
between nadir and off-nadir temperatures in Marseille,
France, while Voogt and Oke [41] found a maximum
difference of 10°C in Vancouver, Canada. The mid-
morning LANDSAT images used in our study may be
prone to this bias as rooftops heat up much faster than
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shaded walls do, because the low angle of morning sun-
light offers potential for sizeable variation between nadir
and off-nadir temperatures [39].
Additionally, our model best predicts surface tem-

peratures for the years for which the images used. As
with other satellite based studies, the availability of
adequate images constrains the utility of our model.
Although sensors that produce NDVI and land cover
(such as IKONOS, QuickBird, SPOT, or MODIS) are
still widely available, there are currently few sensors
with sufficient resolution Thermal IR capabilities for
detailed micro-urban temperature mapping. Both
LANDSAT 5 and LANDSAT 7 satellites are well past
their mission’s expectancy and the next satellite in the
LANDSAT series, the LANDSAT Data Continuity Mis-
sion (LDCM), scheduled to launch in December 2012,
is not yet expected to include a thermal IR imager
[42].
Finally, precise air temperature estimates are only use-

ful if corresponding health events can be mapped
accordingly. Precise information on people’s exposure
locations are required to conduct such analyses. Infor-
mation on peoples’ main locations may further improve
our capacity to unravel the effect of environmental
dimensions on health [43].

Conclusions
This type of land-use regression model optimises the
spatial and temporal estimation of LSTs. Results from
Smargiassi et al. [3] suggested that the risks of mortality
associated to high temperatures is higher within micro-
urban heat islands, over Montreal city. Another study
held in Philadelphia looking at a heat event in July 1993
demonstrated the significance of remote-sensing land
surface temperatures readings in predicting mortality,
beyond socio-demographic information [44]. This model
will provide estimates of exposure to heat islands within
the inhabited regions of the province of Quebec, and
improve our ability to explore environmental determi-
nants of heat-related health events. Use of such models
allows identifying features associated with heat that are
amenable to change, like NDVI or land use. Using epi-
demiological models, cities may identify high-risk areas
with low vegetation indexes, and implement policies to
change the built environment. Furthermore, because it
is possible to cover large and diversified territories, such
an approach allows studying health risks in a variety of
landscapes and urban configurations. With satellite, land
use and meteorological data available in most populated
settings, such models could be calibrated elsewhere to
improve our understanding of the relation between heat
events, land use, and acute heat-related health
outcomes.
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