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1. Introduction
Cancer is a major threat to human health that leads to 
millions of deaths each year worldwide (Siegel et al., 
2019). This malady is well-documented in human history 
since ancient Egyptian civilization and remains a major 
adversary of humanity (Mukherjee, 2010). Cancer is a 
result of the transformation of cells through which they 
obtain uncontrolled growth. Understanding the molecular 
changes that lead to this transformation is critical to 
prevent and treat cancer. Changes in chromosomal 
abnormalities were observed in cancer since the early 
studies of Boveri at the beginning of the 20th century 
(Baltzer, 1964). Recent improvements in sequencing 
technologies made the fast and inexpensive mapping of 
cancer genomes possible (Tucker et al., 2009). This was a 
major step in cancer research and led to large-scale cancer 
genome profiling studies such as The Cancer Genome 
Atlas (TCGA) (Weinstein et al., 2013) and International 
Cancer Genome Consortium (ICGC) (Zhang et al., 
2011). These studies confirmed the existence of mutations 

that arise in parallel to tumor formation and identified 
recurrent mutations that potentially drive increased cell 
proliferation and motility.

Massively parallel (next-generation) sequencing 
technologies are based on shredding DNA into small 
fragments and determining the nucleotide sequence in 
these fragments. These short reads are mapped to the 
reference genome to identify the genome sequence of the 
sample. In cancer samples, genome sequences from tumor 
and nontumor tissue belonging to the same individual 
are compared to find cancer-specific somatic mutations. 
These two steps (mapping and variant calling) constitute 
the two major steps of cancer sequencing analyses, and 
many algorithms were developed for these tasks. These 
algorithms are combined in software pipelines, which 
take raw sequencing data as input and produce cancer-
specific changes as output. Different mapping and variant 
discovery algorithms have different assumptions and 
priorities. As a result, the number and type of variants 
identified by these algorithms might vary significantly. 
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This makes detailed testing of constructed pipelines for 
different situations an essential task for efficient utilization 
of sequencing technologies.

Benchmarking sequencing pipelines is an active 
field of research. Extensive studies on the performances 
of aligners and variant callers have been carried out 
(Hatem et al., 2013; O’Rawe et al., 2013; Pirooznia et al., 
2014; Hwang et al., 2015; Hwang et al., 2019). Hwang 
et al. (2019) comprehensively evaluated a combination 
of 7 mapping and 10 variant calling algorithms using 
high confidence variants as validation datasets from 
three different platforms. The authors suggested that the 
choice of variant calling algorithm is crucial. Hwang et 
al. (2015) analyzed discordant variant calling results on 
different datasets. They proposed to use different pipelines 
for different datasets. Due to the availability of precise 
evaluation metrics, these studies concentrate on germline 
mutation callings.

In addition to these works, several studies evaluate 
somatic mutation calling with tumor-normal samples 
(Wang et al., 2013; Hofmann et al., 2017; Ellrott et al., 
2018; Chen et al., 2020). However, unlike germline calling 
tests, somatic variant callers lack a strict ground truth 
data set. Thus, different studies have followed different 
methodologies to overcome this problem. Some studies 
used simulated samples to measure the efficiency, some 
others used Sanger sequencing for validation (Roberts et 
al., 2013; Cai et al., 2016; Krøigård et al., 2016; Bohnert et 
al., 2017). A review on variant callers by Xu (2018) showed 
the potential biases and dependencies of these methods 
and datasets. The study suggested that a collection of real 
cancer genomes with high confidence variant datasets 
could greatly benefit benchmarking studies. Moreover, 
most of the benchmarking studies in cancer sequencing 
focus on variant callers but not aligners.

In an open-source cloud project, Ellrott et al. (2018) 
compared 10 variant callers on 10,510 tumor/normal pairs 
from 33 cancer types in the TCGA collection of whole-
exome sequencing data. In total, the data set contained 
around 4 million variants after filtering nonexonic and 
possible germline variants. The authors used a different 
pipeline procedure to select validated variants like applying 
allele fractions and read count thresholds from different 
data types (WGS, WXS, Targeted, and RNA). Alioto et al. 
(2015) conducted a benchmarking study on lymphocytic 
leukemia and medulloblastoma tumor/normal samples 
for whole-genome sequencing data. They recommend 
optimizing aligner/variant caller combination and 
combining multiple variant callers. Hofmann et al. (2017) 
examined different variant callers and aligners for whole-
genome sequencing datasets. Their validation method was 
generated by nine variant calling algorithms in simulated 

kidney tumor datasets. This study tested VC algorithms 
in different coverage levels and compared variant allele 
frequencies. Besides, the authors reveal that a combination 
of different pipelines outperforms a single pipeline.

Here, our study takes into account the effect of aligners 
and variant callers in cancer sequencing samples at different 
heterogeneity levels. We also analyzed the effect of pipelines 
combinations, where we combined three mapping (Bwa 
(Li and Durbin, 2009); Bowtie2 (Langmead and Salzberg, 
2012); and Novoalign1) and four variant calling algorithms 
(Mutect2 (v4.1.0) (Cibulskis et al., 2013); Varscan (v2.3.9) 
(Koboldt et al., 2012); SomaticSniper (Larson et al., 2011); 
Strelka2 (v2.9.10) (Saunders et al., 2012)). This resulted 
in twelve mapping-variant calling combinations labeled 
as “Bwa_Mutect2, Bwa_Varscan” etc. Although these 
algorithms were introduced a long time ago and more 
recent algorithms exist, these algorithms get updated 
regularly and are still considered as the most frequently 
used, state of art models. A recent paper, that reviews the 
best practices for variant calling in clinical sequencing, lists 
most practiced and cited variant callers which includes all 
the variant callers in this article (Koboldt, 2020). Several 
other latest articles, which compares the performances of 
variant calling pipelines in various scenarios, have chosen 
to benchmark VarsScan2, Mutect2 and Strelka2 (Wang 
et al., 2019; Chen Z et al., 2020).  Therefore, we chose to 
evaluate the most commonly practiced workflows.

Recently, we have published a dataset of fifty-five high-
resolution homogeneous and heterogeneous glioblastoma 
samples. (Baysan et al., 2017). These samples share a 
substantial portion of mutations which allows us to 
declare these mutations as validated mutations; since for 
an algorithm identifying a non-existing mutation twice 
in two independent samples is very unlikely. This dataset 
had four different sample types: (i) primary tumor samples 
from different parts of a glioblastoma tissue block, (ii) in 
vitro polyclone samples cultured from tumor stem cell 
lines of the primary tumor, (iii) in vivo polyclone samples 
obtained from mouse xenografts after in vitro polyclones 
were injected to a mouse brain and formed a tumor, (iv) in 
vitro monoclone samples obtained from in vitro polyclone 
samples through isolation of single cells and subsequent 
culturing until there are enough cells for exome 
sequencing. The availability of these samples presented us 
with a unique opportunity to test sequencing pipelines at 
different heterogeneity levels. For the mentioned pipelines, 
first, we compared the mutation lists through pairwise 
comparisons. Mutations were declared “validated” when 
they were detected in two independent samples. Validated 
mutations were used to evaluate the performance of each 
pipeline and different pipeline combinations.
1http://www.novacraft.com/products/novoalign/[accessed 23 08 
2020]
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Multiple studies have also been conducted on somatic 
indel variant callers, as well (Hasan et al., 2015; Kim et 
al., 2017; Chen et al., 2020). However, due to a couple 
of reasons, accurate indel classification is far more 
challenging than SNVs. First of all, aligners tend to map 
reads to multiple mismatches rather than indel sequences 
because of the short read lengths (Ghoneim et al., 2014). 
Secondly, false positive rates are higher compared to SNVs 
as a result of both read distribution and identical repetitive 
sequences (Narzisi et al., 2014). A study done by Fang et al. 
(2014), shows that indel and structural variant detection 
in exome-sequencing is relatively unreliable. In another 
article, inter-caller agreement of 5 variant callers on indel 
variants is as low as 0.01% which proves the inconsistency 
(Krøigård et al., 2016). Due to these reasons, only SNVs 
were included in this study. 

We have also simulated realistic samples with known 
mutations and compared these results with our original 
samples. In order to observe the effect of mutation 
frequencies on variant detection, we have generated 
tumors with low, medium, and high tumor purity.      

2. Materials and methods
2.1. Samples
Sequenced samples were generated with Illumina paired-
end sequencing technology at Ambry Genetics. Each 
paired-end read comprised of 8 million reads, 100bp read 
length and mean quality scores were between 34 and 38. 
Supplementary Figure 1 shows an example of standard 
read quality and read length. The dataset was consisted of 
a total of 50 glioblastoma samples; primary tumors from 
seven regions of a single tumor, 13 in vivo polyclones, 
seven in-vitro polyclones, 19 in vitro monoclones, and 
four secondary monoclones. A matched blood sample was 
sequenced as a matched normal sample. All sequenced 
reads were mapped to the human reference genome 
version GRCh38. The coverage of samples was between 
50×–100× (Baysan et al., 2017). Randomly selected four 
samples’ coverage distribution with different mapping 
tools were shown in Supplementary Figure 2.
2.2. Pipelines
A typical cancer sequencing pipeline includes following 
steps; quality control and trimming, mapping, 
preprocessing and variant calling. In this study, we created a 
set of pipelines for which FASTQ formatted raw sequenced 
data was used as input. The output of each pipeline was 
a variant containing VCF file (Figure 1(A)). The pipeline 
software was implemented in Python language and can be 
downloaded from our GitHub page2. Each pipeline uses 
different algorithms for mapping and variant calling steps. 
2https://github.com/MBaysanLab/GenomicsPipeline [accessed 23 
08 2020]

All other steps and tools in the pipelines were identical, 
namely quality control of reads via FastQC3, trimming 
by FASTP (Chen et al., 2018) and SAMTools (Li et al., 
2009), and preprocessing according to recommended best 
practices using GATK4 (Van der Auwera et al., 2013).

Pipelines include three alternative mapping algorithms 
namely BWA, Bowtie2, and Novoalign and four alternative 
variant calling algorithms i.e. Mutect2, Varscan, 
SomaticSniper, and Strelka2. Each pipeline was designed 
to contain a combination of one mapping and one variant 
calling algorithm. Therefore, twelve pipelines were created 
to represent all combinations (Supplementary Table 1). 
All algorithms were used with their default parameters to 
evaluate their performance with their default setup. For 
the sake of fairness, minimum variant read depth was fixed 
to 10 for each pipeline.
2.3. Simulating tumor samples
To compare our results in the real dataset to an 
experimental simulation, we generated simulated reads 
using NEAT read simulator (Stephens et al., 2016). This 
tool generates FASTQ and VCF files with tumor/normal 
samples, thus enabling us to extend the scope of our 
benchmarking study. We utilized the same exome regions 
in the real dataset and pooled all the variants detected by 
any of our pipelines in the real samples. NEAT generates 
reads with random mutations by using this variant pool 
and exome regions. We created around 4800 variants in 
three different purity environment. 

First, we constructed a normal (nontumor) FASTQ 
file with 80× coverage, then created two different tumor 
files with 20× and 80× coverages. The 20× and 80× tumor 
files contains 4864 and 4764 mutations, respectively. 
By combining 20× tumor file with 80× normal reads, 
firstly tumor file is created with %20 tumor purity. Then 
80× tumor sample was merged with 80× normal sample 
and produced a tumor with 50% purity. Lastly, only the 
80× tumor sample was used without merging with the 
normal sample to have a sample with 100% tumor purity. 
By extracting the variants presented in the tumor VCFs, 
we constructed the list of the synthetic somatic variants. 
All three purity environments share the similar number 
of mutations that are produces by the same mutation 
model inferred from the original variant pool. Thus, in 
this simulation we investigated how different pipelines 
perform finding mutations in different tumor purities.

3. Results
Each of the twelve pipelines was applied on 50 tumor 
samples, which resulted in 600 runs in total. We evaluated 
the pipelines according to the number of variants found. 
3https://www.bioinformatics.babraham.ac.uk/projects/fastqc 
[accessed 23 08 2020]
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Pipelines that used Novoalign as the mapping algorithm 
found more variants than BWA and Bowtie2 pipelines. 
Among all, Bowtie2 pipelines had the least number of 
discovered variants (Figure 1(B)). When we group samples 
by variant calling algorithms, SomaticSniper found the 
least number of variants while Strelka2, and Varscan 
found more variants (Figure 1(C)). Primary samples 
(except Parental-5) have fewer mutations compared to 
other samples, which is expected due to the high level 
of heterogeneity and potential nontumor contamination 
in these samples. We also observed a similar pattern in 
our four monoclone samples (Figure 2). Since the overall 
number of variants was smaller in these samples, the 
number of validated variants were also less.

Next, we analyzed the similarities of identified variants 
between different pipelines on different sample types. 
In Figure 3, cosine similarity matrices for each pipeline 
for each sample type are displayed (see Supplementary 
Figure 3 and Supplementary Figure 4 for Pearson and 
Jaccard correlations). In primary tumor and polyclone 

samples (both in vitro and in vivo), pipelines that 
included SomaticSniper and Varscan as variant discovery 
algorithms clustered together regardless of the applied 
mapping algorithm. Pipelines that included Strelka2 and 
Mutect2 produced most of the time similar results when 
used with the same mapping algorithm. On the other hand, 
in monoclone samples, pipelines that used Novoalign 
clustered together and were clearly separated from the 
rest. For the pipelines that used BWA and Bowtie2 as 
alignment algorithms, variant discovery algorithms were 
the dominant factor with respect to clustering.

After the comparison of the obtained variants for 
different pipelines, we utilized the multiple detections 
of variants in different samples as a validation method. 
Based on these validated variants, precision, recall, and 
F1 scores were computed for each pipeline (Figure 4). A 
true positive (TP) variant is defined as the detection of a 
validated variant, a false positive (FP) variant is defined as 
the detection of a nonvalidated variant, and a false negative 
(FN) is defined as the lack of detection of a validated 

Figure 1. (A) The workflow of a simple Cancer DNA-Seq analysis pipeline including the steps and input/output files. (B) Boxplot of 
average mutation counts by the mapping algorithms. Y-axis represents the average variant number. Since 4 variant callers were used, the 
mean of these four variant callers with the same mapping algorithm represents the average value for each sample. The X-axis shows the 
corresponding mapping algorithm. (C) Boxplot of average mutation counts by the variant callers. Y-axis represents the average variant 
number. Since 3 mapping algorithms are used, the mean of these three mapping algorithms with the same variant caller represents the 
average value for each sample. The X-axis shows the corresponding variant callers.
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variant by the pipeline. There are genuinely unique variants 
specific to a sample, which creates an underestimate in our 
scores. Since the problem applies to all pipelines, its effect 
can be discarded. 

We observed that pipelines that include Novoalign 
have high recall and less precision (Figures 4 and 5). In 
other words, both false positive and true positive counts 

are higher in these pipelines, which is concordant with 
the overall high number of detected variants in Novoalign 
pipelines. Quantitatively, pipelines that use Novoalign have 
recall scores around 0.35 while pipelines with Bowtie2 
were around 0.15 and pipelines with BWA were around 
0.25. This suggests that Novoalign pipelines capture 
significantly more variants out of all the validated variants. 

Figure 2. Heat map of the number of detected variants for each sample by the pipelines. Rows represent the samples and 
columns represent pipelines. The color scale displays the total number of variants found by the pipeline in a sample (dark color 
indicates more variants found and light color indicates fewer variants found).
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On the other hand, while BWA and Bowtie2 pipelines had 
a precision of ~0.90, meaning that 90% of their findings 
were validated variants while Novoalign performed worse 
with a precision of 0.65.

After evaluating the general patterns of algorithms, 
we focused on the individual pipeline performances with 
respect to recall and precision. Among the single pipelines, 
Novoalign-Strelka2 had the best recall score on most of the 
samples (44/46), while Bowtie2-SomaticSniper had the 
best precision score (20/46). Due to the low recall numbers 

for other algorithms, Novoalign-Strelka2 performed best 
in terms of F1 scores in 32 samples with ~0.39 on average 
(Table). 
3.1. Combination of pipelines
Each algorithm relies on different assumptions and has 
different priorities, resulting in different strengths and 
weaknesses in terms of variant detection. This makes the 
combination of different pipelines a potential solution for 
blending the strengths of different pipelines (Alioto et al., 
2015; Hofmann et al., 2017). Since we obtained low recall 

Figure 3. Clustered similarity matrices for each sample type. Cosine similarity values are represented in the cells along with 
the color scale (dark colors ‒ higher cosine similarity and light colors ‒ lower cosine similarity among pairs). Dendrograms 
indicate hierarchical clusters among pipelines. Thus, pipelines with a higher similarity clustered together.
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scores and high precision scores, we hypothesized that 
we can improve the recall rates of individual pipelines by 
constructing the union of pipelines. Our aim was to find 
a point where recall and precision scores are balanced to 
achieve an optimal F1 score.

We calculated the performance of every possible 
combination of different pipeline unions separately for each 
sample. Combinations that achieve the best F1 score for 
each sample were recorded. The most successful pipeline 
combinations are displayed on Table for (i) individual 
pipelines (ii) two pipeline combinations, and (iii) three 

pipeline combinations. Best pipeline combinations for 
every situation can be seen in Supplementary Table 2 and 
3. As the number of pipelines in a combination increases 
up to six, F1 scores tend to get higher by a good margin 
(Figure 6). However, after six combinations, marginal loss 
on precision scores cannot be covered with recall gain. 
F1 scores are either insubstantially increased or slightly 
decreased as the combination number extends beyond six.

Our results show that F1 scores can be boosted up 
to around 0.7 with proper pipeline combinations. We 
found that Bowtie2_Varscan with Novoalign_Strelka2 

Figure 4. Precision (A) and recall (B) box plots for individual samples in each sample type.
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/ Novoalign_SomaticSniper can complement very well 
in monoclone and polyclone samples. Especially on 
polyclone samples, this combination outperforms every 

other combination in almost all samples. Although this 
combination produces the best results for most of the 
cases, primary tumor samples have a different pattern. 

Figure 5. Scatter plots for precision-recall scores. Y-axis represents precision and X-axis shows recall. Colors indicate mapping 
algorithm choice while markers denote variant callers. (A) represents all the samples (46) with different pipelines (12) while (B) 
represents four subplots according to sample types. 
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BWA_Mutect2 and Novoalign_Strelka 2 combination 
performs better on primary samples. Overall, Bowtie2 and 
Novoalign pipelines complement very well on monoclones 
and polyclones while BWA and Novoalign pipeline unions 
are better choices on primary tumor samples.
3.2. Results on simulated variants
We simulated around 4800 mutations in three different 
purity environments to compare our results with the 
synthetic data where the real variants were known (materials 
and methods). In environments with low and high purity, 
we observed that variant caller choice has a strong effect 
on the number of variants found (Supplementary Figure 
5). SomaticSniper finds far less mutations in low purity 
environment, while Mutect2 discovers fewer variants 
in high purity. Precision ratios were high in all pipelines 
with 99.99% accuracy in low-medium purity and 95+% in 
the high purity. On the other hand, recall ratios declined 
significantly as the purity of the environment decreased. 
Supplementary Figure 6 clearly demonstrates the huge 
variance in recall scores between the pipelines. Novoalign_
SomaticSniper achieves 100% precision but with only 10% 
recall and Bwa_Strelka2 performs 99% precision with 75% 
recall scores. Strelka2 outperformed other variant callers on 
low purity environment with over 70% recall performance 
in all three aligner choices, where Varscan, Mutect2, and 
SomaticSniper only achieved 48%, 27%, and 10% on the 

average respectively. When variants of different pipelines 
were combined in the low purity environment, F1 scores 
increased considerably similar to the original samples 
(Supplementary Figure 7). These suggest that using a single 
pipeline results in highly variable outcomes depending on 
the variant caller chosen and combining multiple pipelines 
achieve better performance.  Finally, we compared the 
similarity of the variants that were discovered in different 
pipelines. In this case, pipelines were clustered based on 
the variant caller similar to parental tumors and polyclonal 
samples (Supplementary Figures 8-10).

4. Discussion
Precision medicine relies on detailed profiling of patient 
samples. Recent developments in sequencing technologies 
allowed the measurement of DNA and RNA with an 
unprecedented resolution at dropping prices. This makes 
sequencing an ideal tool for studying genetic diseases 
such as cancer. Raw data obtained by massively parallel 
sequencing devices is large, error-prone, and highly 
redundant. It can be converted to useful information only 
with proper bioinformatics analysis, which makes best 
practices for analyzing sequencing data crucial for the 
effective utilization of sequencing technologies.

In this study, we evaluated the performance of the 
most popular cancer sequencing pipelines. We used high-

Table. Top five pipelines according to F1 scores for three cases. After calculating every possible combination, a pipeline combination 
with the best F1 score is kept for each sample. Table includes the top five pipeline combination selections that have the most occurrences 
for 46 samples.

Pipeline #1 Pipeline #2 Pipeline #3 Parental in vitro – 
MonoClone

in vitro – 
PolyClone

in vivo – 
PolyClone Total

Novoalign_Strelka2     - - 6 13 6 7 32

Bowtie2_Varscan - - 0 2 1 3 6

Novoalign_SomaticSniper - - 0 2 0 2 4

Novoalign_Varscan - - 0 1 0 1 2

Bwa_Mutect2 - - 1 0 0 0 1

Bwa_SomaticSniper - - 0 1 0 0 1

Bowtie2_Varscan Novoalign_SomaticSniper - 0 5 3 6 14

Bowtie2_Varscan Novoalign_Strelka2     - 0 4 3 3 10

Bwa_Mutect2 Novoalign_Strelka2     - 4 0 0 0 4

Novoalign_Varscan Novoalign_Strelka2     - 0 1 1 2 4

Bowtie2_SomaticSniper Novoalign_Strelka2     - 0 3 0 0 3

Bowtie2_Varscan Novoalign_Strelka2     Novoalign_SomaticSniper 0 5 1 2 8

Bowtie2_Varscan Bwa_Strelka2     Novoalign_SomaticSniper 0 1 2 3 6

Bowtie2_Varscan Bwa_SomaticSniper Novoalign_Strelka2     0 2 1 2 5

Bwa_Mutect2 Bwa_SomaticSniper Novoalign_Strelka2     4 0 0 0 4

Bowtie2_SomaticSniper Novoalign_Mutect2 Novoalign_Strelka2     0 4 0 0 4
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resolution heterogeneous and homogeneous samples that 
belong to a single tumor to measure the performances of 
sequencing algorithms for different heterogeneity levels in 
a realistic scenario (as an alternative, we could have used 
single-cell sequencing, but resolution drops significantly 
due to amplification). Cancer sequencing analysis consists 
of two major steps, namely mapping and variant discovery. 
In our work, we used the most popular algorithms that we 
could obtain for both steps. After selecting three mapping 

and four variant discovery algorithms, we constructed 
and evaluated twelve pipelines as the combinations of 
these algorithms to assess the coherence between different 
mapping and variant discovery algorithms.

Sequencing algorithms can usually be executed with 
different parameters to give users the opportunity to 
adapt the algorithms to different scenarios. We used the 
default or recommended parameters for each algorithm 
to assess their general performance. This created a slight 

Figure 6. Distribution of the F1 scores depending on the number of pipelines used in combination. Colors indicate sample 
types and Y-axis represents the best F1 score while X-axis represents the combination selection. The first plot shows every 
combination ranging from using only one pipeline to using the union of all the 12 possible pipelines. The second plot is the 
clipped version until the combination of six.
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problem for our comparisons since certain pipelines had 
found more variants than others. Especially pipelines that 
include Novoalign had more variants, while pipelines 
that used Bowtie2 had fewer variants. We could change 
some parameters to make the count of identified variants 
more similar, but we preferred to keep the recommended 
parameters to keep our comparison more practical since 
most of the users will prefer default settings.

An important and distressing result was the limited 
overlap between the variants that different pipelines 
discover. Even with most homogeneous samples that 
were cultured from a single cell, we observed a limited 
overlap (as low as 50%), which matches up with the results 
of similar study reporting an inter-caller agreement rate 
around 50% on exome samples (Krøigård et al., 2016). 
We tried to use commonly identified variants in different 
samples as a metric of correctness since a false discovery 
of the identical variant in different samples is unlikely. We 
defined these commonly detected variants as “validated 
variants” and computed recall and precision rates for each 
pipeline based on these variants. We observed a clear 
precision and recall trade-off among pipelines. Pipelines 
that report more variants demonstrated higher recall but 
lower precision rates. To quantify the marginal gain of 
reporting extra variants we calculated the F1 scores for each 
pipeline based on recall and precision rates, which comes 
out to be lower than 0.5 for most of the pipelines. Previous 
studies have shown that combining outputs of several 
variant callers increases performance on detecting variants 
and amplifies the F1 score (Rashid et al., 2013; Kim et al., 
2014). Similar results also appeared in our study in which 
higher F1 scores could be obtained by combining (union) 
identified variants of different pipelines. We did extensive 
experiments to determine the pipeline combinations 
that produced the highest F1 score. Our results indicate 
that combinations that include five or six pipelines with 
complementary algorithms (such as Bowtie2-Varscan and 
Novoalign-Strelka2) perform best for identifying variants.

Many different benchmarking studies have been 
conducted to assess the accuracy of somatic variant callers 
or aligners. Nevertheless, the heterogeneity of cancer 
samples can affect the results considerably. Therefore, in 
this study, we aimed to perform a benchmarking study 
of both different variant callers and aligners in different 
heterogeneity levels on real and simulated datasets. After 
illustrating the benchmark results, we proposed using a 
combination of different tools to utilize the somatic variant 
calling pipelines’ performances.

For the evaluation of mutations, we declare the 
mutations that were discovered by only a single pipeline as 
false positives. We are aware that some real variants might 
be captured only by a single pipeline and thus may not be 
real false positives. However, this was a very unlikely event 
considering very high precision rates and low number 
of false positive mutations, which was concordant with 
detailed sampling of a single tumor (600 different runs 
based on the same tumor (12 pipelines × 50 samples)). 
Therefore, increasing the recall score by combining 
variants, which are found by different pipelines, would 
not be affected by any misclassified false positives as 
our method proposes. Furthermore, our analysis of the 
simulated dataset suggests that recall scores are poor on 
low heterogeneity samples similar to the real dataset.

This work presents a framework for extensive analysis 
of cancer sequencing pipelines. We plan to use this 
framework on different data sets in future studies to have a 
better understanding of pipeline performance in different 
practical scenarios. The framework software is available 
on GitHub2. We invite all interested parties to extend our 
work.

Supplementary Data
Supplementary data can be accessed at the following link: 
https://dx.doi.org/biy-2008-8-sup
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