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A gene signature driven by abnormally methylated DEGs 
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Background: Integrated omics analysis based on transcriptome and DNA methylation data combined with 
machine learning methods is very promising for the diagnosis, prognosis, and classification of cancer. In 
this study, the DNA methylation and gene expression data of ovarian cancer (OC) were analyzed to identify 
abnormally methylated differentially expressed genes (DEGs), screen potential therapeutic agents for OC, 
and construct a risk model based on the abnormally methylated DEGs to predict patient prognosis.
Methods: The gene expression and DNA methylation data of primary OC samples with tumor protein 
53 (TP53) wild-type and normal samples were obtained from The Cancer Genome Atlas (TCGA) 
database. DEGs with aberrant methylation were analyzed by screening the intersection between DEGs and 
differentially methylated genes (DMGs). We attempted to search for potential drugs targeting DEGs with 
aberrant methylation by employing a network medicine framework. A gene signature based on the DEGs 
with aberrant methylation was constructed by regularized least absolute shrinkage and selection operator 
(LASSO) regression analysis.
Results: A total of 440 aberrant methylated DEGs were screened. Based on their gene expression profiles 
and methylation data from different regions, the results of both discriminative pattern recognition analysis 
and principal component analysis (PCA) showed a significant separation between tumor tissue and healthy 
ovarian tissue. In total, 126 potential therapeutic drugs were identified for OC by network-based proximity 
analysis. Five genes were identified in 440 aberrant methylated DEGs, which formed an aberrant methylated 
DEGs-driven gene signature. This signature could significantly distinguish the different overall survivals (OS) 
of OC patients and showed better predictive performance in both the training and validation sets. 
Conclusions: In this study, the DNA methylation and gene expression data of OC were analyzed to 
identify abnormally methylated DEGs and potential therapeutic drugs, and a gene signature based on five 
aberrant methylation DEGs was constructed, which could better predict the risk of death in patients.
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Introduction

Ovarian cancer (OC) is the second leading cause of death 
related to gynecological malignant tumors worldwide, 
which is more common in women aged over 50 years and is 
usually diagnosed late, with a mortality rate of about 63% 
(1,2). About 90–95% of OCs are primary ovarian malignant 
tumors, and 5–10% are primary metastatic ovarian 
malignant tumors that are detected in other proximal 
sites (3). The most common subtype of OC is epithelial 
carcinoma, which originates from epithelial cells on the 
surface of the ovary or fallopian tube (4). The standard 
treatment for OC is radical tumor reduction surgery 
combined with chemotherapy (5). Despite improved 
survival owing to current standard nursing therapy, the 
majority of patients with OC relapse (6). Our understanding 
of the molecular pathways that drive the development and 
progression of human cancer has advanced in recent decades 
with the advent of targeted anticancer therapies. Targeted 
drugs block the growth and survival of cancer cells by 
specifically targeting the molecular and signaling cascades 
needed for tumorigenesis, and thus, these therapies may 
have better efficacy and fewer off-target side effects than 
chemotherapy drugs (7). Hence, identifying the relevant 
targets of OC is crucial for early screening and improving 
the prognosis of patients.

The occurrence and progression of cancer are regulated 
by epigenetic and genetic events. Epigenetic characteristics 
based on abnormal DNA methylation are considered to be 
powerful biomarkers for early diagnosis and prognosis of 
cancer (8,9). Also, the sensitivity of this epigenetic feature 
in cancer diagnosis may be superior to that of somatic 
mutation. There are three potential reasons for this. First, 

abnormal DNA methylation occurs in the early stages of 
tumorigenesis and may be of tissue and cancer-specific types. 
Second, DNA methylation patterns are widespread in the 
entire tumor tissue and the same tumor type, while somatic 
mutations are usually limited to tumor cell subsets. Third, 
DNA methylation is consistent in larger genomic regions; 
thus, multiple cytosine-guanine (CpG_ dinucleotides can 
be used for detection (10). Some studies have reported that 
patterns of DNA methylation in tumor cells treated with 
drugs can alter and support the acquisition of resistance 
to treatments such as radiation and chemotherapy (11,12). 
Altered methylation status of multiple genes leads to 
dysregulation of Wnt canonical and PI3K/AKT/mTOR 
signaling pathways, which is associated with resistance of 
many cancers to current therapies (13,14). Analysis of methyl 
groups reveals global patterns of methylation and provides 
gene expression signatures of methylated region-specific 
DNA that can be used to predict therapeutic outcomes of 
anti-cancer therapeutic responses (15). In demethylated 
tumors with hypermethylated CpG island promoters, 
immunomodulatory pathway genes are concentrated in these 
regions and repressed transcriptionally. Global methylation 
loss is associated with immune escape signals, and genomic 
hypomethylation is associated with immune escape features 
of tumors. Changes in DNA methylation suggest epigenetic 
regulation in precise immunotherapy (16).

Recent studies by Lønning and Knappskog (17) have 
shown that the inactivation of tumor protein53 (TP53) can 
effectively predict the resistance of breast cancer patients to 
DNA-damaging drugs (18). Currently, sequencing of all the 
encoding exons of TP53 (exon 2-11) has been established as 
the gold standard for evaluating TP53 mutation status. In 
addition to evaluating TP53 mutation status, The function 
of TP53 can also be better evaluated by evaluating key 
genes in the TP53 pathway and their redundant pathways 
to compensate for the deletion of TP53 (17). The high 
prevalence of TP53 mutations in human cancers has also 
facilitated the development of targeted therapies using the 
TP53 pathway (19), such as adenovirus vector delivery of 
wild-type TP53, TP53-based vaccines to attract t cells, and 
the use of siRNA to knockout the negative regulators of 
TP53. Small molecules (e.g., PRIMA-1, RITA) restore the 
activity of TP53.

Recent technological advances have allowed the 
identification of methylation regions and characteristics 
as novel biomarkers (20). Genome-wide interrogation of 
DNA methylation signatures, in conjunction with machine 
learning methods, has great prospects for the detection and 
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classification of cancer (21). Dong et al. identified a new 
model composed of six DNA methylation sites for lung 
adenocarcinoma, with strong survival prediction ability (22). 
Bisarro dos Reis et al. developed a model based on 21 CpGs 
that was able to predict poor prognosis in patients with well-
differentiated thyroid carcinoma with high specificity (23). 
These findings imply that aberrant methylation is also a 
feature of OC; however, a comprehensive analysis of DNA 
methylation in this disease as well as reliable and stable 
diagnostic and prognostic classifiers modulated by DNA 
methylation are still lacking.

Bioinformatics contributes to the research of targeted 
therapies for diseases (24,25). In this study, we performed 
differential analysis by integrating the DNA methylation 
and gene expression data from TP53 wild-type OC 
samples and normal samples to identify differentially 
expressed genes (DEGs) with abnormal methylation. A 
network medicine framework was utilized as an OC to 
identify potential therapeutic drugs and was also applied 
in conjunction with machine learning methods to construct 
a prognostic gene model based on DEGs with aberrant 
methylation. We present the following article in accordance 
with the STREGA reporting checklist (available at https://
atm.amegroups.com/article/view/10.21037/atm-22-5764/rc).

Methods

Collection of OC gene expression and methylation data

The Cancer Genome Atlas (TCGA) was interviewed to 
query OC data, including the latest expression profile, 
methylation data, and clinical follow-up information. After 
downloading these data, a total of 374 primary tumor 
samples were selected, of which 359 were TP53 wild-type 
samples and 15 were TP53 mutant samples. The normal 
sample data obtained from the Genotype-Tissue Expression 
(GTEx) project were used as the control data of primary 
tumor samples in TCGA. The study was conducted in 
accordance with the Declaration of Helsinki (as revised in 
2013).

Differential methylation analysis

The Illumina Infinium HumanMethylation27 BeadChip 
array was employed to measure the DNA methylation of 
the original epigenetic range, involving a total of 26,956 
probes. The original methylation data were represented 
by the methylation intensity β value, which was converted 

into an M value using the formula: M = log2[β/(1 − β)]. The 
differentially methylated CpG site (DMS) between the OC 
and normal control samples was screened according to the 
cutoff criteria of the false discovery rate (FDR) <0.01 and 
logFC >2 adjusted by the Benjamini & Hochberg (BH) 
method. The matching files of the CpG site and genes were 
acquired from the Illumina website (https://www.illumina.
com/). The M value of different gene regions was then 
calculated, including TSS1500, TSS200, 5'-untranslated 
regions (UTR), first exon, genebody, 3'-UTR, and the 
intergenic region. The average M value of CpGs in all gene 
regions was applied to measure the methylation level of a 
particular gene. The screening criteria for differentially 
methylated genes (DMGs) between the OC samples and 
normal controls were adjusted according to FDR <0.01 
and log2|FC| >1. Differential methylation analysis was 
performed using the “limma” R package (26).

Differential expression analysis

The initial expression data obtained in TCGA were 
transformed by log2, and then the differentially expressed 
genes (DEGs) between the OC and normal control 
samples were also analyzed using “limma”. The significance 
threshold was set as FDR <0.01 and log2|FC| >1 adjusted 
using the BH method. The DEGs within the threshold of 
FDR <0.01 and log2FC >1 were the differentially down-
regulated genes in the OC versus normal samples, while the 
DEGs within the threshold of FDR <0.01 and log2FC <−1 
were the differentially up-regulated genes in the OC versus 
normal samples.

Functional annotation analysis

The ClusterProfiler package (27) was used for Gene 
Ontology (GO) analysis of the DMGs and DEGs, which 
mainly includes three aspects: GO biological process (BP), 
GO molecular function (MF), and cellular component (CC). 
The ClusterProfiler package was also employed to conduct 
the Kyoto Encyclopedia of Genes and Genomes (KEGG) 
terms annotation analysis of the DMGs and DEGs. P<0.05 
was utilized as the standard of filtering terms in both the 
GO and KEGG analyses. 

Screening and analysis of abnormally methylated DEGs

Venn Diagram Online Software (http://bioinformatics.
psb.ugent.be/webtools/Venn/) was utilized to select the 

https://atm.amegroups.com/article/view/10.21037/atm-22-5764/rc
https://atm.amegroups.com/article/view/10.21037/atm-22-5764/rc
https://www.illumina.com/
https://www.illumina.com/
http://bioinformatics.psb.ugent.be/webtools/Venn/
http://bioinformatics.psb.ugent.be/webtools/Venn/
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abnormally methylated DEGs by intersecting DEGs and 
DMGs. The samples were classified by principal component 
analysis (PCA) and linear discriminate analysis (LDA) using 
the expression profile of abnormally methylated DEGs and 
the methylation data of genebody, TSS200, and TSS1500. 
The quality of the classification model was evaluated by 
the area under the receiver operating characteristic (ROC) 
curve (AUC) generated by the “pROC” package.

Screening of therapeutic agents targeting abnormally 
methylated DEGs

NetworkAnalyst3.0 (https://www.networkanalyst.ca/) is an 
analysis platform for users to create cell type- or tissue-specific 
protein-protein interaction (PPI) networks, gene regulatory 
networks, gene co-expression networks, and toxicogenomics 
and pharmacogenomics research networks (28). The 
relationship pairs of drug-aberrant methylated DEGs were 
determined using the NetworkAnalyst 3.0 tool based on the 
DrugBank’s drug-target interaction information. 

The simulated reference distance distribution of drugs 
was constructed by assessing the network length between 
S and T. A group of protein nodes was randomly extracted 
from the human PPI group and their number (R) was the 
same as that of the target. The distance d (S, R) between 
the simulated drug target protein and the abnormally 
methylated DEGs was calculated iteratively.

Molecular docking

AutodockVina software (29) was used to conduct molecular 
docking simulations. Information about the compounds was 
obtained from the PubChem database (https://pubchem.
ncbi.nlm.nih.gov). The Protein Data Bank ID of the target 
protein was obtained from the Protein Data Bank (PDB) 
database (https://www1.rcsb.org/). OpenBabel (30) was 
applied to add polar hydrogen, distributed charge, and 
minimized energy to small molecules. The protein system 
was processed with AutoDockTools to add polar hydrogen 
and calculate the charge, which was stored in Protein Data 
Bank, Partial Charge (Q), & Atom Type (T) (PDBQT) 
format. The key compounds were used as ligands, and 
the appropriate grid box coordination and size were set 
according to the target protein. The active pocket of the 
target protein was determined by the inhibitor site in its 
crystal structure or the active pocket of the homologous 
protein. The binding conformation with the lowest binding 
free energy was selected and imported into PyMOL (31) for 

visualization.

Molecular dynamics simulation

Molecular dynamics (MD) simulations were carried out 
using the CHARMM36 force field (32). The Str file of 
the ligand was generated using the CHARMM general 
force field (CgenFF). The protein was dissolved in the 
dodecahedron filled with transferable intermolecular 
potential 3 point (TIP3P) water molecules, and sodium and 
chloride ions were added to the system to neutralize the 
charge. The system was energy minimized by 5,000 steps 
of the steepest descent. The global electrostatic interaction 
was calculated using the particle-mesh Ewald (PME) 
algorithm. Next, the optimized system was subjected to 
100 ps position-restrained dynamics simulations, including 
isochoric-isothermal (NVT) and isobaric-isothermal (NPT) 
equilibriums, and was equilibrated at 300 K and 1 bar. The 
production simulation of each system was carried out at 100 ns  
under periodic boundary conditions. The coordinates and 
energy of production MD were saved every 10 ps and run 
for a total of 80 ns. The stability of the structure during the 
MD simulation was evaluated by determining root-mean-
square deviation (RMSD).

Construction and validation of prognostic gene signatures 
based on abnormally methylated DEGs

To screen genes with prognostic value in abnormally 
methylated DEGs, the TP53 wild-type samples obtained 
from TCGA were randomly divided into two unmatched 
and uncrossed groups. One group was used as the training 
set (n=180) and the other as the validation set (n=179). 
According to the gene expression and survival follow-
up data of abnormally methylated DEGs in the training 
set, a regularized least absolute shrinkage and selection 
operator (LASSO) regression analysis was performed 
1,000 times using 10-fold cross-validation. The results 
of each dimensionality reduction were summarized, the 
frequency of each probe was counted 100 times, and the 
gene combination with the maximum frequency was used 
as the component of gene signature construction. The 
gene signature was obtained by adding the product of the 
regression coefficient and the expression level of each gene. 
The survival rate of samples in different verification sets 
was evaluated by the Kaplan-Meier method and logarithmic 
rank test, and the prediction ability of the prognostic gene 
signature was evaluated using a time-dependent ROC curve. 

https://pubchem.ncbi.nlm.nih.gov
https://pubchem.ncbi.nlm.nih.gov
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Sangerbox provided assistance with this article (33).

Statistical analysis

For survival analysis in different groups, log-rank test 
was conducted to compare their differences. All statistical 
analysis was performed in R software (v4.0; The R 
Foundation for Statistical Computing, Vienna, Austria). 

Results

Identification of DMGs

Owing to the key role of the TP53 protein in the 
tumorigenesis of OC, we first analyzed and compared 
the expression of TP53 in OC and normal samples. We 
observed that the expression of TP53 in tumor samples was 
significantly higher than that in normal samples (Figure 
S1A). The difference in the tumor microenvironment 
(TME) between OC and normal samples was weighed 
by comparing the stromal score, immune score, and 
ESTIMATE score; it was found that compared with 
the normal samples,  the stromal score of the OC 
samples decreased notably, while the immune score and 
ESTIMATE score increased markedly (Figure S1B). Given 
that TP53 mutation may be a confounding factor affecting 
OC research, only 359 TP53 wild-type samples out of 374 
primary tumor samples were selected for this study.

CpG sites are distributed in different regions of specific 
genes. We checked the CpG methylation levels in the 
TSS200, TSS1500, and genebody regions using the DNA 
methylation comment file. Then, the DMGs in each region 
were identified. In the TSS200 region, 87 hypermethylated 
DMGs and 166 demethylated DMGs were identified; in 
the TSS1500 region, 129 hypermethylated DMGs and 693 
demethylated DMGs were obtained; and in the genebody 
region, 439 hypermethylated DMGs and 337 demethylated 
DMGs were identified (Figure 1A). Hypomethylation 
tended to be located in the TSS1500 region, and 
hypermethylation tended to be located in the genebody 
region (Figure 1B). By cross-linking the hypermethylated 
DMGs or demethylated DMGs of the three regions, 
we found that most of the DMGs were region-specific, 
and 13 hypermethylated DMGs existed in three regions 
simultaneously (Figure 1C). The three regions also shared 
15 demethylated DMGs (Figure 1D). The DMGs in the 
genebody region were introduced into ClusterProfiler 
to analyze the biological  pathways and pathways 

they enriched. The main BPs they enriched included 
cornification, keratinization, skin development, epidermal 
cell differentiation, and keratinocyte differentiation. The 
significantly enriched CCs were high-density lipoprotein 
particles, intermediate filament, and intermediate filament 
cytoskeleton. The MFs involved included peptidase 
inhibitor activity, endopeptidase regulator activity, pattern 
recognition receptor activity, etc., which were significantly 
correlated with neuroactive ligand-receptor interaction 
(Figure 1E).

Screening of DEGs

A total of 6,841 DEGs were screened by differential analysis 
between the TP53 wild-type OC samples and the normal 
samples, including 3,502 significantly up-regulated DEGs 
and 3,339 significantly down-regulated DEGs in the TP53 
wild-type OC samples (Figure 2A). Unsupervised hierarchical 
clustering analysis of these DEGs was then conducted, 
and the results showed that differential genes could clearly 
distinguish tumor samples from normal samples (Figure 
2B). By analyzing the GO and KEGG terms involved in 
the DEGs, we detected 522 BPs, 83 CCs, 32 MFs, and 14 
KEGG pathways that were significantly enriched in the 
DEGs. Among them, cell adhesion molecules (CAMs), 
systemic lupus erythematosus, the rap1 signaling pathway, 
the p53 signaling pathway, transcriptional misregulation 
in cancer, small cell lung cancer, Th17 cell differentiation, 
extracellular matrix (ECM)-receptor interaction, viral 
protein interaction with cytokines and cytokine receptors, 
and complement and coagulation cascades were the most 
significantly enriched GO terms (Figure 2C). KEGG 
pathways that were significantly enriched by DEGs also 
included cell adhesion molecule binding, extracellular matrix 
structural constituent, chemokine activity, etc. (Figure 2D).

Identification and characterization of abnormally 
methylated DEGs

To determine the aberrant methylation-driven DEGs, 
we intersected DMGs and DEGs, and divided the 
intersecting genes into four groups: the hypo-methylated 
and upregulated group (HypoUp), the hyper-methylated 
and downregulated group (HypoDown), the hyper-
methylated and upregulated group (HyperUp,) and the 
hypo-methylated and downregulated group (HyperDown). 
A total of 217 hypermethylated DEGs were obtained in 
the genebody region, 70 hypermethylated DEGs were 

https://cdn.amegroups.cn/static/public/ATM-22-5764-Supplementary.pdf
https://cdn.amegroups.cn/static/public/ATM-22-5764-Supplementary.pdf
https://cdn.amegroups.cn/static/public/ATM-22-5764-Supplementary.pdf
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Figure 1 Identification of DMGs. (A) Volcanic diagram of differential methylation analysis in the TSS200, TSS1500, and genebody regions. 
(B) Bar plot of the number of DMGs with hypomethylation and hypermethylation in each region. (C) Venn plot of hypermethylated DMGs 
in the TSS200, TSS1500, and genebody regions. (D) Venn plots of demethylated DMGs in the TSS200, TSS1500, and genebody regions. (E) 
DMGs-enriched GO and KEGG terms in the genebody region. DMGs, differential methylated gene; FDR, false discovery rate; GO, gene 
ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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Figure 2 Screening and enrichment pathway analysis of DEGs. (A) Volcanograms of DEGs between the TP53 wild-type OC samples and 
normal samples. (B) Heat map of DEGs between the TP53 wild-type OC samples and normal samples. (C) GO enrichment analysis dotplot 
of the DEGs. (D) Top 10 KEGG terms significantly associated with DEGs. DEGs, differentially expressed genes; OC, ovarian cancer; FDR, 
false discovery rate; GO, gene ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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obtained in the TSS200 region, and 243 hypermethylated 
DEGs were obtained in the TSS1500 region (Figure 3A-
3C). Figure 3D depicts the differential methylation multiple 
and differential expression multiple of these aberrant 
methylated DEGs. It can be seen that some genes appear 
simultaneously in different regions, such as ammonium 
transport (AMT) and Cysteine dioxygenase 1(CDO1), 
which can be found in z in both TSS200 and TSS1500, 

and the orphan nuclear receptor steroidogenic factor 1 
(NR5A1), which can be found in both TSS200 and genebody 
(Figure 3D). A total of 440 DMGs were identified, including 
38 HyperDown, 132 HyperUp, 147 HypoDown, and 123 
HypoUp, according to the levels of abnormal methylated 
DEGs in the three regions. The number distribution of 
four groups of abnormally methylated DEGs in each region 
is shown in Figure 3E. 
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Figure 3 Identification of abnormally methylated DEGs. (A-C) Venn diagram of DMGs and DEGs in the GeneBody, TSS200, and 
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Next, we examined the distribution of 440 aberrant 
methylated DEGs in chromosomes and found that there 
were more than 10 aberrant methylated DEGs on each 
chromosome. Chromosome 1 was rich in the most aberrant 
methylated DEGs, 63 in total. In addition, the methylation 
patterns of abnormally methylated DEGs in similar gene 
regions were similar and consistent (Figure 4A). To explore 
the differences in gene expression and DNA methylation 

patterns between tumors and normal samples, we used the 
gene expression profiles of abnormally methylated DEGs 
as well as the methylation data of genebody, TSS200, 
and TSS1500 for discriminative pattern recognition 
analysis. Notable segregation between OC tumor tissue 
and healthy ovarian tissue could be observed both in the 
gene expression profile and the PCA results of methylation 
data from different regions (Figure 4B). The ROC curve 

Figure 4 Characterization of abnormally methylated DEGs. (A) The location distribution of abnormally methylated DEGs on the genome; 
blue indicates a high proportion of distribution. (B) PCA of the gene expression profiles and methylation data of the genebody, TSS200, 
and TSS1500 regions of abnormally methylated DEGs. (C) ROC curve of the LDA classifier. (D) The chord map shows 440 abnormally 
methylated DEGs-enriched GO terms; different colors represent different pathways, and wiring represents the association between genes 
and pathways. DEGs, differentially expressed genes; PCA, principal component analysis; ROC, receiver operating characteristic; LDA, 
linear discriminate analysis; AUC, area under the receiver operating characteristic curve; GO, gene ontology.
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confirmed the good performance of the classifier based 
on the abnormally methylated DEGs expression and 
methylation profiles (Figure 4C). GO analysis showed that 
440 abnormally methylated DEGs were enriched into nine 
GO terms, including four BPs, three CCs, and two MFs: 
monocarboxylic acid binding, cell cortex part, extracellular 
matrix structural constituent, cell-matrix adhesion, cell-
substrate adhesion, collagen-containing extracellular matrix, 
extracellular matrix organization, extracellular matrix, and 
extracellular structure organization, respectively (Figure 4D).

Potential agents and binding mechanisms targeting 
abnormally methylated DEGs

We attempted to identify the potential drugs targeting 
abnormally methylated DEGs by employing a network 
medicine framework. We obtained drug-protein interaction 
data from the DrugBank database and analyzed protein-
drug interactions using the NetworkAnalyst 3.0 tool, and 
identified 32 genes that interact with the drugs (Table S1). 
Based on the drug-protein interaction data of DrugBank 
and the PPI information in the STRINGdb database, we 
calculated the proximity between drugs and abnormally 
methylated DEGs via network proximity analyses and 
constructed a random network against the background of 
stochastic simulation. We found that whether abnormally 
methylated DEGs or our randomly selected gene set were 
taken as samples, the Z score of network proximity degree 
was distributed in the range of 1–2; however, the Z score 
distribution of network proximity degree based on the 
abnormally methylated DEGs was more concentrated 
(Figure 5A). We conducted multiple hypothesis tests based 
on the random data obtained from the references and 
selected 126 drugs with small distances and FDR <0.01 as 
candidate drug sets related to the abnormally methylated 
DEGs gene sets. 

Taking the intersection of abnormally methylated DEGs 
and the 32 genes that interact with the drugs, six genes 
were obtained: cathepsin K (CTSK), 11beta-hydroxysteroid 
oxidoreductase type 1 (HSD11B1), matrix metalloproteinase 
12 (MMP12), lipocalin 2 (LCN2), Integrin alpha L chain 
(ITGAL), and matrix metalloproteinase 1 (MMP1) (Table 1). 
The binding mode and free energy of each gene with the 
candidate drugs were obtained by molecular docking. Except 
for DB06367 and DB07556, 13 candidate compounds 
bound proteins expressed by six genes with affinities below 
−5 kcal/moL (Table 2). Since the binding free energy of 
DB03367 and MMP12 was the lowest, which indicated that 

their binding was very stable, the schematic diagram of their 
molecular docking conformation was constructed. When 
DB03367 binds to the MMP12 protein, it is embedded into 
the active site of the MMP12 protein, forms a hydrogen 
bond with PRO238 and LEU181, produces favorable 
hydrophobic interaction with IEU181, VAL235, TYR240, 
and VAL243, and produces favorable π-π interaction with 
HIS218 (Figure 5B). The MD of 80 ns illustrated the RMSD 
changes of the MMP12 protein bound to DB03367 and the 
RMSD value of DB03367 binding to the MMP12 protein. 
The conformation of the MMP12 protein was very stable 
during the 80 ns MD process (Figure 5C). The RMSD value 
of DB03367 fluctuated relatively significantly in the former 
20 ns, exhibiting a notable upward trend. When it reached 
the 20 ns, it was stable and remained basically unchanged 
in the subsequent 60ns (Figure 5D). The dynamic binding 
pattern of DB03367 to the MMP protein during the MD 
process of 80ns is shown in Figure 5E. It was worth noting 
that because the molecular docking in this experiment was 
semi-flexible docking, it was understandable that the RMSD 
of the molecular skeleton fluctuated moderately in the 
initial stage of MD. During the entire process, DB03367 
bonded to the MMP12 protein stably.

Prognostic signatures were constructed by screening genes 
with prognostic value from abnormally methylated DEGs

LASSO regression analyses of the TP53 wild-type samples 
were carried out 1,000 times in the TCGA training set 
to identify the prognostic genes from 440 abnormally 
methylated DEGs. Ten-fold cross-validation was applied 
and the dimensionality reduction results were summarized. 
We found that five probe combinations exhibited the 
highest occurrence frequency, including AADAC, GCNT2, 
SACS, DACT3, and PI3 (Figure 6A-6C). LASSO regression 
also provided the coefficient of each gene, so the risk score 
was calculated according to the following formula: risk 
score = −0.17 × AADAC − 0.299 × GCNT2 + 0.542 × SACS 
+ 0.291 × DACT3 + 0.152 × PI3. Based on this formula, the 
risk score of each patient in the training set was calculated 
and arranged from large to small, and a survival state scatter 
map and gene expression heat map were drawn. 

In the process of the risk score changing from low to 
high, the number of survival samples gradually decreased; 
the expression of SACS, PI3, and DACT3 increased; and 
the expressions of GCNT2 and AADAC decreased gradually 
(Figure 6D). According to the overall survival (OS) of the 
samples grouped by risk score, we found that the risk model 

https://cdn.amegroups.cn/static/public/ATM-22-5764-Supplementary.pdf


Annals of Translational Medicine, Vol 11, No 1 January 2023 Page 11 of 19

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2023;11(1):20 | https://dx.doi.org/10.21037/atm-22-5764

Figure 5 Screening and molecular docking of potential drugs targeting abnormally methylated DEGs. (A) Distance density diagram of the 
drugs to the abnormally methylated DEGs gene set. (B) Molecular docking mode between DB03367 and the MMP protein. (C) RMSD of 
the MMP12 protein during 80 ns MD simulation. (D) RMSD of DB03367 during 80 ns MD simulation. (E) Dynamic binding pattern of the 
MMP12 protein to DB03367 during 80 ns MD simulation. DEGs, differentially expressed genes; MMP, matrix metalloproteinase; RMSD, 
root mean square displacement; MD, molecular dynamics.

2.0

1.5

1.0

0.5

0.0

D
en

si
ty

−7.5         −5.0         −2.5          0.0           2.5           5.0
Distance

A

Type

Reference 

Drug

VAL235

VAL243

HIS218

TYR240 LEU181

PRO238

GLY179

2.0

1.5

1.0

0.5

R
M

S
D

0    10   20   30   40   50   60   70   80
Time, ns

2.5

2.0

1.5

1.0

0.5

0.0

R
M

S
D

0    10   20   30   40   50   60   70   80
Time, ns

B

C D E

Table 1 The information of genes shared by DEMGs and 32 genes 

Gene Gene type Drug count Drug example

CTSK HyperUp 19 MIV-711; MIV-701; Dibenzyl (carbonylbis{2,1-hydrazinediyl[(2S)-4-methyl-1-oxo-1, 
2-pentanediyl]}) biscarbamate; Ilomastat

HSD11B1 HypoUp 14 (5S)-2-{[(1S)-1-(4-Fluorophenyl) ethyl]amino}-5-(2-hydroxy-2-propanyl)-5-
methyl-1, 3-thiazol-4(5H)-one; 2-(2-CHLORO-4-FLUOROPHENOXY)-2-METHYL-N-
[(1R,2S,3S,5S,7S)-5-(METHYLSULFONYL)-2-ADAMANTYL]PROPANAMIDE

MMP12 HypoDown 12 Acetohydroxamic acid; CGS-27023; CP-271485

LCN2 HypoDown 6 Methyl nonanoate; 2,3-Dihydroxybenzoylserine; Sulpiride

ITGAL HypoDown 7 Methyl nonanoate; Trencam-3,2-Hopo; Miconazole

MMP1 HypoDown 4 CGS-27023; N-[3-(N’-HYDROXYCARBOXAMIDO)-2-(2-METHYLPROPYL)-PROPANOYL]-
O-TYROSINE-N-METHYLAMIDE

DEMGs, differential methylated genes.
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Table 2 Molecular docking information for six genes and the candidate drug set associated with the abnormally methylated DEGs gene set 

DrugBank ID Compound Target
Docking 

score
H-Bond 

interactions

DB01858 [1-(4-Fluorobenzyl) Cyclobutyl]Methyl (1s)-1-[Oxo(1h-Pyrazol-5-
Ylamino)Acetyl]Pentylcarbamate

CTSK −6.231 GLY66, ASN161

DB03405 N2-[(Benzyloxy)carbonyl]-N-[(3R)-1-{N-[(benzyloxy)carbonyl]-L-leucyl}-
4-oxo-3-pyrrolidinyl]-L-leucinamide

CTSK −8.337 GLN19, GLY66, 
ASN161

DB03456 2-[(benzyloxy)carbonyl]-n1-[(3S)-1-cyanopyrrolidin-3-yl]-l-leucinamide CTSK −6.843 GLY66, ASN161

DB04234 N2-({[(4-Bromophenyl) Methyl]Oxy}Carbonyl)-N1-[(1s)-1-Formylpentyl]-
L-Leucinamide

CTSK −6.379 GLY66, ASN161

DB06367 Relacatib CTSK −4.439 GLN19, GLY64, 
TRP184

DB02118 CP-271485 MMP12 −7.56 LEU181, ALA182

DB03367 PF-00356231 MMP12 −12.871 LEU181, PRO238

DB04405 2-[2-(1,3-Dioxo-1,3-Dihydro-2h-Isoindol-2-Yl)Ethyl]-4-(4'-Ethoxy-1,1'-
Biphenyl-4-Yl)-4-Oxobutanoic Acid

MMP12 −11.83 TYR240

DB07446 N-(biphenyl-4-ylsulfonyl)-D-leucine MMP12 −9.932 LEU181, GLU219

DB07556 CGS-27023 MMP12 −2.798 –

DB02329 Carbenoxolone HSD11B1 −8.091 SER261

DB06992 (3,3-dimethylpiperidin-1-yl)(6-(3-fluoro-4-methylphenyl)pyridin-2-yl)
methanone

HSD11B1 −8.524 SER170

DB07017 (5S)-2-{[(1S)-1-(4-Fluorophenyl) ethyl]amino}-5-(2-hydroxy-2-propanyl)-
5-methyl-1,3-thiazol-4(5H)-one

HSD11B1 −7.695 SER170, TYR280

DB07049 (2R)-1-[(4-tert-butylphenyl) sulfonyl]-2-methyl-4-(4-nitrophenyl)
piperazine

HSD11B1 −8.206 –

DB07310 (5S)-2-{[(1S)-1-(2-fluorophenyl) ethyl]amino}-5-methyl-5-
(trifluoromethyl)-1,3-thiazol-4(5H)-one

HSD11B1 −7.987 ALA172

DEG, differentially expressed gene.

could significantly distinguish the OS of high- and low-risk 
groups, and the low-risk group had an OS advantage (Figure 
6E). The AUCs of the prognostic risk model were 0.79, 0.78, 
and 0.77 at 1, 2, and 3 years, respectively (Figure 6F).

Verification of the prognostic gene signature

In the same way, the risk scores of OC patients were 
calculated in the TCGA validation set containing 179 OC 
samples, the TCGA-OC dataset containing 359 samples, 
and the GSE32062 dataset containing 260 OC samples. 
For the TCGA verification set containing 179 OC samples, 
the survival trends of the samples with risk scores and the 
gene expression changes in the model were identical to 
those observed in the training set (Figure 7A). The survival 

status of the samples in the high-risk group was also 
significantly worse than that in the low-risk group (Figure 
7B). The AUCs describing the accuracy of the risk model in 
identifying the prognosis of OC samples reached 0.64, 0.72, 
and 0.65 at 1, 2, and 3 years, respectively (Figure 7C). 

For the TCGA-OC dataset containing 359 samples and 
the GSE32062 dataset containing 260 OC samples, the 
survival trends and prognostic differences between samples 
with distinct risk scores were no different from those of the 
training and TCGA validation sets. More specifically, the 
prognosis of the high-risk group in the two data sets was 
significantly worse than that of the low-risk group. The risk 
model exhibited effective predictive value in both cohorts, 
with a 1-year AUC =0.68, a 2-year AUC =0.72, and a 3-year 
AUC =0.67 of the ROC curves in TCGA-OC dataset, and a 
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Figure 6 Prognostic signatures were constructed by screening genes with prognostic value from abnormally methylated DEGs. (A) The 
frequency of each gene combination in the process of 1,000-round LASSO regression. (B) The LASSO coefficient trends of five genes. (C) 
Tuning parameter (λ) selection 10-fold cross-validation error curve. (D) The risk scores of each patient in the training set were arranged 
from large to small, and a survival status scatter map and gene expression heat map were drawn. (E) Kaplan-Meier survival curves classified 
the OS of OC patients in the training set. (F) ROC curves depicting the accuracy of the risk model in identifying OC samples in the training 
set. DEGs, differentially expressed genes; LASSO, least absolute shrinkage and selection operator; OS, overall survival; OC, ovarian cancer; 
ROC, receiver operating characteristic; AUC, area under the ROC curve.
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Figure 7 Validation of the risk model in TCGA validation set containing 179 OC samples. (A) The ascending order of the risk score, 
survival status scatter map, and gene expression heat map of each patient in TCGA verification set. (B) Kaplan-Meier curve showing the 
OS of the samples in the TCGA validation set containing 179 OC samples. (C) ROC curve describing the accuracy of the risk model in 
identifying the prognosis of OC samples. OS, overall survival; OC, ovarian cancer; ROC, receiver operating characteristic; TCGA, The 
Cancer Genome Atlas; AUC, area under the ROC curve.

1-year AUC =0.69, 2-year AUC =0.66, and 3-year AUC =0.67 
of the ROC curves in the GSE32062 dataset (Figures 8,9).

Discussion

Owing to its sensitivity, specificity, and ease of analysis, 
DNA methylation has great potential to become a routine 
clinical cancer biomarker (10). Abnormal DNA methylation 
changes were also repeatedly observed in OC, which 
affected the activity of variable genes and led to variable 
tissue tumorigenesis (34). Although there are more than 
14,000 scientific publications describing biomarkers based 
on DNA methylation as well as their clinical association in 

cancer, only 14 DNA methylation-based biomarker assays 
are currently commercially available and are designed 
to measure the methylation of only 13 genes in total, 
including GSTP1, APC, RASSF1, NDRG4, BMP3, SEPT9, 
SHOX2, TWIST1, OTX1, ONECUT2, MGMT, BCAT1, and 
IKZF1 (9). These markers are all monomethylated genes. 
Considering that the occurrence and progression of OC are 
the result of the common regulation of multiple genes, it is 
necessary to explore the characteristics of polymethylated 
genes with diagnostic or prognostic value in OC.

With the emergence of next-generation sequencing and 
large-scale joint research, it has become possible to analyze 
the genomes and epigenomes of thousands of primary 
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tumors of almost every cancer type (35). Integrative omics 
analysis combining transcription, histone modification, and 
DNA methylation data will be a more reliable approach to 
better advance the identification of clinical biomarkers for 
precision cancer therapy (36). Promoter methylation has 
been established as the mechanism of tumor suppressor 
gene inactivation (37). In this study, we comprehensively 
analyzed the gene expression and DNA methylation data of 
OC and identified the DEGs and DMGs in different gene 
regions between TP53 wild-type OC and normal samples. 
A discriminative pattern recognition analysis model was 
constructed based on 440 abnormally methylated DEGs 
(i.e., overlapping genes between the DEGs and DMGs), 
which confirmed its superior performance in distinguishing 

normal samples from TP53 wild-type OC samples. 
Functionally, the abnormally methylated DEGs were closely 
connected with biological pathways related to cell metastasis, 
and thus, are likely to be potential targets for OC.

The development of network medical methods promotes 
the study and development of drug discovery (38). Advances 
in advanced “omics” and machine learning are providing 
new insights into drug discovery and the mechanisms 
of drug binding to targets (39). In this study, we created 
a machine learning-based network medicine screening 
framework that identifies potential targeted agents 
against abnormally methylated DEGs. Subsequently, the 
compound-protein target complex with the lowest binding 
energy was shown to demonstrate molecular docking, 
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Figure 8 Validation of the risk model in TCGA-OC dataset containing 359 samples. (A) Risk score, survival trends, and expression 
heat maps of samples in TCGA-OC datasets. (B) The Kaplan-Meier method distinguishes the OS of samples from TCGA-OC datasets 
according to their risk score. (C) The prognostic ability of the risk model in TCGA-OC dataset was evaluated by ROC curve. OS, overall 
survival; OC, ovarian cancer; ROC, receiver operating characteristic; TCGA, The Cancer Genome Atlas; AUC, area under the ROC curve.
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Figure 9 Verification of risk model in GSE32062 data set. (A) The risk score, survival status, and expression heat map of the sample in 
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and MD simulation analysis was conducted to confirm 
the targeting effect of the selected drugs on the identified 
proteins.

Finally, based on LASSO regression analysis, we 
constructed a gene signature based on five abnormally 
methylated DEGs, which is reliable and accurate in 
evaluating the prognosis of OC patients. Some genes in 
abnormally methylated DEGs-driven gene signatures have 
been reported to drive cancer initiation and progression. For 
instance, arylacetamide deacetylase (AADAC) is a survival-
related gene in patients with Borrmann III advanced gastric 
cancer; the higher the messenger RNA (mRNA) and 
protein expression levels, the longer the survival time of 
patients (40). AADAC inhibits the malignant progression 

of OC at the cellular level and promotes the therapeutic 
activity of cisplatin and imatinib against OC cells (41). Also, 
β1,6 N-acetylglucosaminyl transferase 2 (GCNT2) has been 
shown to promote the malignant progression of cancer as 
an oncogene in prostate cancer 26678556, breast cancer 
21750175, esophageal cancer 30575058, and colon cancer 
28542779, and as a tumor suppressor gene in melanoma 
cells. Furthermore, the Dapper antagonist of catenin-3 
(DACT3) inhibits the malignant tumor phenotype in acute 
myeloid leukemia (42). Peptidase inhibitor 3 (PI3), often 
called elafin, is overexpressed and secreted in OC, and is 
related to the poor OS of OC and may be the determinant 
of the low survival rate of OC (43). To some extent, these 
studies revealed the feasibility of our gene signature 
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driven by five abnormally methylated DEGs to predict the 
prognosis of OC.

However, the limitations of this study cannot be ignored. 
Firstly, all of the data were downloaded from public 
databases, and the sample size and clinical information were 
limited. Secondly, although a risk score system consisting 
of nine genes was developed, the regulatory network and 
biological effects between these genes still need to be 
explored.

Conclusions

Through transcriptome data, DNA methylation data, the 
CpGs of different gene regions, and network medicine 
analysis based on machine learning, our study screened 
abnormally methylated DEGs and potential therapeutic 
drugs for OC and constructed a gene signature based on 
five abnormally methylated DEGs, which could better 
predict the risk of death. Analysis in this study may be used 
for clinical application in OC to help clinicians develop 
personalized treatment.
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