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Abstract
Retroperitoneal sarcoma (RPS) is a rare malignancy which can be difficult to man-
age due to the variety of clinical behaviors. In this study, we aimed to develop a 
parametric modeling framework to quantify the relationship between postopera-
tive dynamics of several biomarkers and overall/progression-free survival of RPS. 
One hundred seventy-four patients with RPS who received surgical resection with 
curative intent at the Peking University Cancer Hospital Sarcoma Center were ret-
rospectively included. Potential prognostic factors were preliminarily identified. 
Longitudinal analyses of body mass index (BMI), serum total protein (TP), and 
white blood cells (WBCs) were performed using nonlinear mixed effects models. 
The impacts of time-varying and time-invariant predictors on survival were inves-
tigated by parametric time-to-event (TTE) models. The majority of patients experi-
enced decline in BMI, recovery of TP, as well as transient elevation in WBC counts 
after surgery, which significantly correlated with survival. An indirect-response 
model incorporating surgery effect described the fluctuation in percentage BMI. 
The recovery of TP was captured by a modified Gompertz model, and a semi-
mechanistic model was selected for WBCs. TTE models estimated that the daily 
cumulative average of predicted BMI and WBC, the seventh-day TP, as well as cer-
tain baseline variables, were significant predictors of survival. Model-based simu-
lations were performed to examine the clinical significance of prognostic factors. 
The current work quantified the individual trajectories of prognostic biomarkers 
in response to surgery and predicted clinical outcomes, which would constitute an 
additional strategy for disease monitoring and intervention in postoperative RPS.

Study Highlights
WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
Risk stratification of many cancer types consist of time-varying biochemical or 
physical biomarkers. Integrative quantitative analytics are necessary to allow for 
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INTRODUCTION

Soft tissue sarcoma accounts for less than 1% of adult ma-
lignancies, among which 15% are retroperitoneal sarcoma 
(RPS).1,2 Radical surgical resection is currently the sole 
potentially curative method for RPS, and the clinical ben-
efits of other therapeutics are still doubtable.3,4 However, 
the asymptomatic features of early-stage disease lead to 
frequent diagnosis with large tumors, adding to the dif-
ficulty in complete resection along with the possibility 
for relapse.4–6 Patients often suffer from postoperative 
complications and impaired quality of life, sometimes im-
pacting clinical outcomes and even survival.7,8 The 5-year 
overall survival (OS) of RPS ranges from 39% to 65%,9 and 
41%–70% of patients demonstrate local recurrence.2

The existing prognostic analysis of RPS focused on 
clinicopathologic and treatment characteristics, such 
as age, tumor grade, histologic subtype, extent of re-
section, etc., mainly using semiparametric methodolo-
gies.6,10–13 However, recent studies have demonstrated 
the value of incorporating continuous progression pro-
files of various biological or physical biomarkers, apart 
from time-invariant covariates, in oncologic survival 
analysis, including but not limited to tumor size, thera-
peutic targets, and disease-specific clinical variables.14–19 
This calls for development of paradigms linking quan-
titative models describing time-varying biomarkers to 
models predicting clinical outcomes.20,21 Longitudinal 
tumor size following treatment with durvalumab was 

linked to OS of urothelial carcinoma using a population 
tumor kinetic model plus a time-to-event (TTE) model.14 
Irurzun-Arana et al. identified dynamic change in lactate 
dehydrogenase (LDH) as the most significant predictor 
of OS in melanoma.17 Such analysis has so far not been 
reported for RPS.

Pharmacometric approaches have contributed sig-
nificantly to drug development through quantifying and 
predicting pharmacokinetics, pharmacodynamics, and 
disease progression.22 Nonlinear mixed effects modeling 
is a standard tool for processing population longitudinal 
data where high inter- and intra-individual variability, 
commonly observed in clinic, can be described, and co-
variate relationships accounting for systematic differences 
between individuals are evaluated.23,24 Parametric TTE 
modeling allows quantification of a time-varying covari-
ate’s implication on survival time, along with estimation 
of baseline hazard.25,26 These quantitative tools have been 
seldomly used in surgical oncology where perioperative 
physical and biological disorders are often observed and 
may have implications for survival.

In this study, we retrospectively explored an in-house 
database of Chinese patients with RPS following surgical 
resection. Leveraging population longitudinal and TTE 
modeling strategies, we aimed to characterize the postop-
erative dynamics of key prognostic biomarkers and pre-
dict the clinical end points (i.e., OS and progression-free 
survival [PFS]). This joint modeling approach allowed us 
to make a quantitative inference from early continuous 

the identification of similar relationships in retroperitoneal sarcoma (RPS) fol-
lowing radical surgical resection.
WHAT QUESTION DID THIS STUDY ADDRESS?
The postoperative dynamics of multiple prognostic biomarkers, including body 
mass index (BMI), serum total protein (TP), and white blood cells (WBCs), as well 
as their predictive values for overall survival (OS) and progression-free survival 
(PFS) were investigated.
WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?
The impact of radical surgery on longitudinal BMI, TP, and WBCs were quanti-
fied using pharmacometric approaches for the first time. Early changes in those 
biomarkers could be informative for OS and PFS of RPS.
HOW MIGHT THIS CHANGE DRUG DISCOVERY, DEVELOPMENT, 
AND/OR THERAPEUTICS?
This joint modeling framework provides a novel methodology for clinical out-
come prediction in surgical oncology leveraging baseline and early biomarker 
data. Quantitative advice on optimized clinical surveillance and interventions for 
patients at risk of malnutrition, hypoproteinemia, and leukocytosis can poten-
tially improve quality of life.
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biomarker data to predict survival outcomes of RPS for 
the first time.

METHODS

Study population

Patients with RPS who have received surgical resection 
with curative intent between 2011 and 2020 at the Peking 
University Cancer Hospital Sarcoma Center were retro-
spectively collected. Following the inclusion/exclusion 
criteria specified in the Supplementary Material, 174 
Chinese adult patients with RPS were considered eligible 
and were finally enrolled in our modeling database. The 
study was approved by the ethics committee of the Peking 
University Cancer Hospital. Patients provided written in-
formed consent for data collection.

Data collection and exploratory data  
analysis

Demographics, clinicopathologic characteristics, and treat-
ment details of the patients were recorded. Continuous data 
of body mass index (BMI), tumor size, hematology, and 
chemistry laboratory values, which have been repeatedly 
measured perioperatively, were collected. OS was defined as 
the time from surgery to death, and PFS was the time from 
surgery to tumor relapse or death, whichever occurred first. 
Exploratory survival analyses were performed using Kaplan–
Meier analysis and Cox regression to identify potential 
prognostic factors. Apart from baseline characteristics, lon-
gitudinal data, such as BMI and laboratory values, were con-
verted to cross-sectional variables for analysis, by calculating 
the average values during periods before or after surgery.

Population longitudinal submodels for 
postoperative dynamics of biomarkers

The postoperative changes in promising prognostic bio-
markers were described using various longitudinal model 
structures with schematic representations in Figure  S1. 
Briefly, an indirect-response (IDR) model was selected for 
the turnover of percentage BMI (hereinafter referred to as 
BMI for simplification) assuming a steady-state tumor-free 
BMI of 100% for each subject.27 The stimulatory effect of sur-
gery on the loss of BMI decayed in an exponential manner 
from its maximum on day 0; conversely, interventions, such 
as nutrition supply, could accelerate the zero-order input.

The recovery of serum total protein (TP) after sur-
gery was captured by a modified Gompertz model.28 The 

postoperative trough and steady-state levels of TP, as well 
as the recovery rate constant, were estimated. The model 
also incorporated an additional possible disturbance due 
to a subsequent invasive operation.

The starting point for describing the longitudinal white 
blood cell (WBC) observations was the semimechanistic 
myelosuppression model, which was reversed to character-
ize the acute increase in WBC counts after surgery.29,30 The 
proliferation of progenitor cells was promoted by a time-
dependent surgery effect. In addition, tumor resection as 
well as subsequent invasive operations also triggered the 
immediate release of WBCs from the deposit pool.

TTE models for survival analysis

Parametric TTE models were developed to investigate the 
effect of potential predictors on OS and PFS hazards, h(t). 
The baseline hazard h0(t) was explored using exponential, 
Weibull, and log-logistic models.25 Potential predictors 
were then added to the following hazard function:

where Zi and Xi depict constant and time-varying predic-
tors in ith subject, respectively. � j and � j are coefficients as-
sociated with the effect of jth predictor. f

(
t, Xi

)
 is a link 

function. p, q, r are the total number of continuous con-
stant predictors, discrete constant predictors, and time-
varying predictors, respectively. Constant predictors tested 
on OS and/or PFS included tumor grade defined by the 
French Federation of Cancer Centers Sarcoma Group 
(FNCLCC),1 baseline metastasis, resected tumor volume, 
completeness of resection, fibrinogen, and postoperative 
tumor relapse.

A sequential modeling strategy was adopted to explore 
the correlations among time-varying BMI, TP, WBCs, and 
survival. Individual empirical Bayes estimates (EBEs) 
from the longitudinal submodels were used to predict 
time-courses of the biomarkers, as well as model-derived 
metrics, which were then investigated as predictors in the 
TTE models.15 Prognostic baseline variables were also 
screened and added to the proportional hazard functions.

Model construction and evaluation

Nonlinear mixed effects models were developed using 
NONMEM 7.4.1 and PsN 4.9.0 managed by Pirana 2.9.9, 
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with first-order conditional estimation with interaction and 
Laplace method for longitudinal and TTE models, respec-
tively. A stepwise forward selection followed by backward 
elimination procedure was performed during covariate 
evaluation. An objective function value (OFV) decrease of 
3.84 (X2

�=0.05,v=1
) was considered as statistically significant 

during forward selection of a covariate, and an increase 
of 10.83 (X2

�=0.001,v=1
) during backward elimination (6.64 

based on X2
�=0.01,v=1

 for TTE models). Interindividual varia-
bility of model parameters was assumed to be log-normally 
distributed and expressed as coefficient of variation (CV), 
and an additive, proportional, or additive plus proportional 
error model was selected to describe the residual vari-
ability. Parameter uncertainties were derived from 1000-
time bootstrapping or the NONMEM Sandwich matrix.31 
Evaluation of model performance depended on the ration-
ality and precision (expressed as relative standard error 
[RSE]) of the parameter estimates, decline in OFV, diag-
nostic plots, and visual predictive check (VPC) outcomes. 
Bootstrap and Sampling Importance Resampling were also 
performed for model validation. Example model code and 
datasets are provided in Supplementary Material, and the 
original data are available upon request.

Model simulation

The impacts of critical variables on OS and PFS were visu-
alized through joint model-based simulations of 500 vir-
tual cohorts with 500 subjects in each cohort randomly 
resampled from the modeling dataset. The individual time-
varying predictors were simulated based on population 
longitudinal submodels, followed by TTE model-based 
simulations of survival, incorporating parameter uncer-
tainty, interindividual variability, and current distribution 
of patient baseline characteristics. Kaplan–Meier curves 
were compared between subgroups of each covariate.

RESULTS

Identification of time-varying prognostic 
factors

The patient characteristics are summarized in Table  1. 
Patients were followed up with a median period of 
18.4 months. The median OS and PFS were 43.6 months 
and 15.8 months, respectively.

Exploratory data analysis showed that the majority 
of patients in our database experienced loss of BMI, ab-
normally low serum TP, as well as elevated WBCs after 
surgery. As illustrated by the Kaplan–Meier curves in 
Figure 1, these variables significantly correlated with OS 

and PFS. Therefore, population longitudinal submodels 
were developed to investigate the dynamics of the three 
promising biomarkers.

BMI submodel

The dynamics of BMI following surgical resection was 
characterized using an IDR model with bidirectional ac-
tions (Figure  S1A). The stimulatory effect of surgery on 

T A B L E  1   Demographic, clinicopathologic, and treatment 
characteristics of patients

Variable
Median [range]/
strata n (%)

Age, years 57 [18, 81] 174 (100)

Gender Female 87 (50.0)

Male 87 (50.0)

Ethnic group Han 164 (94.3)

Other 10 (5.7)

ECOG Grade 0 156 (89.7)

Grade 1 and higher 18 (10.3)

Histologic subtype Liposarcoma 115 (66.1)

Leiomyosarcoma 29 (16.7)

Other 30 (17.2)

FNCLCC grade 1 25 (14.4)

2 66 (37.9)

3 83 (47.7)

Baseline metastasis Yes 39 (22.4)

No 135 (77.6)

Multifocality Yes 55 (31.6)

No 119 (68.4)

Presentation status Primary 99 (56.9)

Recurrent 75 (43.1)

Resected tumor volume, 
cm3

1172.38 [2.4, 18,000] 174 (100)

Resected organs 6 [0, 14] 174 (100)

Surgical blood loss, ml 1000 [50, 16,000] 174 (100)

Completeness of 
resection

Yes 142 (81.6)

No 32 (18.4)

Fibrinogen, mg/dL 436.1 [175.7, 1176.0] 171 (98.3)

Baseline BMI, kg/m2 23.2 [15.7, 39.0] 174 (100)

Baseline TP, g/L 62.6 [48.0, 80.2] 173 (99.4)

Baseline WBCs,  
109cells/L

6.20 [2.87, 35.67] 174 (100)

Subsequent invasive 
operation time, day

114 [18, 330] 64 (36.8)

Abbreviations: BMI, body mass index; ECOG, Eastern Cooperative Oncology 
Group; FNCLCC, French Federation of Cancer Centers Sarcoma Group; TP, 
total protein; WBCs, white blood cells.
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the loss of BMI (KOUT) decayed in an exponential man-
ner with a rate constant of �1 from its maximum, SURMAX , 
on day 0. Conversely, there were interventions, such as 
parenteral nutrition supply accelerating KIN, which were 
quantified similarly by STIMAX and �2.

Parameter estimates of the final BMI submodels were re-
ported in Table 2. The typical value of baseline BMI (BMI0 ) 
was 97.5% right before surgery, indicating a minor decline 
in body weight since the onset of cancer. Competition be-
tween stimulatory effects on KIN and KOUT resulted in varied 
patterns of BMI change in the population. A long half-life 
of 109 days was estimated for surgery effect, depicting a 

durable impairment in patients’ physical status. Following 
evaluation of a number of covariates among demographic, 
clinicopathologic, and treatment variables, resected tumor 
volume significantly correlated with BMI turnover rate 
(KIN ), and a higher number of resected organs resulted in 
slower decay rate constant of surgery effect. Patients with 
a lower tumor-free BMI exhibited larger KIN-stimulating 
effect in our cohort. The functions describing covariate ef-
fects in the longitudinal submodels as well as their clinical 
relevance can be found in the Supplementary Material. The 
VPC result in Figure 2a demonstrated good agreement be-
tween observed and simulated BMI data.

TP submodel

A modified Gompertz model well captured the time-
courses of TP (Figure S1B). TP increased from the postop-
erative trough level (TPPOST) to a steady-state (TPSS) with 

(2)

dBMI

dt
=KIN.

(
1+STIMAX. e

−�2⋅t
)
−KOUT.

(
1+SURMAX. e

−�1⋅t
)
⋅BMI,

BMI(t=0)=BMI0

(3)KIN = KOUT. 100

F I G U R E  1   Kaplan–Meier curves of OS and PFS stratified by postoperative BMI loss (a, d), TP levels (b, e), and WBC counts (c, f). The 
cutoff values were 0.6 kg/m2 for BMI loss, 55.7 g/L for TP, and 10.72 × 109 cells/L for WBCs. Log-rank test was performed and p value was 
shown in each panel. BMI, body mass index; OS, overall survival; PFS, progression-free survival; TP, total protein; WBC, white blood cell.
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a first-order rate, KPRO, until an additional possible distur-
bance occurred due to another invasive operation (stoma 
closure, exploratory laparotomy, etc.) at tDIS. The distur-
bance effect was assumed to decay in an exponential manner 
with a rate constant of λ from its maximum (DISMAX) at tDIS. An estimated TPPOST of 48.3 g/L was consistent with the 

commonly observed TP levels falling below the lower 
limit of reference range right after surgery, and it was even 
lower for subjects with more surgical blood loss or tumor 

(4)dTP

dt
=KPRO ⋅TP ⋅LOG

(
TPSS
TP

)
−DIS ⋅TP, TP(t=0)=TPPOST

(5)DIS=

{
0, t< tDIS
DISMAX ⋅e

−𝜆⋅(t−tDIS), t≥ tDIS

T A B L E  2   Parameter estimates of the final longitudinal submodels

Parameter Definition Estimate (RSE%a) IIV, CV% (RSE%a)

BMI submodel

KIN(%/day) Production rate constant 0.971 (19.5) 74.4 (16.8) [34]b

�RESTV Resected tumor volume on KIN 0.358 (19.6) –

BMI0(%) Baseline BMI 97.5 (0.5) 5.4 (12.7) [6]

SURMAX Maximum surgery effect 0.834 (9.8) 0 FIX

�1/day Decay rate constant of surgery effect 0.00634 (19.5) 72.9 (23.8) [40]

�RESOR Resected organ number on �1 −0.119 (30.2) –

STIMAX Maximum KIN-stimulating effect 0.338 (17.9) 32.0 (38.3) [55]

�BMItumor−free Tumor-free BMI on STIMAX −1.93 (45.0) –

�2/day Decay rate constant of KIN-stimulating effect 0.00512 (37.0) 0 FIX

�add(%) Additive error 2.50 (5.0) [20] –

TP submodel

KPRO/day Production rate constant 0.0859 (10.2) 79.2 (10.1) [23]

TPPOST, g/L Postoperative instant TP 48.3 (1.1) 9.2 (8.3) [17]

�BLLO Surgical blood loss on TPPOST −0.00414 (12.2) –

�MULTI Multifocality on TPPOST −0.0743 (22.6) –

TPSS, g/L Steady-state TP 67.9 (1.1) 7.3 (11.5) [30]

DISMAX/day Maximum subsequent disturbance 0.0576 (19.7) 161.1 (12.9) [45]

λ/day Decay rate constant of subsequent disturbance 0.336 (18.4) 0 FIX

�prop(%) Proportional error 8.84 (3.5) [10] –

WBC submodel

MTT, day Mean transit time 4.91 (0.7) 21.4 (13.5) [35]

CIRC0, 109 cells/L Baseline WBC count 6.25 (0.8) 32.8 (13.0) [15]

�LNFIB Logarithm of fibrinogen on CIRC0 1.78 (14.4) –

CIRCSS, 109 cells/L Steady-state WBC count 6.92 (1.3) 32.0 (10.8) [20]

�RESOR_CIRCSS Resected organ number on CIRCSS 0.0362 (14.1) –

γ Feedback loop factor on proliferation rate 0.119 (9.2) 70.3 (14.4) [30]

SURMAX Maximum surgery effect 0.798 (1.6) 0 FIX

�RESOR_SURMAX Resected organ number on SURMAX 0.315 (10.5) –

λ/day Decay rate constant of surgery effect 0.453 (3.5) 23.9 (20.4) [47]

DEPOS0, 10
9cells/L Initial WBC count in the deposit pool 15.1 (1.0) 62.4 (13.3) [26]

KRELE/day Release rate constant from the deposit pool 0.423 (3.4) 0 FIX

�prop(%) Proportional error 25.6 (5.0) [10] –

�add, 109 cells/L Additive error 0.919 (22.0) [10] –

Abbreviations: BMI, percentage body mass index; CV, coefficient of variation; IIV, interindividual variability; MTT, mean transit time; RSE, relative standard 
error; TP, total protein; WBC, white blood cell.
aObtained from bootstrap results.
bη- and ε-shrinkage (%) in square brackets.
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multifocality. High interindividual variability with CV of 
161.1% was found in DISMAX describing the subsequent 
disturbance due to a small proportion (36.8%) in this sub-
population. The model demonstrated acceptable predic-
tive performance both on a shorter and longer time scale 
(Figures 2b and S2B).

WBC submodel

The semimechanistic WBC model shown in Figure  S1C 
consisted of one compartment that represented prolifera-
tive cells (PROL), three transit compartments with matur-
ing cells (TRANS1, 2, and 3), a compartment of circulating 

observed WBC (CIRC), and a deposit pool in bone marrow 
(DEPOS). A rapid increase in circulating WBC counts was 
driven by the immediate release from the deposit pool, fol-
lowed by a profound and sustained response to surgery 
through the transit chain. The equations of the WBC sub-
model are as follows:

(6)

dPROL

dt
=KPRO.

(
1+SURMAX. e

−�⋅t
)

⋅PROL ⋅

(
CIRCss
CIRC

)�

−KTR ⋅PROL

(7)dTRANS1

dt
=KTR. (PROL−TRANS1)

F I G U R E  2   Visual predictive check for the longitudinal submodels of BMI (a), TP (b), and WBC (c). The dots represent the observed 
individual data. The red line in each panel represents the observed median, and blue lines represent the observed 5th and 95th percentiles. 
Shaded areas show 95% confidence intervals of model-predicted median (red), 5th and 95th percentiles (blue) based on 1000-time 
simulations. Plots are presented on partial time scales and the entire illustrations could be found in Figure S2. BMI, percentage body mass 
index; TP, total protein; WBC, white blood cell.
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The proliferation of progenitor cells (KPRO) accelerated after 
surgery, whose effect decayed in an exponential manner 
from its maximum, SURMAX, on day 0. Radical surgical re-
section as well as subsequent invasive operations at tDIS also 
triggered the immediate release of WBCs from the deposit 
pool at a first-order rate constant, KRELE. The other param-
eters were defined as in the original literature.29 The preop-
erative baseline WBC count (CIRC0) was 6.25 × 109 cells/L, 
and the steady-state (CIRCSS) was 6.92 × 109 cells/L in this 
dataset. The half-life of surgery effect stimulating cell prolif-
eration was estimated to be 1.53 days. Significant covariates 
included resected organ number and baseline fibrinogen. 
The model was adequate to capture the WBC profiles within 
8 weeks (Figure  2c). The majority of parameter estimates 
from the three submodels were reasonable with acceptable 
precision. Goodness-of-fit plots are shown in Figure S3.

TTE models of OS and PFS

The baseline hazards of OS and PFS were both best de-
scribed using exponential models. Postoperative BMI, 
TP, and WBCs were incorporated into the final paramet-
ric TTE models. Individual time-courses were predicted 
using EBEs from the above submodels (see Figure  S4), 
and the following link functions were finally selected for 
time-varying predictors:

where BMIAVE(t)is the cumulative average of BMI pre-
dictions from day 0 to day t. Similarly, WBCAVE(t) is 
the cumulative average of WBC predictions from day 
0 to day t. TPDAY7 is the predicted TP level on day 7. 
Hazard functions of the final TTE models are shown in 
Equations 16 and 17, and parameter estimates are listed 
in Table 3.

where �0,OS and �0,PFS are constant baseline hazards of 
death and disease progression, respectively. META, COMP, 
and GRADE are dichotomous variables indicating the 
presence of baseline metastasis, incomplete resection, and 
FNCLCC grade 3, respectively. LNFIB is a logarithm of 
baseline fibrinogen. The other parameters have been de-
fined before. The magnitude of baseline hazards was quite 
small in line with the observed event times. An increase in 
TP or BMI was beneficial for survival, whereas higher WBC 
counts raised the hazards of death and disease progression. 
None of the 95% confidence intervals for the model param-
eters reported included the value of zero, indicating that the 
data supported the inclusion of the above predictors in the 
final models. The predictive performance was acceptable 
(Figure 3).

Model-based simulation and risk 
stratification

In order to further explore the impacts of various co-
variates from the longitudinal submodels and TTE 
models on OS and PFS, joint model-based simulations 
were performed in 500 virtual cohorts. As shown  
in Figure  4, stratifications by baseline metastasis,  
fibrinogen (predictors identified in the TTE models), 
tumor-free BMI, resected tumor volume (covariates 
affecting BMI), surgical blood loss, or multifocal-
ity (covariates affecting TP) categorized patients  
into subgroups at higher or lower risk. Clinical out-
comes could also be distinguished based on differ-
ences in 12-month BMI, seventh-day TP, and 8-week 
WBCs. Lower OS probability was predicted for pa-
tients with BMI loss over 5% on average, or abnor-
mality in TP or WBCs. PFS simulations are presented 
in Figure S5.

(8)dTRANS2

dt
=KTR. (TRANS1−TRANS2)

(9)
dTRANS3

dt
=KTR. (TRANS2−TRANS3)

(10)
dCIRC

dt
=KTR. TRANS3−KOUT. CIRC

+DEPOS ⋅KRELE, CIRC(t=0)=CIRC0

(11)
dDEPOS

dt
= −DEPOS ⋅KRELE, DEPOS(t=0)

=DEPOS
(
t= tDIS

)
=DEPOS0

(12)KPRO = KTR = KOUT =
4

MTT

(13)f (t, BMI) = BMIAVE(t) − 100

(14)f (t, TP) =min
(
TPDAY7 − 60, 0

)

(15)f (t, WBC)=

{
max

(
WBCAVE(t)−10, 0

)
, t≤56

max
(
WBCAVE(t=56)−10, 0

)
, t>56

(16)

hOS(t)=�0,OS ⋅exp
(
�META ⋅META+�LNFIB ⋅ (LNFIB−6.06)

)

⋅exp
(
�BMI ⋅ f (t, BMI)+�TP ⋅ f (t, TP)+�WBC ⋅ f (t,WBC)

)

(17)

hPFS(t)=�0,PFS ⋅exp
(
�META ⋅META+�COMP ⋅COMP

+�GRADE ⋅GRADE
)
⋅exp

(
�TP ⋅ f (t, TP)+�WBC ⋅ f (t,WBC)

)
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DISCUSSION

The individual patient survival after RPS surgery can vary 
tremendously and is a function of multiple influencing 
factors, including disease-specific baseline characteristics 
and postoperative complications, such as malnutrition, 
cachexia, and infection.9,11 This work characterized the 
dynamics of key prognostic biomarkers following radical 
surgical resection in patients with RPS by population lon-
gitudinal modeling, and established quantitative models to 
predict postoperative prognosis of patients with RPS based 
on time-varying covariates for the first time. The joint 
model outperformed the existing nomograms commonly 
used in the clinic, which are based on merely baseline 
variables. The current results provided useful insights to 
identify patient subgroups at higher risk and guide optimal 
clinical interventions regarding the significant predictors.

Laboratory values from hematology and chemistry 
tests as well as body weight are standardized biomarkers 
routinely monitored in clinic, and their prognostic signifi-
cance as static metrics have been reported in oncology.32,33 
Weight loss in patients with gastric and pancreatic cancer 
has implications for survival.34,35 Patients with higher in-
flammatory markers, such as WBC, on the third day after 
surgery, or those with malnutrition indicated by lower 
serum albumin or TP, had impaired survival.36–39 However, 
those variables are continuously fluctuating in patients 
with cancer, especially following invasive operations, so 
investigation on the dynamic relationships allows more 
meaningful predictions of prognosis. In contrast to previ-
ous studies, our modeling framework utilized the entire 
longitudinal profiles of key biomarkers, rather than cross-
sectional data, thus enabling a more accurate assessment 
of the quantitative relationship between each biomarker 

Parameter Definition Estimate (RSE%a) SIR median (95% CI)

OS model

�0(10−4/day) Constant baseline 
hazard

1.22 (24.0) 1.28 (0.76, 1.88)

�BMI Coefficient associated 
to BMI

−0.0565 (23.0) −0.0552 (−0.0288, −0.0830)

�TP Coefficient associated 
to TP

−0.131 (19.2) −0.127 (−0.081, −0.173)

�WBC Coefficient associated 
to WBC

0.213 (35.7) 0.215 (0.061, 0.351)

�META Coefficient associated 
to baseline 
metastasis

1.16 (21.0) 1.15 (0.66, 1.59)

�LNFIB Coefficient associated 
to logarithm of 
fibrinogen

1.36 (22.4) 1.35 (0.77, 1.92)

PFS model

�0(10−4/day) Constant baseline 
hazard

3.21 (20.9) 3.28 (2.18, 4.57)

�TP Coefficient associated 
to TP

−0.105 (22.9) −0.103 (−0.064, −0.140)

�WBC Coefficient associated 
to WBC

0.256 (26.7) 0.256 (0.128, 0.376)

�META Coefficient associated 
to baseline 
metastasis

1.05 (27.4) 1.04 (0.57, 1.45)

�COMP Coefficient associated 
to incomplete 
resection

1.12 (27.3) 1.12 (0.63, 1.59)

�GRADE Coefficient associated 
to FNCLCC grade 3

0.698 (30.1) 0.678 (0.297, 1.06)

Abbreviations: BMI, percentage body mass index; CI, confidence interval; FNCLCC, French Federation 
of Cancer Centers Sarcoma Group; OS, overall survival; RSE, relative standard error; SIR, Sampling 
Importance Resampling; TP, total protein; TTE, time-to-event; WBC, white blood cell.
aObtained from NONMEM Sandwich matrix.

T A B L E  3   Parameter estimates of the 
final TTE models
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and survival.17 Accordingly, personalized prediction of 
survival probabilities for different scenarios could be per-
formed using the established parametric TTE models. 
Besides, a nonlinear mixed effects modeling strategy en-
abled model-based extrapolation of missing longitudinal 
data so that bias resulted from opportunistic sampling in 
the clinic can be reduced during survival analysis.24

The longitudinal model structures were finalized after 
a lot of attempts of model selection and modification. An 
IDR model well quantified a delayed response to surgery 
for BMI in contrast with the rapid changes observed in TP 
and WBCs. Surgery effect was quantified as in a kinetic/
pharmacodynamic model.40 The generally monotonic TP 
trajectories before additional disturbance supported model 
construction based on merely postoperative data for simpli-
fication. The high magnitude of interindividual variability 
in DISMAX mainly resulted from the varied type of subse-
quent invasive operations and limited subgroup size. The 
semimechanistic WBC model estimated normal preoper-
ative and steady-state levels, but intermediate fluctuation 
to distinct extents for different subjects, with physiological 

parameters consistent with reported values.41 The covari-
ate relationships were in line with our clinical experience 
and other researches in surgical oncology. The population 
longitudinal submodels described multiple levels of vari-
ability and demonstrated adequate predictive performance 
within the time scales involved in the subsequent survival 
analysis, despite the relatively high magnitude of shrink-
age for certain parameters due to non-uniform informa-
tion provided by the retrospective data.

Thorough investigations among the potential prognostic 
factors identified during exploratory survival analysis have 
been conducted. Certain baseline variables already served as 
submodel covariates, such as resected tumor volume, resect 
organ number, surgical blood loss, and tumor multifocality, 
so they indirectly influenced hazards in the current results 
instead of being predictors in the TTE models.10–12 We also 
tested whether there was a substitute for each longitudinal 
biomarker as a time-specific predictor of survival duration, 
because the established population submodels enabled pre-
diction at arbitrary time point.42 It only worked out for TP 
on day 7 which exhibited monotonicity versus time, whereas 
continuous BMI and WBCs, where diverse postoperative 
patterns have been observed in the population, must remain 
in the TTE models. The predictors in the final link functions 
outperformed other longitudinal model-derived metrics, 
such as daily biomarker predictions, extremum, or duration 
of TP/WBC abnormality, etc. Clinical reference ranges were 
considered during model construction, including 60 g/L as 
the lower limit of serum TP and 10 × 109 cells/L as the upper 
limit of the WBC count. Metrics related to tumor relapse also 
significantly correlated with OS based on univariate Kaplan–
Meier analysis as reported in literature.13,43 Nevertheless, 
inclusion of tumor relapse in the OS model resulted in in-
significant improvement so it was excluded from the final 
model. The long computational times of the BMI and WBC 
submodels did not allow for simultaneous estimation when 
linking the longitudinal submodel predictions to the TTE 
models. Therefore, a sequential modeling strategy was ad-
opted, using EBE-derived predictions from the submodels as 
predictors of survival.15 The evaluation results suggested that 
the TTE models reasonably predicted OS and PFS along with 
the effects of key covariates on hazards in our cohort.

The study has some limitations. The predictive per-
formance of the models has not been tested by external 
validation, and the high proportions of right censoring 
observed in this retrospective database (57.5% for OS and 
36.2% for PFS) are partially determined by the disease pa-
thology and random patient inclusion. As for the extreme 
censoring data where the individual event-free survival was 
longer than the maximum observed event time, winsoriza-
tion was performed to enhance model stability.44,45 Given 
the low disease prevalence, new data are consistently col-
lected to establish a validation dataset and update follow-up 

F I G U R E  3   Visual predictive check for the TTE models of 
OS (a) and PFS (b). The solid line in each panel represents the 
observed Kaplan–Meier curve. The shaded area shows 95% 
confidence interval of model-predicted Kaplan–Meier curve based 
on 100-time simulations. OS, overall survival; PFS, progression-free 
survival; TTE, time-to-event.
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information, in order to verify the established models and 
to assess the survival benefits from normalized BMI/TP/
WBC following intervention. Moreover, because access to 
the current quantitative methodology is restricted to only 
modelers, a user-friendly interactive website for physicians 
will be developed in future studies to facilitate clinical 
application.

In summary, the current work identified longitudinal 
BMI, TP, and WBC with prognostic significance in post-
operative patients with RPS utilizing quantitative model-
ing strategies, and converted the short-term observations 
acquired from routine clinical surveillance into person-
alized prediction of long-term clinical end points. The 
results advocated the importance of close monitoring of 
perioperative changes in BMI as well as laboratory values 
accompanied by appropriate interventions regarding mal-
nutrition, hypoproteinemia, and leukocytosis. The mod-
eling framework can hopefully promote improvements in 
precise clinical care for patients with RPS, and may have 
the potential to be extrapolated to other malignancies.
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