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Abstract: A short synthesis of the biologically active ses-
quiterpene natural product (++)-aphanamol I in both race-

mic and enantiopure forms is reported. Key steps include:
a catalytic enantioselective conjugate addition, an oxida-

tive radical cyclization, and a ring-expanding Claisen rear-
rangement.

(++)-Aphanamol I 1 is a sesquiterpene natural product isolated

as one of the minor toxic principles from the fruit peel of the
timber tree Aphanamixis grandifolia by Nishizawa and co-work-

ers.[1, 2] (++)-Aphanamol I contains a core bicyclo[5.3.0]decane
(hydroazulene) a common structural motif embedded in

a large number of terpenoid natural products.[3] There have

been a number of notable syntheses of aphanamol I from the
groups of Mehta,[4, 5] Wickberg,[6] Harmata[7] and Wender.[8, 9] To

date all of the asymmetric syntheses of aphanamol I have used
limonene as the chiral pool starting material, and featured vari-

ous key steps, including: a diastereoselective acyclic Claisen re-
arrangement and an enone-olefin cyclization,[4, 5] a photochemi-

cal cycloaddition followed by a Grob-type fragmentation,[6] and

a rhodium-catalyzed [5++2] cycloaddition of an allene with a vi-
nylcyclopropane,[8] whereas Harmata’s synthesis of racemic

aphanamol I featured a key [4++3] allyl cation/diene cycloaddi-
tion to construct the core bicyclo[5.3.0]decane.[7] Herein we
report a short and highly efficient catalytic enantioselective
synthesis of (++)-aphanamol I, which features a catalytic asym-

metric conjugate addition of an acetylene to an a,b-unsaturat-
ed aldehyde, an oxidative g-lactone annulation and a ring-ex-
panding Claisen rearrangement as key steps.[10–12] This strategy

provides rapid access to the key [5.3.0]-bicyclic decane struc-
tural motif from which the natural product was readily pre-

pared and provides a platform for the synthesis of other hy-
rdoazulene natural products.

Embedded within the carbon framework of aphanamol I 1 is
the retron for the Claisen rearrangement.[13] Application of this

retrosynthetic transformation leads to the [3.3.0]-bicyclic enol
ether 2, which would be readily prepared from the corre-

sponding [3.3.0]-bicyclic lactone 3 following methylenation

(Figure 1).[12] We have recently used oxidative radical method-

ology for the synthesis of [3.3.0]-bicyclic lactones by the cycli-
zation of 4-pentenyl malonates.[14, 15–19] Application of such an

oxidative radical cyclization to an appropriately functionalized

4,6-heptadienyl malonate 4 should yield the corresponding al-
kenyl-substituted [3.3.0]-bicyclic lactone 3. Based on the Beck-
with–Houk model[20, 21] for 5-exo-trig radical cyclizations and our
own previous experience, we would predict that the oxidative

radical cyclization would proceed through the pre-transition
state assembly 5 with the iso-propyl group residing in

a pseudo-equatorial position of the chair-like transition state
with minimization of allylic strain. Preparation of the dienyl
malonate such as 4 in enantioenriched form was to be ach-

ieved using the beautiful catalytic enantioselective conjugate
addition methodology recently reported by Nishimura and

Hayashi,[22, 23] with the requisite diene being formed by a hydro-
boration–Suzuki cross-coupling sequence.

Our initial studies focused on developing a synthesis of

aphanamol I in racemic form so that we could determine the
effectiveness of the previously unreported oxidative radical

cyclization of 4,6-heptadienyl malonates for the synthesis of
vinyl-substituted [3.3.0]-bicyclic lactones. The synthetic route

to racemic aphanamol I (�)-1 began with the conjugate addi-
tion of (trimethylsilyl)acetylene 7 to the unsaturated malonate

Figure 1. Retrosynthetic analysis of (++)-aphanamol I (++)-1; P = protecting
group.
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6[24] to give (�)-8 in 94 % yield using the procedure of Ohno

and Tanaka[25] (Scheme 1). Krapcho decarboxylation of the mal-
onate (�)-8[26] gave the ester (�)-9, which, on reduction with

lithium aluminum hydride, provided the primary alcohol (�)-
10 in good yield. The alcohol (�)-10 was converted into the
corresponding tosylate and the alkyne protecting group was

removed using tetra-n-butylammonium fluoride giving (�)-11.
Hydroboration of the terminal alkyne in (�)-11 with catechol
borane followed by Suzuki–Miyaura cross-coupling under stan-
dard conditions using the readily prepared iodide 12[27] gave
the diene (�)-13 in 79 % yield.[28] Alkylation of dimethyl malo-
nate with the tosylate (�)-13 gave the cyclization substrate

(�)-14. After brief optimization we found that exposure of the
dienyl malonate (�)-14 to our usual oxidative radical cycliza-
tion conditions, manganese(III) acetate and copper(II) triflate in
acetonitrile, delivered the [3.3.0]-bicyclic g-lactones (�)-15 in
79 % yield (Scheme 2).[29] The lactones (�)-15 were isolated as

a 6:1 mixture of inseparable C-1 diastereomers.[30, 31] The oxida-
tive radical cyclization most likely takes place via the pre-transi-

tion state assembly 5 (P = OTBDPS) with the iso-propyl group

and the diene occupying pseudo-equatorial positions in the
chair-like transition state. The adduct allylic radical so formed

then undergoes oxidative lactonization to deliver the product
as a mixture of diastereomers at the lactone stereocenter.

Krapcho decarboxylation[26] of (�)-15 gave the corresponding
lactones (�)-16, which could be separated by flash chromatog-

raphy and were individually characterized allowing assignment
of their relative configurations by 1H NMR NOE experiments.

Alkylation of the major diastereomer (�)-16 a was readily ach-

ieved using methyl iodide and lithium bis(trimethylsilyl)amide
giving the g-lactone (�)-17. The alkylated lactone (�)-17 was

readily converted into the corresponding exo-cyclic enol ether
(�)-18 on exposure to dimethyltitanocene in toluene at

reflux.[32] Heating the enol ether (�)-18 in xylene at reflux in-
duced the desired Claisen rearrangement to provide the two-
carbon ring-expanded product (�)-19 in 76 % yield. Deprotec-

tion of the silyl ether provided aphanamol I in racemic form
(86 %). The 1H and 13C NMR data of our synthetic material were

in excellent with agreement with that of the natural product[1]

and previously reported data on synthetic samples.[6, 8]

The Claisen rearrangement to form the [5.4.0]-bicyclic
ketone (�)-19 is precedented from the work of Haramata and

most likely proceeds through a concerted [3,3]-sigmatropic re-
arrangement from a chair-like pre-transition state assembly re-
lated to that depicted in Scheme 2 (20) with the isopropyl
group occupying a pseudo-equatorial position.[33, 34]

Having established a thirteen-step route to aphanamol I in

racemic form, we sought to develop a synthesis of the natural
product in enantioenriched form. This was reduced to the

preparation of the cyclization substrate (14) in enantioenriched

from. Nishimura, Hiyashi, and co-workers recently reported
a beautiful enantioselective rhodium-catalyzed conjugate addi-

tion of (triisopropylsilyl)acetylene to a,b-unsaturated aldehydes
to give b-alkynylated aldehydes in high yields and enantiomer-

ic excesses.[22] They had prepared the enantiomer of the alde-
hyde (¢)-23 (Scheme 3) in 88 % yield and 99 % ee on

Scheme 1. Synthesis of cyclization substrate (�)-14. a) CH3CH2MgBr,
0.1 mol % CuCl, THF, 0 8C–RT, 94 %; b) LiCl, water, DMF, 150 8C, 81 %; c) LiAlH4,
Et2O, 0 8C–RT, 93 %; d) 1 m Bu4NF, THF, RT, 92 %; e) p-CH3C6H4SO2Cl, pyridine,
CH2Cl2, RT, 87 %; f) catecholborane, THF, 70 8C 18 h; g) 12, 5 mol % Pd(OAc)2,
20 mol % PPh3, 2 m LiOH, THF, 40 8C, 4 h, 79 % (two steps) ; h) CH2(CO2CH3)2,
NaH, DMF, THF, 80 8C, 1.5 h, 76 %. TBDPS = tert-butyldiphenylsilyl, THF = tetra-
hydrofuran, DMF = dimethylformamide.

Scheme 2. Synthesis of aphanamol I in racemic form. a) Manganese(III) ace-
tate, copper(II) triflate, acetonitrile, reflux, 89 %, 6:1 d.r. at C-1; b) LiCl, water,
DMF, 150 8C, 65 % (�)-16 a major diastereomer, 8 % (�)-16 b minor diastereo-
mer; c) CH3I, ((CH3)3Si)2NLi, THF, ¢78 8C, 90 %; d) Cp2Ti(CH3)2, toluene, reflux,
89 %; e) xylene, reflux, 76 %; f) Bu4NF, THF, 86 %. Cp = cyclopentadienyl.
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a 0.2 mmol scale. Following the reported procedure,[22] but
using (S)-DTBM-segphos in place of (R)-DTDM-segphos, as well

as working up the reaction with sodium borohydride, gave the
alcohol (¢)-24 in 78 % yield and 99 % ee on a 7.0 mmol

scale.[35] A similar synthetic route was used to convert the

alkyne (¢)-24 into (++)-aphanamol I (++)-(1) with similar yields.
Thus, the alcohol (¢)-24 was readily converted into the enan-

tiopure cyclization substrate (++)-14[36] using a Suzuki cross-cou-
pling as a key step. Exposure of the cyclization substrate

(++)-14 to manganese(III) acetate and copper(II) triflate gave
the [5.3.0]-bicyclic g-lactones (++)-15 in 74 % yield (Scheme 4).
As in the racemic series, the lactones (++)-15 were isolated as

a 6:1 mixture of inseparable C-1 diastereomers. Krapcho decar-
boxylation of the lactones (++)-15 allowed separation of the C-

1 diastereomeric lactones (¢)-16. The major diastereomer (¢)-
16 a was readily converted into the methyl-substituted lactone

(¢)-17 on treatment with lithium bis(trimethylsilyl)amide and
methyl iodide. As in the racemic series, methylenation of the

lactone gave the corresponding enol ether, which, on heating
in xylene, gave the desired [5.3.0]-bicyclic ketone (++)-19 (65 %
over two-steps). Alternatively we found that addition of

CeliteÏ post-methylenation followed by continued heating in
toluene at 150 8C gave a one-pot synthesis of the [5.3.0]-bicy-

clic ketone (++)-19 in 74 % yield (see Scheme 4).
Deprotection of the silyl ether with buffered tetra-n-buty-

lammonium fluoride gave (++)-aphanamol I (++)-1 in quantita-

tive yield. The 1H and 13C NMR data of our synthetic material
were in excellent agreement with that of the natural product

and previously reported data on synthetic samples.[1, 6, 8, 37]

In summary, we have developed a synthesis of the biologi-

cally active natural product aphanamol I in both racemic and
enantiopure forms using a catalytic enantioselective conjugate

addition of a silylated alkyne to an a,b-unsaturated aldehyde,

an oxidative radical cyclization, and a ring-expanding Claisen

rearrangement as key steps. Further applications of oxidative
radical cyclizations for the synthesis of complex natural prod-

ucts will be reported in due course.
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