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Abstract
Purpose: The deformable nature of the liver can make focal treatment challenging and is not adequately addressed with simple rigid
registration techniques. More advanced registration techniques can take deformations into account (eg, biomechanical modeling) but
require segmentations of the whole liver for each scan, which is a time-intensive process. We hypothesize that fully convolutional
networks can be used to rapidly and accurately autosegment the liver, removing the temporal bottleneck for biomechanical modeling.
Methods and Materials: Manual liver segmentations on computed tomography scans from 183 patients treated at our institution and 30
scans from the Medical Image Computing & Computer Assisted Intervention challenges were collected for this study. Three archi-
tectures were investigated for rapid automated segmentation of the liver (VGG-16, DeepLabv3 þ, and a 3-dimensional UNet). Fifty-six
cases were set aside as a final test set for quantitative model evaluation. Accuracy of the autosegmentations was assessed using Dice
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similarity coefficient and mean surface distance. Qualitative evaluation was also performed by 3 radiation oncologists on 50 independent
cases with previously clinically treated liver contours.
Results: The mean (minimum-maximum) mean surface distance for the test groups with the final model, DeepLabv3 þ, were as
follows: mContrast(N Z 17): 0.99 mm (0.47-2.2), mNon_Contrast(N Z 19)l: 1.12 mm (0.41-2.87), and mMiccai(N Z 30)t: 1.48 mm (0.82-3.96). The
qualitative evaluation showed that 30 of 50 autosegmentations (60%) were preferred to manual contours (majority voting) in a blinded
comparison, and 48 of 50 autosegmentations (96%) were deemed clinically acceptable by at least 1 reviewing physician.
Conclusions: The autosegmentations were preferred compared with manually defined contours in the majority of cases. The ability to
rapidly segment the liver with high accuracy achieved in this investigation has the potential to enable the efficient integration of
biomechanical model-based registration into a clinical workflow.
� 2020 The Author(s). Published by Elsevier Inc. on behalf of American Society for Radiation Oncology. This is an open access article
under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

The treatment of primary and secondary liver cancers
normally involves surgery, chemoembolization, ablation, or
external beam radiation therapy (RT), and requires 3-
dimensional (3D) imaging, either computed tomography
(CT) or magnetic resonance imaging. Specifically for RT,
segmentation of the liver on CT imaging is required for
treatment planning. More complex RT treatment regimens
may include additional CT imaging for dose escalation and
plan adaptation. Owing to the deformable nature of the liver,
simple rigid registration techniques are suboptimal for 3D
dose tracking.Biomechanicalmodel-based deformable image
registration have been shown to accurately model the defor-
mationof the liver,1,2 but thesemethods require segmentations
of the whole liver as the controlling region of interest. Thus,
segmenting the liver in a consistent manner is particularly
important. Manual contouring of the liver can take up to 30
minutes,3,4 and in the case of biomechanical models, inter/
intraoperator contour variations may adversely affect the
deformable image registration.

Fully convolutional networks (FCNs) have shown great
promise in the ability to accurately segment 2- and 3D images
with multiple classes in very short amounts of time.5-9 FCNs
have been shown to accurately contour the liver in contrast-
enhanced CT images,10 but less work on noncontrast CT
images has been reported. When assessing the feasibility of
these FCN models, Dice similarity coefficient (DSC) scores
or volume differences are often reported as a sole metric.
Unfortunately, such metrics can be relatively insensitive to
erratic edge segmentations that would not be acceptable for
clinical use, yet return a high score. For example, for mean
surface distance (MSD), the sheer number of images present
on aCT scan can result in a lowvaluewhile hiding potentially
clinically impactful errors. Therefore, the work described
herein includes both quantitative and separate qualitative
(blinded physician comparison) analyses of the results to
determine actual clinical feasibility. We hypothesize that
FCNs can be used to rapidly and accurately contour the liver
onboth contrast- and noncontrast-enhancedCTwithminimal
disruption of the treatment workflow.
Methods and Materials
Data

For this retrospective work, 155 consecutively ac-
quired patients from our institution (The University of
Texas MD Anderson Cencer Center) were collected under
an institutional review boardeapproved protocol and 30
image sets were obtained from the Medical Image
Computing & Computer Assisted Intervention (MICCAI)
multiatlas challenge (data: https://www.synapse.org/#!
Synapse:syn3193805/wiki/89480).11 Research data from
our insitution is not available at this time.

Contrast-enhanced computed tomography scans

Of the 155 consecutive patients from our institution,
62 patients received intravenous contrast CT using a
quadriphasic protocol, enabling the visualization of the
tumor and vasculature within the liver, with pixel spacing
ranging from 0.5625 mm to 1.27 mm and slice thickness
from 1.5 cm to 5 cm. For this cohort of patients, manual
segmentations of the liver were defined on both scans by a
graduate student (BMA) under the guidance, evaluation,
and approval of a board-certified interventional radiolo-
gist (BCO) with expertise in treating cancers in the liver.
Forty-two patients had multiple CT images and when this
occurred, the patient images were kept within the training
group. In total, there were 108 contrast-enhanced CT
examinations.

Noncontrast computed tomography scans

The remaining 93 patients’ CT scans were without
contrast injection and are unique patients from the orig-
inal contrast-enhanced CT cohort of patients. These
noncontrast CT scans were included in the training set to
create a more robust model that could identify the liver in
both contrast and noncontrast images. We found that
creating a model using contrast images alone provided
similarly high DSC scores on the test set (m Z 0.96; s Z
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Table 1 Data distribution

Data set Npatients NImages Distribution (images)

Train Validation Test

Contrast 62 108 72 19 17
Noncontrast 93 97 63 15 19
MICCAI 30 30 0 0 30

Abbreviation: MICCAI Z Medical Image Computing & Computer
Assisted Intervention.
All patients with multiple examinations were kept in the training set.
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0.02), but inspection of the noncontrast-enhanced images
often showed oversegmentation, including the heart, and
undersegmentation when near a disease site. Therefore,
we deemed including contrast and noncontrast image sets
necessary. Three patients had multiple examinations, and
when this occurred, the patient images were kept in the
training cohort. In total, there were 97 noncontrast-
enhanced CT examinations. Fifty-three of these image
sets had previously defined manual contours, which were
visually evaluated and edited when deemed necessary.
The contours for the remaining 44 image sets are
explained in the data preparation section.
Training/validation data

Seventy-two institutional contrast-enhanced CT image
sets and 63 institutional noncontrast CT images were
randomly selected from the data cohort as training sets,
resulting in a total of 135 images. We ensured that all 42
patients with multiple examinations appeared solely within
the training set (ie, no overlap between training/testing/
validation sets). Nineteen contrast-enhanced CT images
and 15 noncontrast CT image sets were randomly selected
as a validation set to optimize the model parameters.
Test data

A test set of 66 images was created, composed of 30
MICCAI abdomen challenge image sets and 19
noncontrast-enhanced and 17 contrast-enhanced institu-
tional image sets. The patients were never seen in either
the training or validation phase of the model.

A breakdown of the data and distribution of images
across training, testing, and validation is shown in Table 1.
These images were acquired on a variety of scanners with
varying imaging protocols. Aa detailed description of the
imaging parameters of all data is shown in Table E1.
Architecture

We investigated 3 architectures, 2 of which are 2-
dimensional (2D) and built upon the ideas of transfer
learning (eg, ability to take a previously trained network
and maintain some of the abstract concepts for a new
identification task), and 1 3D U-Net style architecture. The
pretrained networks were learned on nonmedical images
and then applied to our segmentation task. First, we
investigated a 2DU-Net style architecture built on top of the
Visual Geometry Group (VGG)e16 net,12 where 16 refers
to the number of convolutional and fully connected layers.
TheVGGnetworkwas originally created to classify images
from >1000 classes (eg, dog, cat, car). These images are
nonmedical, but the features learned in the early layers are
often abstract and can be useful to other tasks.
Studies have shown that algorithms pretrained on
nonmedical images improve segmentation accuracies on
medical images.13 Long et al adapted the VGG-16 archi-
tecture for pixel-wise segmentation by including transpose
convolutions and skip connections.5 For our architecture,
we used bilinear upsampling in lieu of transpose convolu-
tions to help mitigate the issue of checkerboard artifact
(https://distill.pub/2016/deconv-checkerboard/) and added
concatenation layers. The VGG-16 architecture was
investigated because the reduced number of parameters
increases training and prediction efficiency, and Long et al.
had similarly found negligible differences between the
VGG-16 and -19 architectures.

Second, we investigated the Deeplabv3þ network
with an implementation in tensorflow, facilitated by
the work presented here (https://github.com/bonlime/
keras-deeplab-v3-plus). This network benefits from
the robustness of spatial pyramid pooling and the
sharp lines achieved from the encoder-decoder setup.
Contrary to most encoder-decoder architectures, this
saves memory by only implementing a single skip
layer. Our code varies slightly from the original
implementation in that all relu activations were con-
verted to elu activations, and the dropout was
removed, helping to remove some of the model
instability seen in training.

Lastly, we investigated a 3D U-Net style architecture
with and without atrous convolutions and residual and
skip connections. We investigated varying numbers of
layers from 2 to 5, the number of atrous convolutions, and
the number of initial and maximum filters.

Data evaluation

Quantitative

The accuracy of the liver autosegmentation algorithm,
compared with manual segmentation, was determined
based on 2 metrics: DSC (Eq. 1) and MSD. A paired
student t test was performed between the 3 models on the
test data to evaluate the best final model.

DSCZ2
AXB

AþB
ð1Þ
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Qualitative
A second, completely independent set of 50 patients
(25 hepatocellular carcinoma [HCC] and 25 colorectal
liver metastases [CLM]) who had received RT at The
University of Texas MD Anderson Cancer Center, with
clinically defined and approved manually delineated
contours of the liver, was also obtained. A group of 3
radiation oncologists experienced in treating liver cancer
(EK, GS, PD) were asked to blindly rate the generated
contours versus the previously manually defined and
approved clinical contours. The clinically defined and
peer-reviewed contours had been created by the gastro-
intestinal radiation oncology group at our institution,
which included the 3 radiation oncologists performing the
comparisons. One of the radiation oncologists reviewed
all 50 patients twice, with a 4-month gap between reviews
to reduce repeat bias.

The first blinded review was performed alone and the
second in the group. Both the previous manual and
automatically generated contours were randomized by
name as either A or B, and assigned a random color for
comparison. The images and both contours were dis-
played without identifying the contour source in a RT
treatment planning system (Raystation v6, Raysearch
Laboratories, Stockholm, Sweden). The contours were
judged based on 2 criteria: whether or not there was a
preference for 1 contour over the other, and whether or
not the contours were acceptable for immediate clinical
use without any edit, needing minor edits, or needing
major edits. The physicians specified that minor edits
were contours where 2 to 4 slices would need editing and
major edits where �5 slices needed editing or a clinically
impactful part of the liver was not included. For the
comparison, we first investigated if any of the 3 radiation
oncologists believed that the contours were immediately
clinically usable for RT planning. Then, we performed
majority voting for each patient.

Training

Data preprocessing

All images were normalized using the mean (ie, 80)
and standard deviation (SD; ie, 42) of the liver as found
across the images in the training data set. Each image was
normalized by subtracting the mean and dividing by the
SD.

Initial optimizing

Training and validation was performed using Tensor-
flow 1.15.214 within Python. The Texas Advanced
Computing Center, which incorporates a 16 GB Tesla
K40 GPU, was used to facilitate the process of creating a
model.15 The final training was performed on an in-house
system using a 16 GB NVIDIA Quadro P5000 GPU with
24 CPU cores (3 GHz).

Data preparation

Owing to the smaller number of noncontrast CT im-
ages compared with contrast-enhanced CT images, an
initial model was trained on the available images and used
to generate new contours on the remaining 44 noncontrast
image sets. These generated contours were manually
edited to ensure an accurate final contour of the liver.
With the new images, the model was retrained from the
ground up. These patients were not included in the test
set.

Parameter search

Learning rates for models can have a substantial
impact on model performance. Learning rates that are too
high lead to overfitting on the training set, and rates that
are too low prevent the model from reaching a stable
solution. We identified the minimum and maximum
learning rates using our own adaptation of the learning
rate finder (https://www.pyimagesearch.com/2019/08/05/
keras-learning-rate-finder/). This was done for each
version of the 3D model and the VGG16 and v3Plus
models. The Adam optimizer with categorical cross en-
tropy loss function was used across all 3 architectures.

To identify the best of the various iterations of archi-
tectures in the 3D model, each architecture was trained for
40 epochs, the point at which performance appeared to
plateau. R was then used to plot the validation loss,
looking for trends that might indicate if more or less
layers or filters would result in improved performance and
ensure we are searching within a useful range (ie, if loss
was decreasing with increasing layers, we would want to
investigate adding more layers until increase; Fig 1). For
final training, each model was trained for 100 epochs, or
until performance on the validation set plateaued.

Confidence threshold

The probability cutoff for the model to determine the
liver from the background on a voxel-by-voxel basis was
investigated from 0.05 to 0.95 in 0.05 increments for each
model. The cutoff was decided for each model indepen-
dently based on the validation set by finding the
maximum peak of Dice. The output Dice appeared to
trend similarly between contrast and noncontrast, and so a
single cutoff was chosen to allow for the model to predict
on any liver without having to worry about whether the
threshold should change based on the presence/absence of
contrast (Fig E1). Any pixel with a probability of being
the liver greater than the cutoff was added to the binary

https://www.pyimagesearch.com/2019/08/05/keras-learning-rate-finder/
https://www.pyimagesearch.com/2019/08/05/keras-learning-rate-finder/


Figure 1 Hyper-parameter searching for ideal UNet style architecture. Parameters varied were number of layers in depth (2-5),
number of convolution layers (0-2) versus atrous layers, and maximum number of filters (16-32). For ease of viewing, convolution layer
2 is not shown.
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output mask. Because the liver is a single continuous
organ, an automatic step was implemented to remove all
but the largest continuous binary structure.

Qualitative continuity

The qualitative evaluation of 50 patients, which
required a significant amount of expert users’ time, was
performed using the prediction model that had been
trained on data including the MICCAI challenge data. To
determine whether the newly trained model was equiva-
lent and the qualitative results would hold for the new
model, we performed a MSD comparison between the
contours generated from the original and final Deep-
LabV3þ predicted liver models.

Results

The prediction cutoff based on the validation data for
VGG16, v3Plus, and 3D models were found to be 0.4,
0.3, and 0.3, respectively. With this cutoff, the 3 models
were used to predict on the 63 test CT image sets (33
institutional, 30 MICCAI). The volumetric comparison
(DSC and MSD) between the predicted and ground-truth
volumes for these patients are summarized in Table 1. The
MSD mean (minimum-maximum) were contrast (n Z
17): VGG16: 1.25 mm (0.60-2.95), V3Plus: 0.99 mm
(0.47-2.2), 3DUNet: 4.66 mm (2.35-13.88); Noncontrast
(n Z 19): VGG16: 1.37 mm (0.69-2.93); V3Plus: 1.12
mm (0.41-2.87), 3DUNet: 5.20 mm (1.94-17.92); and
Miccai (n Z 30): VGG16: 1.80 mm (0.65-7.02), V3Plus:
1.48 mm (0.82-3.96), and 3DUNet: 5.15 mm (3.08-9.07;
Table 2).

A paired t test between the VGG16 and V3Plus model
found the V3Plus model to be significantly better (P Z
1e-6), and a paired t test between the V3Plus model and
the 3DUnet found the V3Plus to be significantly better (P
Z 1e-27). We suspect that the predictions on the contrast-
enhanced images are better than the noncontrast scans for
the 2D models because the major failings of the 2D
models are where the segmentation goes too far inferior
into the bowel. With contrast, differentiation from the
liver and bowel is easier. In the 3D model, contrast-
enhanced scans actually appeared to do more poorly
where the model appeared to arbitrarily not segment part
of the liver. Predictions overlayed onto CT scans are
shown for the median and worst case for each architecture
in Figure 2. Box plots showing the results (DSC, MSD,
and Hausdorff distance) of each model for each group are
in the Figures E1-E9.

A summary of the qualitative results of the V3Plus
model prediction is shown in Table 3. In 41 of 50 cases
(82%), at least 1 physician preferred the automatically
generated contours to the clinically drawn contours. In 48
of 50 cases (96%), at least 1 radiation oncologist deemed
the automatically generated contours immediately clini-
cally usable. The 2 cases deemed not clinically usable are
shown in Figure 3. Compared with the manual segmen-
tations, the automatically generated segmentations were
preferred in 32 of 50 cases (64%) upon visual inspection.
The V3Plus predictions were created in a median time of



Table 2 Test results by group for each model

Test data Mean (minimum, maximum)

Dice similarity coefficient Mean surface distance (mm)

Model name Model name

Data set N_Images 3D Unet VGG_16 V3_Plus 3D Unet VGG_16 V3_Plus

Contrast 17 0.87
(0.72, 0.92)

0.96
(0.93,0.97)

0.96 (0.95, 0.98) 4.66 (2.35, 13.88) 1.25 (0.60, 2.95) 1.02 (0.46, 1.89)

Noncontrast 19 0.86
(0.74, 0.93)

0.95
(0.91, 0.97)

0.96 (0.91, 0.98) 5.20 (1.94, 17.92) 1.37 (0.69, 2.93) 1.18 (0.41, 3.21)

MICCAI 30 0.85
(0.74, 0.91)

0.95
(0.90, 0.97)

0.95 (0.90, 0.97) 5.15 (3.08, 9.07) 1.80 (0.65, 7.02) 1.54 (0.90, 3.68)

Abbreviation: MICCAI Z Medical Image Computing & Computer Assisted Intervention.
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<0.1 seconds per slice or approximately 9 seconds for a
90-second image scan on both contrast and noncontrast
livers on a 16GB GPU computer.

The difference between the V3Plus model used for
qualitative evaluation and the final optimized V3Plus
model, excluding patients who needed major edits (eg,
liver ascites and stent, which were also not usable in the
new model), was a median MSD of 1.02 mm (SD Z
0.41) with a maximum MSD of 2.2 mm.

Discussion

This work presents a comparison of 3 state-of-the-art
automatic segmentation methods for the liver with the
addition of more informative, qualitative metrics of seg-
mentation efficacy. A potential limitation is that the 2-
dimensional algorithm could undersegment the liver when
large disease is present on the boundary of the liver.
Incorrect segmentation was often due to the 2D model’s
difficulty in identifying the most inferior aspects of the
liver, where a small liver size could cause the model to
undersegment or continue onward into the bowel. The
main failure of the 3D model was undersegmenting the
liver in certain patients. A better view of each model’s
Figure 2 Predictions (red) overlayed on top of computed tomograp
arrows indicate regions of failure. (A color version of this figure is av
failures can be seen in the worst case for each architecture
(Fig 2). A comparison of our results to the recent literature
is shown in Table 4.

A variety of automatic liver segmentation architectures
have been researched with promising results7-9,15-17 and a
variety of methods (cascaded 3D, pretrained 2D networks,
residual networks), but there is often no inclusion of
human elements to validate the efficacy of the model
segmentations. A comparison of other present techniques
is shown in Table 3, but only our method includes the
qualitative assessment of the created liver segmentation
compared with previous clinical segmentations. This is
particularly important in the liver where the size of the
organ makes volume metrics, such as DSC, insensitive to
potentially clinically impactful mis-segmentations. The 2
cases deemed not clinically usable (Fig 3) had DSC scores
of 0.94 and 0.72.

The combination of cascaded UNet and 3D conditional
random fields7 showed positive results (0.94 DSC) in
segmenting the liver on contrast-enhanced images, but
was limited to a 20-patient test set, of which 15 patients
(75%) had HCC. A unique system of a 3D convolutional
neural network for an initial probability map, followed by
probability density function refinement,8 was presented
hy scans for median and worst cases for each architecture. Red
ailable at https://doi.org/10.1016/j.adro.2020.04.023.)

https://doi.org/10.1016/j.adro.2020.04.023


Table 3 Consensus model results for the 3 reviewing radiation oncologists

Reviewers Majority or one? Preference Clinically usable Minor edits Major edits

Auto Manual Auto Manual Auto Manual Auto Manual

1a, 1b, 2, 3 Majority voting 60%
(30/50)

40%
(20/50)

81%*
(40.5/50)

89%*
(44.5/50)

33%*
(16.5/50)

45%*
(22.5)

19%*
(9.5/50)

11%*
(5.5/50)

At least 1 vote 82%
(41/50)

64%
(32/50)

96%
(48/50)

100%
(50/50)

86%
(43/50)

96%
(48/50)

58%
(29/50)

52%
(26/50)

1b, 2, 3 Majority Voting 62%
(31/50)

38%
(19/50)

76%
(38/50)

82%
(41/50)

42%
(21/50)

50%
(25/50)

24%
(12/50)

18%
(19/50)

At least 1 vote 76%
(38/50)

64%
(32/50)

88%
(44/50)

96%
(48/50)

76%
(38/50)

88%
(44/50)

58%
(29/50)

52%
(26/50)

When specifying reviewers, 1a is Reviewer 1’s initial review and 1b is their review with a 4-month time gap to reduce bias. Majority voting implies at
least half of the reviewers agreed on a case-by-case basis, and ties were split. At least 1 implies that at least 1 reviewer voted in the manner listed.

* Values of 0.5 were split ties/.
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with similar DSC scores for both contrast and noncontrast
image scans; however, the results are from a 5-fold cross
validation of abdominal CT scans and not a withheld test
set. A multiorgan abdominal segmentation 3D FCN15

presented results from a training on 281 contrast-
enhanced CT scans, with an external test set of 150
contrast-enhanced CT scans from another hospital, with a
mean Dice score of 0.954. The created model is able to
segment the liver, spleen, and pancreas, but does not
include noncontrast segmentation capabilities. A combi-
nation of axial, sagnital, and corronal 2D views combined
with 2D FCNs and voxel-based voting, showed benefits
of 3D information with 2D efficiency17; however, the
withheld data set was limited to 7 contrast-enhanced CT
patients. The method by Roth et al18 used a unique
multiscale pyramid 3D FCN with 2 image resolution sizes
and Dice coefficient loss. This architecture was able to
segment multiple organs and segmentations similar to
those presented by our own algorithm, but is limited to
contrast-enhanced CT scans.

All reviewing radiation oncologists agreed that 2 of 25
patients with HCC whole liver contours required major
edits due to the algorithm’s difficulty identifying the liver
Figure 3 (A) Presence of high-contrast biliary stent causing autoseg
misidentified as liver. Teal: ground truth; red: auto segmentation. (A co
adro.2020.04.023.)
around the disease site. An investigation into the 2 cases
requiring major edits by qualitative assessment (Fig 3)
showed that in case A, the segmentation was cut off on
some slices due to the biliary stent, and in case B, the al-
gorithm had difficulty distinguishing between the liver and
ascites. There were no cases with stents or ascites in the
training set. We hypothesize that including more patients
with these occurrences in the training set could improve the
model’s ability to accurately autosegment the livers for
these types of patients; however, this needs to be further
investigated. Between the 2 patient cohorts (25HCC and 25
CLM) of the qualitative data, 25 of 25 patients with CLM
(100%) automatic contours were deemed clinically usable
without edit by at least 1 reviewing physician.
Conclusions

The current work represents a clinically applicable
method to implement rapid automated liver segmentation
with minimal temporal impact on the clinical workflow.
The V3Plus model with minor tweaks has demonstrated
accuracy in the generation of liver segmentation for both
mentation to underestimate liver, requiring edits, and (B) ascites
lor version of this figure is available at https://doi.org/10.1016/j.

https://doi.org/10.1016/j.adro.2020.04.023
https://doi.org/10.1016/j.adro.2020.04.023


Table 4 Comparison of proposed method versus recent
liver segmentation methods

Method Source Test size Dice

Proposed Contrast 17 0.96
Noncontrast 19 0.96
MICCAI 30 0.95

20167 Contrast 20 0.94
20178 Contrast 127 0.96

Noncontrast 13 0.96
201716 Contrast 150 0.95
201717 Contrast 7 0.94
201818 Contrast 129 0.95

Contrast 20 0.94

Abbreviation: MICCAI Z Medical Image Computing & Computer
Assisted Intervention.
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contrast-enhanced and noncontrast CT scans, as presented
by our quantitative and qualitative assessments on
completely withheld data in <1 minute per patient. The
development of an accurate, efficient, and robust auto-
segmentation algorithm for both contrast and noncontrast
CT images can enable the use of deformable registration
algorithms that rely on segmentation of the liver into near
real-time image guidance processes. This model has
further application wherever whole liver segmentations
are required (eg, patient-specific liver mass estimation in
radiopharmaceutical therapy liver dosimetry.
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