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Abstract: We examined the association of vitamin D deficiency to risk of cesarean 

delivery using prospective data in a cohort of 1153 low income and minority gravidae. 

Circulating maternal 25-hydroxyvitamin D and intact parathyroid hormone were measured 

at entry to care 13.73 ± 5.6 weeks (mean ± SD). Intake of vitamin D and calcium was 

assessed at three time points during pregnancy. Using recent Institute of Medicine 

guidelines, 10.8% of the gravidae were at risk of vitamin D deficiency, and 23.8% at risk 

of insufficiency. Maternal 25-hydroxyvitamin D was related positively to vitamin D and 

calcium intakes and negatively to circulating concentrations of parathyroid hormone. Risk 

for cesarean delivery was increased significantly for vitamin D deficient women; there was 

no increased risk for gravidae at risk of insufficiency. When specific indications were 

examined, vitamin D deficiency was linked to a 2-fold increased risk of cesarean for 

prolonged labor. Results were the similar when prior guidelines for vitamin D deficiency 

(25(OH)D < 37.5nmol/L) and insufficiency (37.5–80 nmol/L) were utilized. 
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1. Introduction 

Delivery by cesarean is a common operative procedure experienced by reproductive age 

women [1]. A Cesarean may be performed for reasons related to the mother or to the fetus including 

prolonged labor (dystocia), fetal distress, fetal malpresentation or a prior cesarean delivery [2]. Factors 

which increase risk include older maternal age, obesity, parity and ethnicity [3,4] along with a more 

recently defined factor—maternal nutrition [5–7]. 

Recent research in the United States found low circulating 25-hydroxyvitamin D (25(OH)D), the 

primary indicator of vitamin D status, among women who were either pregnant or in their reproductive 

years [8–10]. Vitamin D is present in food either naturally or by fortification and included in 

nutritional supplements; the majority is synthesized photochemically by the skin from ultraviolet B 

radiation [11]. One way by which poor maternal vitamin D status might increase risk of cesarean 

delivery is by reducing strength of the pelvic musculature and the mother’s ability to push and deliver 

vaginally. However, two observational studies came to different conclusions; one reported an 

increased risk of cesarean for women with concentrations below 37.5 nmol/L [5] and the other no 

association with maternal 25(OH)D [6]. 

The extent to which maternal vitamin D influences the course and outcome of human pregnancy 

remains to be more completely studied. We used an HPLC method to assay circulating 25(OH)D to 

assess the influence of maternal vitamin D at entry to care on risk of cesarean delivery in a cohort of 

young, low income minority gravidae from Camden, New Jersey. 

2. Methods 

The Camden Study examines the effects of maternal nutrition and metabolism in generally healthy 

pregnant women from one of the poorest cities in the United States [7,12]. Participants include teenage 

and mature women enrolling for prenatal care in Camden clinics. Gravidae with serious non-obstetric 

problems (e.g., lupus, chronic hypertension, diabetes mellitus Type 1 or Type 2, and seizure disorders, 

malignancies, drug or alcohol abuse as verified from the medical record) are not eligible. 

Approximately 80% of eligible gravidae agreed to participate. The Institutional Review Board of the 

University of Medicine and Dentistry of New Jersey approved the study. In this analysis, we focused 

on 25(OH) D in gravidae enrolled and delivered from 2001 to 2007.  

Socioeconomic, demographic, lifestyle, and dietary data were obtained by interview at entry to 

prenatal care, and updated at weeks’ 20 and 28 gestation. A 24-h recall of the previous day’s diet was 

obtained on the same schedule, processed with databases from the Campbell Institute of Research and 

Technology (Campbell Soup Company) in Camden. The database generates data for more than 

70 nutrients using the United States Department of Agriculture Nutrient Database for Standard 

Reference [13] and the Continuing Survey of Food Intakes by Individuals [14] as well as data from the 

scientific literature. Intakes have been validated by computing measures of reliability and by assay of 

some circulating biomarkers [15–19]. The nutrient values of vitamin D and calcium from diet and from 

diet plus supplements were averaged across the pregnancy and the mean used in this analysis; entry 

data were included for comparison. 
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BMI was computed (kg/height (m2)) from recalled pregravid weight and height measured with a 

stadiometer at entry to care. Maternal ethnicity (African American, Hispanic and white) was self 

reported. Information on presence or absence of cesarean delivery, whether this was a primary  

(no prior cesarean) cesarean along with the indication for the cesarean were abstracted from the 

delivery record, and delivery logbooks. A total of 56/290 (19.3%) had an elective cesarean, the 

remainder were unplanned.  

Circulating 25(OH)D was measured as 25 hydroxyvitamin D3 (25(OH)D3) and 25 hydroxyvitamin D2 

(25(OH)D2) by HPLC in serum [20] using a kit marketed by Chromosorb (Germany). Briefly, to  

0.5 mL of serum are added 350 µL of methanol–2-propanol (80:20 by volume) and the 25(OH)D 

extracted by mixing three times with 2 mL of hexane. The phases were separated by centrifugation, 

and the upper organic phases combined and dried under nitrogen. The residue was then dissolved in 

100 µL of mobile phase. Calibration curves were constructed using four concentrations of 25(OH)D 

(15–120 nmol/L) and human serum albumin (50 g/L). For the chromatography we used a Waters 

Millenium HPLC (Waters Inc., Milford MA) fitted with a LiChrospher 60 RP select B column  

(4 × 250 mm; 5 µm bead size; EMD, Bridgewater, NJ) maintained at 40 °C. The separation was 

achieved using 760 mL/L methanol in water as the mobile phase with a flow rate of 1 mL/min and 

detection at 265 nm. The injected volume was 50 µL. The 25(OH)D3 and 25(OH)D2 peaks are 

completely resolved with retention times of 20.8–21.1 min and 23.1 min, respectively. The within-assay 

and between assay CVs were <8%. 

Serum intact parathyroid hormone (PTH) was measured by immuno-radiometric assay (IRMA) 

(DSL Diagnostic Systems Laboratories, Inc., Webster, Texas). The two-site IRMA is a non-competitive 

assay using two antibodies directed to non-overlapping N-terminal and C-terminal PTH fragments 

respectively. When these two antibodies are paired in a two-site IRMA, only intact PTH is measured. 

The overall intra and inter-assay coefficients of variation were <5%. Maternal serum obtained at entry 

was stored at −70 °C and used for the assays. Available data show that 25(OH)D and PTH are stable 

and reproducible for several years when stored at −70 °C [21,22].  

3. Data Analysis  

The association of maternal characteristics, PTH and intake of vitamin D and calcium during the 

pregnancy with circulation 25(OH)D was assessed for trend (Chi Square, ANOVA). We used ordinary 

least squares regression to determine the relation of PTH to 25(OH)D examining linear, quadratic and 

quartic terms to fit the line. 

Concentrations of 25(OH)D2 were very low so that vitamin D status (25(OH)D) was based mainly 

on 25(OH)D3. Following recent Institute of Medicine (IOM) guidelines [11] we utilized 25(OH)D  

at <30.0 nmol/L (<12 μg/L) to indicate risk of vitamin D deficiency; concentrations from  

30.0–49.9 nmol/L (12–20 μg/L) to indicate risk of insufficiency. Serum concentrations between 50 and 

125 nmol/L, deemed vitamin D sufficient [11], were used as the reference group. In addition, we also 

compared these results to those obtained using prior guidelines [23]: <37.5 nmol/L, 37.5–80.0 nmol/L 

and >80 nmol/L. 

Multiple logistic regression was used to fit separate models for cesarean delivery (total and primary 

cesarean). Gravidae were compared to those whose 25(OH)D was sufficient. Polytomous (multinomial) 
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logistic regression is an extension of traditional logistic regression which models multiple level 

outcomes so that odds ratios and adjusted odds ratios for more than one outcome are estimated in a 

single model [24]. Since we hypothesized that poor maternal vitamin D status was associated with 

poor muscle tone and ability to push we estimated the relation of 25(OH)D to two indications for 

cesarean: prolonged labor (dystocia) and fetal distress. We also included all other indications for 

cesarean in the same model. All models were adjusted for potential confounding variables associated 

with adverse outcomes in Camden or from the published literature including age, parity, ethnicity, 

smoking, pregravid BMI, gestation at entry and season at entry. Data were analyzed with SAS 

version 9.0 (SAS Institute, Cary, NC).  

4. Results 

Table 1 gives entry data 13.73 ± 5.6 (SD) completed weeks gestation] for the cohort of 1153 low 

income and minority women categorized by concentrations of 25(OH)D suggestive of deficiency and 

insufficiency. Concentrations of 25(OH)D2 were very low and fewer than one quarter of the women 

had detectable levels (greater than zero) thus maternal 25(OH)D consisted mainly of 25(OH)D3. 

By recent Institute of Medicine criteria, 10.8% (N = 125) of the cohort had concentrations  

of 25(OH)D placing them at risk of vitamin D deficiency, and an additional 23.85% (N = 275) had 

concentrations suggesting insufficiency. There were significant linear trends for parous women, for 

women of African American or Hispanic ethnicity, for those with BMIs indicating overweight (25–29.9) 

or obesity (≥30), and for women entering care during the winter (January-March) to be at higher risk 

of deficiency and insufficiency (Table 1). On the other hand, women with levels >125 nmol/L were 

more likely to be nulliparous and white, to have a low BMI (<25) and to enter during the summer 

(July–September) (Table 1). 

Table 1. Linear trends for maternal characteristics and intact parathyroid hormone 

according to categorized 25(OH)D. 

Characteristics N 

25(OH)D Concentration 
p for 

Trend 
<30.0 nmol/L

(N = 125) 

30–49.9 nmol/L

(N = 275) 

50–125 nmol/L

(N = 683) 

>125 nmol/L 

(N = 70) 

25(OH)D (nmol/L) 

Mean, SEM 
1153 22.6 (0.49) 40.7(0.33) 77.6(0.75) 142.1(1.81) <0.001 

25(OH)D3 (nmol/L) 

Mean, SEM 
1153 22.2 (1.49) 39.5(1.00) 75.5(0.64) 139.7(2.0) <0.001 

25(OH)D2 (nmol/L) 

Mean, SEM 
1153 0.44 (0.52) 1.16 (0.35) 2.10 (0.22) 2.34 (0.70) 0.007 

% Detectable  12.0 22.9 25.9 28.6 <0.005 

Intact Parathyroid Hormone 

(pmol/L) 
1141 5.6 (0.21) 4.5 (0.14) 3.6 (0.09) 3.4 (0.27) <0.001 

Gestation at Entry (weeks) 

Mean, SEM 
1153 13.0 (0.50) 13.5 (0.34) 13.8 (0.21) 15.5 (0.67) 0.014 

Age (years) 

Mean, SEM 
1153 23.0 (0.50) 22.7 (0.33) 22.9 (0.21) 22.2 (0.66) 0.67 
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Table 1. Cont. 

Parity (%)       

Nulliparous 435 8.5 18.2 65.3 8.1 <0.001 

Parous 718 12.3 27.3 55.6 4.9  

BMI (kg/m2) 

Mean, SEM 
1153 27.5 (0.57) 27.5 (0.38) 25.6 (0.24) 22.9 (0.77) <0.001 

BMI (%)       

<25  619 9.5 19.2 62.5 8.7 <0.001 

25–29.9 237 13.1 25.7 58.2 2.9  

≥30 297 11.8 32.0 53.2 3.0  

Smoking (%)       

Yes 235 11.5 22.1 58.7 7.7 0.65 

No 918 10.7 24.3 59.4 5.7  

Ethnicity (%)       

African-American 399 18.3 33.3 46.9 1.5 <0.001 

Hispanic 593 8.4 21.6 62.7 7.3  

White 161 1.2 8.7 77.0 13.0  

Season at Entry (%)       

Winter 306 19.0 27.1 49.7 4.3 <0.001 

Spring 324 11.7 25.6 56.8 5.9  

Summer 257 2.7 14.8 74.7 7.8  

Fall 266 8.3 26.7 58.3 6.8  

Insurance Source (%)       

Medicaid 1137 11.0 23.7 59.1 6.2 0.59 

Other 14 10.0 78.6 21.4 0  

There was a significant trend for PTH concentrations to decrease according to the categories of 

25 (OH) D shown in Table 1; a comparison of the PTH at 50–125 nmol/L 25(OH)D to those 

>125 nmol/L suggested no difference between the two (p = 0.45). Circulating 25(OH)D and PTH were 

negatively correlated (r = −0.26) so that PTH concentrations fell as circulating 25(OH)D increased. 

Figure 1 graphically plots unadjusted serum 25(OH)D and PTH for gravidae with and  

without a cesarean delivery. A straight line gave the best fit for women delivered by cesarean  

(−0.019 ± 0.004 pmol/L (b,SE), p < 0.001). A quadratic function provided the best fit for women 

without a cesarean [(−0.047 ± 0.009 pmol/L) + (0.0002 ± 0.000055 pmol/L2 (b,SE))] p < 0.001 for 

each. When linear models were fit for each group, adjusted (age, parity, BMI, ethnicity, smoking, 

season and gestation at entry) and compared the slopes differed significantly (p = 0.035); thus gravidae 

delivered by cesarean had more PTH per unit of 25(OH)D than women without a cesarean. 
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Figure 1. Serum 25-hydroxyvitamin D and parathyroid hormone in women without  

(left panel) and with (right panel) cesarean delivery. Data are unadjusted. 

  

Vitamin D and calcium in the maternal diet or diet plus supplements increased as 25(OH)D rose. 

Intakes of vitamin D and calcium (diet or diet plus supplements) were usually lower when  

circulating 25(OH)D fell to <30 nmol/L but increased regularly between 30 and 49.9 nmol/L and at or 

above 50 nmol/L. This was true regardless of whether the overall mean from the pregnancy was 

utilized or data from the entry visit alone (Table 2). The result was the similar when 25(OH)D 

concentrations <37.5 and between 37.5 and 80 were compared to concentrations exceeding 80 nmol/L 

(data not shown).  

Table 2. Energy adjusted intake of vitamin D and calcium from diet and diet plus 

supplements by 25(OH)D concentration. 

Intake 
(Mean, SEM) 

25(OH)D Concentration 

p for Trend <30 nmol/L 30–49.9 nmol/L 50–125 nmol/L >125 nmol/L 
(N = 125) (N = 275) (N = 683) (N = 70) 

Vitamin D (diet μg/day) 
Mean 1 4.0 (0.29) 4.1 (0.19) 4.9 (0.12) 5.2 (0.38) <0.001 
Entry 3.6 (0.38)  3.5 (0.27) 4.6 (0.16) 5.2 (0.53) <0.001 

Calcium (diet mg/day) 
Mean 1 876 (30.5) 868 (20.8) 943 (13.0) 985 (40.9) <0.001 
Entry 821 (44.3)  809 (31.5) 917 (19.3) 992 (63.1) <0.001 

Vitamin D (diet + supplements μg/day) 
Mean 1 9.1 (0.34) 9.5 (0.23) 10.6 (0.15) 11.2 (0.46) <0.001 
Entry 8.6 (0.43)  9.1 (0.31) 10.6 (0.19) 11.1 (0.62) <0.001 

Calcium (diet + supplements mg/day) 
Mean 1 1021 (30.7) 1024 (21.0) 1110 (13.1) 1156 (41.2) <0.001 
Entry 963 (44.3)  969 (31.5) 1089 (19.3) 1160 (63.1) <0.001 

1 Mean of 3 intakes (Entry, 20, 28 Weeks), energy adjusted. 

A total of 290 gravidae from the cohort (25.2%) were delivered by cesarean of which 173 (15.0%) 

had primary cesareans. Using concentrations of 25(OH)D suggestive of sufficiency as the reference 

and controlling for potential confounding variables apart from BMI, the increase in risk for cesarean 
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and primary caesarean were significant for gravidae at risk of deficiency (25(OH)D < 30 nmol/L). 

After control for BMI the increase was significant and less than 2-fold (66%) for total caesarean; 

primary cesarean was similarly increased (68%) but 95% confidence intervals now included unity  

(p = 0.054). Gravidae at risk for insufficiency (30–49.9 nmol/L) did not have an increased risk for total 

or primary cesarean (Table 3).  

Table 3. Maternal 25(OH) D and Cesarean Delivery (primary, total). 

Total Cesarean Deliveries 

25(OH)D Concentration N % AOR 1 95% CI AOR 2 95% CI 

<30 nmol/L 125 35.2 1.70 1.12, 2.58 1.66 1.09, 2.52 
30–49.9 nmol/L 275 22.2 0.89 0.63, 1.25 0.83 0.59, 1.17 
50–125.0 nmol/L 683 24.9 Reference - Reference - 
>125 nmol/L 70 21.4 0.59 0.17, 2.08 0.90 0.49, 1.66 

Primary Cesarean Delivery 3 

25(OH)D Concentration N % AOR 1 95% CI AOR 2 95% CI 

<30 nmol/L 105 22.9 1.79 1.07, 3.01 1.68 0.99, 2.84 
30–49.9 nmol/L 247 19.1 0.89 0.58, 1.37 0.80 0.52, 1.24 
50–125.0 nmol/L 618 17.0 Reference - Reference - 
>125 nmol/L 66 16.7 0.94 0.47, 1.87 1.03 0.51, 2.06 

1 Adjusted for age, parity, ethnicity, smoking, gestation at entry and season at entry; 2 Adjusted for age, 

parity, ethnicity, smoking, gestation at entry, season at entry and BMI; 3 Excludes gravidae with a second 

cesarean section. 

We found similar but slightly stronger results comparing concentrations of 25(OH)D < 37.5 nmol/L 

to those in excess of 80 nmol/L. After control for potential confounding variables including BMI, there 

was approximately a 2-fold increase in risk for a primary cesarean (Adjusted Odds  

Ratio (AOR) = 1.99, 95% Confidence Interval (CI): 1.20, 3.30) and a less than 2-fold increase  

(AOR = 1.74, 95% CI: 1.13, 2.67) for total cesarean delivery with 25(OH)D concentrations  

below 37.5 nmol/L; risk was not increased between 37.5 and 80 nmol/L (AOR = 1.25, 95% CI: 0.81, 

1.24 for primary cesarean and AOR = 1.14, 95% CI: 0.80, 1.59 for total cesarean).  

A total of 7.7% (N = 89) of the cohort were delivered by cesarean for a prolonged labor and  

another 4.9% (N = 56) for fetal distress. These two causes together accounted for more than  

half (52.8%) of all deliveries by cesarean. Other causes included elective cesarean (4.9%), fetal 

malpresentation (2.5%), failed induction (1%) preeclampsia (0.5%), placental abruption (0.9%) and 

others (3.3%). Risk of cesarean for prolonged labor was increased 2-fold for gravidae  

with 25(OH)D < 30 nmol/L. No increase in risk for fetal distress as a cause of cesarean or for causes 

other than prolonged labor or fetal distress was noted among gravidae with 25(OH)D < 30 nmol/L or 

between 30 and 49.9 nmol/L (Table 4). When data were restricted to women with a primary cesarean 

and 25(OH)D was <30 nmol/L there was a 2-fold increase in cesarean for prolonged labor  

(AOR = 2.12, 95% CI 1.06, 4.32 after control for potential confounders) but no increase in fetal 

distress or other causes of cesarean delivery; no increase in risk was found when levels fell between  

30 and 49.9 nmol/L. A similar result was noted for prolonged labor (AOR = 2.24, 95% CI: 1.17, 3.98) 

when gravidae with concentrations falling below 37.5 nmol/L 25(OH)D were compared to those  
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>80 nmol/L after control for potential confounding variables; no increased risk was noted when 

25(OH)D was between 37.5 and 80 nmol/L (AOR = 1.18, 95% CI: 0.68, 2.06). 

Table 4. Maternal 25(OH) D and total cesarean by cause. 

25(OH)D 

Concentration 
N 

Prolonged Labor Fetal Distress Other Causes 

% AOR 1 95% CI % AOR 1 95% CI % AOR 1 95% CI 

<30 nmol/L 125 12.0 2.08 1.09, 3.98 5.6 1.54 0.64, 3.70 17.6 1.38 0.79, 2.38

30–49.9 nmol/L 275 8.0 1.14 0.66, 1.97 5.1 1.09 0.56, 2.11 9.1 0.56 0.35, 0.92

50–125.0 nmol/L 683 7.0 Reference - 4.5 Reference - 13.3 Reference - 

>125 nmol/L 70 5.7 0.81 0.28, 2.35 5.7 1.21 0.41, 3.60 10.0 0.82 0.36, 1.93
1 Adjusted for age, parity, ethnicity, smoking, BMI, gestation at entry and season at entry. 

5. Discussion 

In our prospective study of low income and minority Camden gravidae, the proportion at risk of 

vitamin D deficiency (<30.0 nmol/L) was 10.8%; with another 23.8% at risk of insufficiency, neither 

differs markedly from prevalence data reported by the Centers for Disease Control using Institute of 

Medicine guidelines [25]. The indications for cesarean in this study, including the leading indication 

(prolonged labor) were the same as for an international comparison which included the United States [2]. 

We found that risk of vitamin D deficiency at entry to care linked to an increased risk of cesarean 

delivery as well as to a better than two fold increase in risk for a specific indication for cesarean: 

prolonged labor. This was true regardless of whether we used a lower (<30 nmol/L) or a  

higher (<37.5 nmol/L) concentration of 25(OH)D to index vitamin D deficiency. There was no 

increase in risk of cesarean for women with vitamin D insufficiency however defined. There was no 

increased risk for women with levels of 25(OH)D exceeding 125 nmol/L. Higher circulating  

levels of 25 (OH)D have been related to increased mortality and risk of certain cancers but are not 

thought to be of concern during pregnancy [11]. Recent Endocrine Society guidelines [26] recommend 

a range of 25(OH)D between 100–150 nmol/L for adults including pregnant women with only 

extraordinary levels (e.g., 25(OH)D > 375 nmol/L) warranting concern about toxicity. 

These data are consistent with a study by Merewood [5] where women with a primary cesarean 

section had lower concentrations of 25(OH)D measured within 72 h of delivery than controls who 

delivered vaginally. While they did not examine the indications for cesarean, a small case-control 

study of Pakistani women looked at a specific cause (cesarean for obstructed labor from cephalopelvic 

disproportion) but reported no association with 25(OH)D at delivery [6].  

Vitamin D receptors are present in skeletal muscle [27]. Vitamin D deficiency and insufficiency are 

related to muscle mass and strength in younger women [28,29]. Circulating levels of 25(OH)D correlated 

positively with jumping mechanography, a measure of muscle force and power, in young women from 

Manchester, England; the mean 25(OH)D concentration of participants was 28.9 nmol/L [28]. Chinese 

adolescents who were vitamin D deficient (25–50 nmol/L) or severely deficient (<25 nmol/L) had 

reduced handgrip muscle strength when compared to those with higher levels of 25(OH)D [29]. In a 

cross sectional study of US adults, lower 25(OH)D was associated with less skeletal muscle mass in 

younger women (range 21–64 years) but not reduced grip strength [30]. While there are few studies of 

vitamin D and muscle strength in reproductive age women, recent research using data from NHANES 
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2005–2006 showed a decreased risk of pelvic floor disorders for women with concentrations of 

25(OH)D exceeding 75 nmol/L. For women age 20 and older risk was reduced by 6% for each 5 unit 

increase in 25(OH)D and by 8.6% for women aged 50 and over [31]. During pregnancy strengthening 

muscles of the pelvic floor enhances muscle control and flexibility, prevents urinary incontinence 

during and after delivery [32] and smoothes the progress of labor [33]. In one study, gravidae 

randomly assigned to an exercise regimen to strengthen their pelvic floor musculature had lower rates 

(22%) of a prolonged second stage of labor compared to controls (37%) [33]. Thus it is plausible that 

one way by which poor maternal vitamin D status increases risk of cesarean delivery is by reducing 

pelvic muscle strength and control leading a reduced ability to push and to a longer and more 

difficult labor.  

Since our study was prospective, i.e., examined the influence of 25(OH)D months before delivery, 

supplementation of women at risk of vitamin D deficiency from early pregnancy onward might reduce 

the rate of cesarean delivery. In a recent randomized controlled trial, 25.3% of women assigned to 

receive 400 IU vitamin D/day, 20.6% assigned to 2000 IU/day and 14.3% assigned to 4000 IU/day 

delivered by cesarean. These results were not statistically significant owing, in part, to small sample 

size (111–122/group) [34].  

Most of the 25(OH)D measured in our cohort was 25(OH)D3 which is also synthesized by  

the skin after exposure to ultraviolet B radiation from the sun whereas 25(OH)D2 is not [11,23].  

Vitamin D is present in few foods naturally (fatty fish, fish liver oils), used to fortify others (milk, 

breakfast cereals, orange juice), and included in nutritional supplements (prenatal multivitamins). 

Vitamins D2 and D3 are both used in nutritional supplements and for food fortification [11]. We found 

that calcium and vitamin D from diet or diet plus supplements was positively related to circulating 

25(OH)D. Mean dietary intakes of vitamin D and calcium averaged over the pregnancy were similar to 

NHANES III data for reproductive age women [35]. Mean intake from diet plus supplements 

approximated the pregnancy EAR for calcium at all concentrations of 25(OH)D and the pregnancy 

EAR for vitamin D when circulating 25(OH)D was 50 nmol/L or better [11]. The Endocrine Society’s 

guidelines call for a higher vitamin D intake in at risk pregnant women with a range of 15–25 μg/day 

in women age 18 and younger and 35.5–50 μg/day in women 19 and older [26]. 

Parathyroid hormone and 25(OH)D are inversely related; an increased concentration of PTH is a 

functional indicator of vitamin D deficiency and insufficiency. Consistent with others we found that as 

circulating concentrations of 25(OH)D decreased, PTH rose [11,23]. In our study PTH was increased 

at concentrations suggestive of deficiency and insufficiency, declined as 25(OH)D increased and was 

no different when concentrations consistent with vitamin D sufficiency and those exceeding 

125 nmol/L were compared. The shape of the curve describing the relation between PTH and 

25(OH)D was different for women delivered vaginally (quadratic) or by cesarean (linear). When both 

groups were compared using the same model, the slopes were significantly different and suggested 

more PTH per unit of 25(OH)D in women delivered by cesarean.  

Finally, we confirmed vitamin D variation with maternal BMI, by season of the year and according 

to maternal ethnicity and found that poorer vitamin D status occurs with overweight and obesity [36,37] 

during the winter months and with increasing intensity of skin pigmentation [8]. While we relied on 

the medical record to identify women with prolonged labor, future studies would benefit from use of a 
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more uniform definition. Results are also limited by use of self declared race/ethnicity as a proxy for 

skin pigmentation and season of year as a surrogate for sun exposure.  

6. Conclusions 

While there is no single reason for the continued rise in cesarean delivery in the United States, our 

data suggest that decreasing the number of women at risk of vitamin D deficiency might have 

important ramifications for women, their pregnancies and the cost of their care. Results stemming from 

observational studies, even when they are prospective, can be endlessly debated, if for example, they 

are a consequence of uncontrolled confounding or of differences in medical judgment. But the 

question at hand about vitamin D and cesarean delivery is one that is best answered by an experiment, 

a randomized controlled trial of vitamin D supplementation in a population with poor vitamin D status 

where the doses are high enough to move women into ranges of 25(OH)D associated with decreased 

risk [5,38]. 
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