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Introduction

There is a need for eScience technologies to process the large
volumes of rapidly generated, heterogeneous[1] protein–ligand

interaction data into computational models that enable the
design of efficacious and safe medicines.[2] The ChEMBL data-

base (version 23), for example, contains over 14 million data
entries on 11 500 protein targets, of which 4600 human, cover-

ing 1.7 million unique compounds.[3] The Protein Data Bank

(PDB, accessed October 21, 2017) contains more than 130 000
structures with nearly 24 000 small molecules covering 67 000

unique protein–ligand complexes.[4] Currently 20 000 human
proteins have been deposited in Swiss-Prot[5] (version 2017_

10), of which 3300 proteins are also present in ChEMBL. Com-
parison of the protein, ligand, and bioactivity data in ChEMBL,

PDB, and UniProt indicates that structural information is lack-
ing for more than 95 % of the protein–ligand pairs for which

bioactivity data has been reported, and for more than 75 % of
the human proteins for which sequence information is avail-

able. In silico chemogenomics[6] and computer-aided drug dis-

covery methods can be used to predict protein–ligand interac-
tions in order to fill these bioactivity-structure and sequence-

structure gaps, identify new protein–ligand pairs, and design
new ligands.[6b, 7] The success rate of such methods strongly de-

pends on the efficient integration of chemical, pharmacological
and structural data to train, optimize, and evaluate ligand- and
protein-based models.[6b, 7a,b] An effective approach to accom-

plish this is through the development of scientific workflows[8]

that facilitate the standardization of protocols,[7c] the integra-
tion of data and analyses, and re-use of parts of protocols to
customize, extend, or design new workflows for different tar-

gets or applications.[9] KNIME[10] and Pipeline Pilot[11] are estab-
lished workflow managers in the field of cheminformatics and

computer-aided drug discovery, with a growing number of
users.[8] Several ligand-based workflows have been reported
that combine chemical and biological data sources for ligand-

based target prediction.[12] Few structure-based workflows
have been reported, including protocols for pharmacophore

screening,[13] structure-based ligand optimization,[14] as well as
combined ligand- and protein-based ligand repurposing.[15]

Several of the tools in the reported workflows, however, use

commercial computer-aided drug discovery software that is
not accessible without a paid license.[15b, 16] Most freely available

cheminformatics tools[17] (nodes) that can be run within these
workflows focus on small molecules[18] and the number of

nodes that use freely available structure-based approaches is
relatively scarce.

eScience technologies are needed to process the information
available in many heterogeneous types of protein–ligand inter-

action data and to capture these data into models that enable
the design of efficacious and safe medicines. Here we present
scientific KNIME tools and workflows that enable the integra-
tion of chemical, pharmacological, and structural information
for: i) structure-based bioactivity data mapping, ii) structure-
based identification of scaffold replacement strategies for

ligand design, iii) ligand-based target prediction, iv) protein se-
quence-based binding site identification and ligand repurpos-

ing, and v) structure-based pharmacophore comparison for
ligand repurposing across protein families. The modular setup
of the workflows and the use of well-established standards
allows the re-use of these protocols and facilitates the design
of customized computer-aided drug discovery workflows.
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The current work describes the integration and analysis of
several chemical, biological, and structural data types in work-

flows that can be used for: i) structure-based bioactivity data
mapping, ii) structure-based identification of scaffold replace-

ment strategies for ligand design, iii) ligand-based target pre-
diction, iv) protein sequence-based binding site identification

and ligand repurposing within a protein family, and v) struc-
ture-based pharmacophore comparison for ligand repurposing

across protein families.

The flexible workflows and protocols presented here can be
used as templates for the standardization of protocols, the in-

tegration of data and analyses, and can readily be reused or
extended for the creation of new computer-aided drug discov-

ery workflows for other protein targets and applications. The
cases will focus on two of the pharmaceutically most relevant
protein targets, namely G protein-coupled receptors (GPCRs)

and kinases.
Moreover, this work presents new KNIME nodes that enable

the analysis and prediction of protein–ligand interactions using
freely accessible structural cheminformatics tools, including:
i) web service nodes to extract and combine data from GPCR
(GPCRdb)[23, 29] and kinase[30] (KLIFS)[24] focused databases, ii) no-

des to set up, run, and analyze results of structural pharmaco-
phore-based protein binding site comparison (KRIPO),[26, 31]

ligand shape-based (Shape-it)[25] and pharmacophore-based
(Align-it)[25] comparison, and molecular docking simulation

(PLANTS)[27] tools, and, iii) new KNIME nodes to perform amino
acid sequence entropy analyses (ss-TEA),[28] align (aligner), read,

and write pharmacophores (pharmacophores), and visualize
protein–ligand complexes and pharmacophores in 3D (mol-
viewer) (Figure 1).

All nodes and tools used to perform the analyses described
in the current work are available as community contributions

in KNIME under “3D-e-Chem” (https://www.knime.com/3d-e-
chem-nodes-for-knime), the source code for all nodes and all
workflows themselves are available via GitHub (https://github.-
com/3D-e-Chem/workflows), and everything is also embedded

within an updated version of our 3D-e-Chem virtual machine[31]

(https://3d-e-chem.github.io/3D-e-Chem-VM/). This enables all
users to download, apply, customize, and extend the work-

flows to their own protein targets of interest in order to
answer different chemogenomics or drug discovery related

questions.

Figure 1. Overview of structural cheminformatics tools and workflows for computer-aided drug discovery applications described in the current study. Pharma-
cological (ChEMBL)[3] and structural (PDB)[4] data on protein–ligand interactions are integrated and complemented by structural chemogenomics analyses of
ligand, protein, and protein–ligand interaction features by the combination of different KNIME nodes, including small molecule ligand cheminformatics tool-
kits (e.g. , CDK,[17, 19] ChemAxon,[20] Openbabel,[21] RDKit),[22] web service nodes to extract information from GPCR (GPCRdb)[23] and kinase (KLIFS)[24] focused data-
bases, and nodes to perform ligand shape-based (Shape-it),[25] ligand pharmacophore-based (Align-it),[25] and protein pharmacophore-based (KRIPO)[26] similari-
ty searches, molecular docking simulations (PLANTS),[27] amino acid sequence entropy analyses (ss-TEA),[28] pharmacophore alignments (aligner), and to visual-
ize protein–ligand complexes and pharmacophores (molviewer). Workflows for structure-based bioactivity data mapping, ligand design, target prediction and
ligand repurposing are described in the current work and provided as Supporting Information.
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Results and Discussion

Structure-based bioactivity data mapping of kinase inhibi-
tors

Protein–ligand crystal structures provide information regarding

protein–ligand interactions and protein conformations, where-
as bioactivity data provides insight into the binding affinity or

functional effect. The integration of structural and bioactivity

data allows one to interpret differences and similarities in bio-
activity (e.g. , affinity cliffs) to ligand binding modes, specific

protein–ligand interactions, and to extrapolate these insights

to other protein targets. In the next workflow (Figure 2) we
have combined bioactivity data from ChEMBL and (structural)

kinase data from KLIFS to create a matrix of available bioactiv-
ity data on human kinases for all co-crystallized kinase ligands.

Protocol :

1) Collect protein information and the molecular structures of

co-crystallized ligands (here from KLIFS)

2) Retrieve the available bioactivity data for the ligands (here
from ChEMBL)

3) Clean, curate, and process the bioactivity data

Figure 2. Structure-based bioactivity data mapping workflow (A) of kinase inhibitors using both the KLIFS and the ChEMBL database. The heatmap (B) shows
the bioactivity profile for the top 100 co-crystallized kinase ligands with the largest amount of data available for the top 400 kinases. The kinomes, created
with KinMap,[32] show the number of unique kinase-inhibitor complexes based on KLIFS (C) and the number of unique kinase inhibitors based on ChEMBL (D).
The data accumulated in this workflow are summarized (E) for two well-known kinase inhibitors, namely Seliciclib and Dasatinib (indicated with a blue and
green arrow, respectively on the Y-axis of the heatmap). *Only human kinases are listed.
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4) Selection of the compounds and kinase targets of interest
5) Formatting and visualizing the data

The molecular structures of all 2552 unique co-crystallized

small molecule kinase inhibitors were collected via KLIFS nodes
(KLIFS accessed August 18th, 2017) in SMILES format. The InChI-
Keys of the inhibitors were subsequently used to retrieve the
ChEMBL IDs for the compounds (1583 matches) including all
corresponding bioactivity data (166 976 data points). Using the

human kinase list from KLIFS all bioactivity data was reduced
to solely the human kinome (86 601 data points for 432 kinas-

es). The top 100 compounds with the largest number of avail-
able bioactivity data (excluding single concentration measure-
ments) for kinases[30] was then selected together with the top
400 kinases and the median log value of the bioactivity data

for each unique compound–kinase pair. The data was then

transformed into a matrix and visualized as a heatmap using
the JFreeChart HeatMap node. The heat map shows clear dif-

ferences in the bioactivity profiles between kinase inhibitors
and highlights promiscuous and selective compounds as well

as the gaps in the bioactivity matrix. This workflow illustrates a
simple, yet powerful, method of complementing a structure-

based view of kinase inhibitors with the available pharmaco-

logical data for more advanced structural chemogenomics ap-
plications (Figure 2).

Scaffold replacements for kinase ligand design

Scaffold hopping is a common approach in which a part of a
known active compound is changed while trying to maintain
the binding affinity and binding mode of the original com-
pound in order to obtain better ADMET/PKPD or physicochem-
ical properties or to escape patent infringement.[33] In the next
workflow (Figure 3) protein–ligand interaction similarity[6a, 34] as
well as chemical similarity is used to identify molecular pairs

with a low chemical similarity but a high interaction similarity,
thereby providing interesting starting points for the design of
hybrid molecules that have a high probability of maintaining
their binding mode.

Protocol :

* Collect structural information, protein–ligand interaction fin-
gerprints (IFP), and molecular structures of the co-crystal-

lized ligands (here from KLIFS)
* Perform full pairwise ligand-based similarity and IFP similari-

ty analyses
* Filter the data by selecting ligand pairs with a low molecu-

lar similarity and a high interaction similarity
* Obtain the aligned structures and compare the binding

modes of the molecule pairs of interest
* Design a scaffold hop based on the selected molecule pair

and dock them into the desired protein kinase

Figure 3. A workflow (A) for the identification of potential scaffold replacements for kinase inhibitors while maintaining the protein–ligand interaction profile
by combining protein–ligand interaction fingerprint (IFP) similarity with ligand-based dissimilarity (ECFP-4) analyses. The scaffold hop between an imidazopyr-
idine inhibitor (PDB ID: 4DIT)[35] and a carboxamide inhibitor (PDB ID: 4PTG),[36] shown as the first entry in the table overview (B), was used to design a
merged molecule (C). This design was docked into GSK3B (PDB ID: 4PTG)[36] using the PLANTS nodes and visualized in the Ligand and Protein Viewer (D).
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* Visually evaluate the obtained binding modes, compare
their interaction fingerprints, or perform another binding

mode comparison technique.

Starting from the KLIFS nodes all structural information on
human kinases (7552 unique monomers) was downloaded in-

cluding the kinase-inhibitor interaction fingerprints (IFP) and
the SMILES of the co-crystallized kinase inhibitors. Subsequent-

ly, a group loop is started that processes all structures per indi-

vidual kinase. Within the loop, a pairwise interaction-based
IFP[6a, 34] and ligand-based ECFP-4[37] comparison is performed
for all complexes of each kinase. The combinations are subse-
quently filtered for ligand pairs with a low chemical similarity

(ECFP-4 Tanimoto score <0.26) and a high interaction similarity
(IFP Tanimoto score >0.75), that is, all chemically distinct

ligand pairs that do have similar interactions with the kinase

target are selected. From the resulting list of pairs, an imidazo-
pyridine inhibitor (PDB ID: 4DIT)[35] and a carboxamide inhibitor

(PDB ID: 4PTG)[36] in complex with GSK3B with a very low
ligand similarity (Tanimoto ECFP-4 = 0.188) and an identical

protein–ligand interaction pattern (Tanimoto IFP = 1.0) were se-
lected as an example for further inspection. From both struc-

tures, the KLIFS aligned full monomer and ligand were down-

load and subsequently visualized using the Ligands and Pro-
teins Viewer showing the overlay of the ligands in the GSK3B

binding site. These two kinase inhibitors were subsequently
used to design a hybrid compound drawn in the MarvinSketch

node. Finally, this design was docked into the GSK3B binding
site (PDB ID: 4PTG) using the newly developed PLANTS[27]

docking nodes. Upon visual inspection of the obtained binding

modes within the Ligands and Proteins viewer, a highly con-
served binding mode of both parts of the hybrid design is ob-

served. Within this workflow the chemical dissimilarity is com-
plemented with protein–ligand interaction patterns to identify

distinct molecules with similar mechanisms of binding. This
combination of techniques provides new opportunities for mo-

lecular design based on known ligands and the workflow

could, for example, be rewired and extended for more ad-
vanced fragment-based replacement approaches.

Ligand-based cross-reactivity prediction

The derivation of similarity measures between different protein
receptors may be used to explore cross-reactivities and to ex-
plore the potential for compounds to display (useful) polyphar-

macology. The PP_GPCR (protein–protein association GPCR)
workflow (Figure 4 A) follows methodologies used in previous

efforts[39] to explore the relationships between protein targets
using ligand topology. This chemocentric approach involves

describing the sets of ligands for each protein target by chemi-

cal fingerprint descriptors,[40] and comparing the sets with each
other to derive similarities between protein targets. With this

approach, one can derive protein–ligand and protein–protein
associations ranging from biologically expected to less obvi-

ous.

Protocol :

* Collect available bioactivity data for a protein family or (full)
set of proteins of interest

* Clean, curate, process, and filter the bioactivity data
* Calculate ligand-based fingerprint descriptors for each com-

pound
* Goal 1: Protein–protein association prediction
* Perform an all-against-all comparison of the fingerprints

and select relevant hits based on a user-definable cutoff
* Group the number of hits per protein target pair and cal-
culate an E-value
* Output of the results for visualization in, for example, Cy-

toscape[41] or flareplots.[38]

* Goal 2: Identification of potential protein targets for small

molecules
* User input of the small molecules of interest and calcu-
late their ligand-based fingerprint descriptors
* Perform a fingerprint comparison against the protein da-
taset and select hits based on a user-definable cutoff
* Group the number of hits per protein target and calcu-
late an E-value

The protocol is applicable to any combination of data sets
with unknown distributions of structures and biological activity

values, user intervention to vary thresholds, similarity meas-
ures, fingerprints and statistical approaches is made possible.

The PP_GPCR workflow reads in data from a public data
source, ChEMBL, for all non-olfactory GPCR receptors as de-

rived from the GPCRdb.[23] Various filters for allowed activity

type (EC50, IC50, AC50, Kb, KD, Ki) and threshold activity (pAct +5)
are applied, a minimum compound set size of 5 is required,

and a restriction on the number of calculated rotatable bonds
(maximum of 18) is used to limit the number of very large,

flexible compounds. The latter is performed as in our experi-
ence the presence of large numbers of peptide/peptoid com-

pounds can lead to some targets being routinely overrepre-

sented in later comparisons. Fingerprint descriptors (in this
case RDKit : Daylight-like topological fingerprint) were calculat-

ed for each compound and the similarities between the recep-
tor sets were determined using a user-definable threshold for
similarity, here set to a minimum of 0.7. Use of the raw similari-
ties and set size following Keiser[39a] allowed the calculation of

E-values, used to rank the similarity between protein targets.
The similarities between receptors are viewable as a KNIME
Table and Excel File. To highlight some of the identified similar-

ities the top 500 protein associations were visualized in a flare-
plot[38] (Figure 4 D) and a heatmap (Figure 4 B). The melanocor-

tin receptors, for example, show links with opioid, endothelin,
chemokine and somatostatin receptors. These associations

have previously been explored by Quillan et al.[42]

The PP_GPCR workflow may also be used to calculate poten-
tial targets/cross-activities for individual compounds. A com-

pound may be entered into the workflow or, if already present
in the data, simply extracted and compared with the finger-

prints already present allowing the calculation of the statistical
significance and ranking by E-values. To analyze the predictive
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ability of the PP_GPCR workflow, the workflow was applied to
five reference structures taken from Keiser et al.[39b] with an ex-
perimentally validated GPCR affinity (Ki<1000 nm). Using the
default similarity cut-off of 0.7, for four of the five compounds

(Sedalande, Dimetholazine, Xenazine and Fabhistine) previous-
ly predicted activities were reflected in the top-five nearest
neighbors in the PP_GPCR workflow (Figure 4 C). Lowering the
similarity cut-off increases the likelihood of detecting further
nearest neighbors at the expense of a larger number of hits.

Sequence-based ligand repurposing within a protein family

Sequence-based identification of key residues for a specific
protein can help with the identification of binding site residues

or residues that are linked to a specific receptor function. More
importantly, this information can be exploited for ligand repur-

posing as proteins that share similarity for these key residues
can potentially bind similar ligands.[43] In this workflow

(Figure 5) we use a double entropy sequence analysis method
(ss-TEA) to identify these key residues, and perform a se-

quence-based comparison for these residues to identify similar
proteins (within the same protein family) as potential candi-

dates for ligand repurposing.[44]

Protocol :

* Create or obtain a large sequence alignment for a protein

family
* Selection of the protein subfamily of interest
* Perform the double entropy ss-TEA analysis for identifica-

tion of key residues for the selected subfamily
* Extract the aligned key residues and perform a sequence

comparison to identify nearest neighbors
* Collect additional ligand and bioactivity data for the nearest

neighbors

Figure 4. Ligand-based GPCR cross-reactivity workflow (A) with selected output (C) from the nearest neighbor calculation of four of the five reference com-
pounds. Blue boxes highlight areas where recalculated tables are provided and may be used for faster and more efficient processing. Green boxes show
areas for user input and adjustment. The heatmap (B) summarizes the ligand-based similarity overlap for all provided GPCR ligands. The protein target net-
work (D) highlighted in a flareplot[38] shows the top 500 associations between protein targets based on their shared ligand similarities (line thickness indicates
the significance), the associations of the melanocortin receptors are highlighted in red.
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The workflow begins by gathering a complete list of all class

A GPCR families (300), all class A GPCRs (11 731), and the
aligned and numbered protein residues for each GPCR

(4 536 590 in total) using the GPCRdb[23] nodes. The structure-
based residue numbering was then used to obtain a matrix
with the position-based alignment of all GPCR residues. At this

point, the user can inspect the table of GPCR families and
highlight the GPCR receptor/subfamily of interest using an in-
teractive table viewer. The user selection, in this case the So-
matostatin receptor type 5 (SST5R), is then used to create a
subfamily (i.e. , reference group) as input for the double entro-
py analysis by the ss-TEA node. All residue positions are scored

according to the entropy within the subfamily (internal entro-
py) compared to the entropy outside the subfamily (external
entropy). The 20 residue positions within the seven transmem-
brane helices with the lowest score (the residues with a low in-
ternal entropy, but a high external entropy) were selected for

further processing. These residues have a high conservation of
a residue within a subfamily but a low conservation outside a

subfamily, which is an indication of the subfamily-specific rele-
vance of the residue for, for example, ligand recognition or re-
ceptor function. For visualization of the results, a scatterplot is

created displaying the internal versus the external entropy
with all residue positions (each dot) colored according to their

ss-TEA score (Figure 4 C). Subsequently, an alignment of solely
the selected 20 residues is generated and used to calculate the

sequence identity of the human GPCR of the subfamily to all

human GPCRs. The nearest 50 GPCRs based on this ss-TEA se-
quence alignment are selected and shown in an interactive

table viewer as potential candidates for ligand repurposing
and complemented by a list of available crystal structures in

the PDB. Moreover, all ChEMBL bioactivities for each receptor

are obtained and the number of active inhibitors annotated in
ChEMBL is listed, including the number of known ligands that

have both an affinity for the identified receptor as well as for
the reference receptor. For the SST5R this selection of GPCRs

logically contains the other somatostatin receptors and the
closely related opioid receptors, but also the more distant dop-

amine as well as serotonin receptors (Figure 4). This matches
with the known cross-reactivity of some SST5R inhibitors for
the m opioid receptor, as well as the dopamine D2 receptor

(D2R) and the serotonin 2B receptor (5-HT2BR), which are also
identified by the cross-reactivity assessment using the ChEMBL

bioactivities of the known SST5R inhibitors (see Figure 4 C,D).
This is, for example, demonstrated by the cross-reactivity of

the marketed drugs Fluspirilene (a D2R antagonist) and Lopera-

mide (a m opioid agonist) on SST5R. Vice versa, a series of ben-
zoxazole SST5R inhibitors showed nanomolar affinities for 5-

HT2BR (Figure 4 F). All these receptors share the key ionic
anchor D3.32 (Figure 4 E) within the selected residues, which

was deemed essential for the ligand recognition.[46]

Figure 5. Workflow (A) for the identification of ligand repurposing possibilities using a sequence-based double entropy analysis (ss-TEA). This example shows
the identification of the opioid, serotonin, and dopamine receptors as potential repurposing targets for somatostatin type 5 inhibitors, which was retrospec-
tively verified using ChEMBL data (C) and a literature search (F). The scatterplot (B) shows the internal entropy (X-axis) versus the external entropy (Y-axis) for
each residue and is colored by the ss-TEA score (the lower the more significant). Part of the summarized analysis results are shown in (C) the interactive table
viewer and (D) the identified nearest proteins for SST5R are shown in the phylogenetic tree of human GPCRs. (E) A sequence alignment of solely the residues
(using the Ballesteros–Weinstein residue numbering scheme)[45] identified with ss-TEA for the somatostatin receptors and highlighted cross-reactivity targets.
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Structure-based pharmacophore comparison for ligand re-
purposing across protein families

Ligand repurposing across protein families can be enabled

through the comparison of known protein binding sites based
on the available crystal structures.[47] The rationale is that pro-
teins with similar binding sites can potentially bind similar li-
gands.[47, 48] In this workflow (Figure 6) we compare the KRIPO

binding site pharmacophores from all structures of a protein

(family) of interest against the KRIPO pharmacophores of the
full PDB to identify ligand-repurposing possibilities.

Protocol :

* Collect available PDB entries for the protein families of in-
terest

* Obtain the KRIPO fragments information based on the PDB
entries of the reference protein family and search for similar

KRIPO fragments in the PDB
* Extract similar fragments that match with PDB entries from

the query protein family

Figure 6. A structure-based ligand repurposing workflow (A) that searches for KripoDB[26] pharmacophore similarities between GPCRs and kinases. Two exam-
ples (B) of binding site similarities between the 5-HT2B receptor and MAPK14 kinase, and the adenosine A2A receptor and the TTK kinase are presented and
described in the main text. The aligned kinase and GPCR structures based on the alignment of the KRIPO pharmacophores are shown in 3D using the Pro-
teins and Ligands viewer (for clarity purposes the lipophilic pharmacophore features are hidden). Only residues within 3.5 a of the ligands are depicted and
labeled according to the Ballesteros–Weinstein[45] and KLIFS[24] numbering scheme for GPCRs and kinases, respectively. Complementary shape-based and phar-
macophore-based assessment of the ligands using the KNIME-enabled Silicos-it[25] tools Shape-it and Align-it are performed and compared in the Ligands
viewer and Pharmacophore viewer, respectively.
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* Select interesting fragment pairs and further explore them
by, for example, KRIPO pharmacophore alignment and 3D

similarity comparison.

With the GPCRdb KNIME nodes, an overview of all GPCR
crystal structures[49] is obtained and used to query the Kri-
poDB[26b] for the available pharmacophore fragment informa-
tion for these structures. For all full ligand KripoDB entries a
similarity search is performed with the KripoDB similar frag-

ments node. The results are then filtered using the KLIFS
nodes with an overview of all kinase crystal structures yielding

an overview of GPCR pharmacophore fragments that share
similarity with a kinase pharmacophore fragment based on
their KripoDB fingerprints. From this list, two examples were
selected that identified a possible overlap between the KRIPO

pharmacophores based on a kinase and a GPCR structure. The
first example is the match between the Sorafenib-bound
MAPK14 protein kinase[50] (PDB ID: 3HEG) and the Ergotamine-

bound 5-HT2B receptor[51] (PDB ID: 4IB4), consistent with stud-
ies showing that the FDA-approved kinase inhibitor Sorafenib

has nanomolar affinity for 5-HT2BR.[52] The second example is
the match between Reversine-bound TTK protein kinase[53]

(PDB ID: 5LJJ) and the triazolecarboximidamide-bound A2A re-

ceptor[54] (PDB ID: 5UIG). Reversine shows weak binding affinity
for the adenosine A2A receptor, and has sub-micromolar affinity

for the homologous adenosine A3 receptor.[55]

The KRIPO pharmacophores of each structure were down-

loaded and aligned using the KripoDB pharmacophore and
Align Pharmacophores nodes, respectively. The rotational

matrix obtained from the alignment was then used to align

both pharmacophores as well as the complete PDB entries in
the pharmacophore viewer. To compare the structure-based

pharmacophore alignment of the molecules with a ligand-
based approach both molecules were aligned using a ligand-

based pharmacophore approach (Align-it) and a shape-based
approach (Shape-it). The SMILES of both co-crystallized ligands

were obtained from the PDB using the PDB Connector Custom

Report node. Then the RDkit Add Conformers node was used
to generate 30 conformations for each ligand as input for the

Align-it and Shape-it nodes. The ligand-based alignments were
again visualized with the Pharmacophores Viewer and the Li-
gands and Proteins viewer. Interestingly, the urea moiety of
Sorafenib binding in the back pocket of MAPK14 is aligned
with the basic amine in the fused tetracyclic head of Ergota-

mine. This ligand alignment originates from the KRIPO pharma-
cophore alignment as the negatively charged centers of the
conserved glutamate (E71aC.24) in the aC-helix of MAPK14 and
the key aspartate D1353.32 of 5-HT2BR are matched.

The volume-based Shape-it overlay shows a good overlap
(Tanimoto score = 0.67) between the two compounds, howev-

er, most pharmacophore features are not aligned due to a

180-degree flip of the core scaffold to maximize the shape
overlay. The ligand-based pharmacophore overlay using Align-

it results in a poor score (Tanimoto score = 0.22) and an align-
ment in which the whole molecules are flipped 180 degrees, il-

lustrating that the structure-based KRIPO pharmacophores
were key for the elucidation of this off-target effect.

Conclusions

The presented structural cheminformatics tools and integrated
workflows combine heterogeneous data analyses that enable

the prediction of protein–ligand interactions and the identifica-
tion of protein–protein relations. The reusable workflows pro-

vide general guidelines that can be used for the construction
of automated computer-aided drug discovery protocols, or for

the customization and extension to other targets and applica-

tions:

1) The use of well documented and amenable workflow man-
agement platforms like KNIME facilitate the construction of

consistent, reproducible,[1] and transferable protocols.[7c]

The workflows can be transferred between, for example,

workstations, users, and sites, and can be re-run: i) as is, for

example, when large data transfer is not feasible, or when
new database versions are released; ii) with different config-

urations of the nodes, for example, changing ligand activity
cut-offs (Figure 2), input ligands (Figures 3, 4, 6), protein

targets (Figure 5); iii) with additional/modified nodes to
obtain complementary information, for example, including

annotations from other databases, further analyzing results,

or performing machine learning[56] on the obtained data.
Pre-configured meta nodes or workflow blocks can be

easily reused because the same data collection, prepara-
tion, processing and analysis steps might be required in

various workflows for different purposes.
2) KNIME contains a rich and continuously growing set of

cheminformatics nodes to handle and process chemical

and biological data in multiple formats. Custom nodes can
be developed, such as the nodes presented in the current

study, and scripts and external tools can be embedded to
extend the functionalities of this toolkit in order to address

a plethora of biochemical research questions, for example,
structural protein–ligand interaction analysis and prediction

functionalities.

3) Carefully annotated and standardized data resources are re-
quired to perform integrated cheminformatics analyse-

s.[2a, 30, 57] However, it should be noted that the use of exter-
nal databases can also present a potential pitfall as they

can change content and format thereby disrupting the
workflow or changing the outcome.

4) The infrastructure of a workflow management platform
such as KNIME allows for interactive checks during execu-
tion of the workflow. Checking the input and output for
each step during the development of a workflow makes for
easy debugging resulting a more robust and less error-

prone workflow. To enhance this process customized data
visualization nodes, such as the proteins and ligands viewer

and the pharmacophore viewer nodes presented in the cur-
rent study, are also required to inspect the validity of, for
example, docking studies, pharmacophore-based structure

alignments, and binding mode similarity assessments.
5) Combining complementary techniques within the same

workflow allows for the creation of more advanced or more
accurate (consensus)[58] cheminformatics workflows, for ex-
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ample, by combining ligand-based on protein–ligand inter-
action based similarity assessments[59] or by combining 2D

and 3D ligand-based similarity[60] methods.

Experimental Section

Newly developed KNIME nodes : The KNIME workflows described
in this article use a series of 3D-e-Chem KNIME nodes that have
been newly developed in addition to a set of previously published
3D-e-Chem nodes. An overview of the new nodes is shown in the
list below and the nodes themselves are discussed in more detail
in the next few paragraphs.

* Pharmacophore : Retrieval of the KRIPO pharmacophore based
on the KripoDB fragment identifier.

* Ligands Viewer : visualization of (aligned) small molecules.

* Ligands and Proteins Viewer : the combined visualization of
(aligned) small molecules and proteins

* Proteins Viewer : visualization of (aligned) proteins

* Pharmacophores Viewer : visualization of (aligned) pharmaco-
phores, small molecules and proteins

* Align pharmacophores : align the query pharmacophores to the
reference pharmacophore.

* Extract pharmacophore points : extract the points of a pharma-
cophore as rows.

* Merge pharmacophore points : create pharmacophores from a
table with x, y, z coordinates, pharmacophore type, alpha and
optional directionality.

* Pharmacophore from molecule : create a pharmacophore from a
molecule by mapping atoms to pharmacophore points.

* Pharmacophore to molecule : generate a molecule from a phar-
macophore by mapping pharmacophore points to atoms.

* Pharmacophore reader : reads a pharmacophore file (*.phar) in
the Silicos-it phar file format.

* Pharmacophore writer : writes a pharmacophore to a file (*.phar)
in the Silicos-it phar file format.

* PLANTS bindingsite : calculates the binding site definition for
docking based on a reference ligand or pocket atoms of the
protein.

* PLANTS session builder : takes the protein, binding site and li-
gands from KNIME and creates the docking session.

* PLANTS virtual screening : runs the actual docking itself based
on the session created by the session builder.

* PLANTS virtual screening results reader : reads the docking results
into a KNIME table.

* Align-it : aligns molecules to a reference molecule based on
their pharmacophore features and scores the alignment.

* Align-it Pharmacophore generator : generates pharmacophores
for molecules based on their pharmacophore features.

* Filter-it : filters a set of molecules based on molecular property
ranges.

* Filter-it property calculator : calculates molecular properties for a
given set of molecules.

* Qed Calculator : performs a quantitative estimation of drug-like-
ness (QED) of a set of given molecules. Requires qed.py Python
package to be installed

* Shape-it : performs a shape-based alignment and scoring of a
set of ligands to a reference ligand.

* Strip-it : strips a given set of molecules to its scaffold based on a
user-selected scaffold definition.

* Ss-TEA score : calculates the ss-TEA score for each residue posi-
tion of a sequence alignment for a set of family members.

Most of the nodes are available under the permissive Apache Li-
cense 2.0 (https://www.apache.org/licenses/LICENSE-2.0). The
PLANTS binaries for docking (embedded within the PLANTS nodes)
are freely available for academics, and the Silicos-it source is avail-
able under the GNU Lesser General Public License v3 (https://
www.gnu.org/licenses/lgpl-3.0.en.html). A more detailed overview
per node set and tool, including license information, dependencies,
and their application, is given in Supporting Information Table S1.

GPCRdb nodes : The GPCRdb[23] is a specialized database focused
on G protein-coupled receptors: the largest protein family that lies
encoded within the human genome. Besides a comprehensive on-
tology, this database contains information on GPCR sequences,
alignments, residue numbering schemes, crystal structures, interac-
tions, and mutation data. The eight GPCRdb KNIME nodes, as pre-
viously described,[31] provide access to this information from within
KNIME and enable the integration of this data in comprehensive
chemogenomics workflows.

KLIFS nodes : KLIFS contains kinase-ligand interaction information
derived from over 3900 structures covering more than 270 differ-
ent kinases in complex with &2500 unique ligands (accessed
August 2017). All kinase structures within KLIFS are curated, anno-
tated, aligned, and processed in a systematic manner with auto-
mated weekly updates. All KLIFS content can be accessed from
within KNIME using one or more of the nine KLIFS nodes from four
different categories, as published in McGuire et al.[31]

KripoDB nodes : The pairwise pharmacophore similarity of more
than half a million (sub)pockets extracted from structures in the
Protein Data Bank is available in the KripoDB. KRIPO encodes
pocket pharmacophores into a fuzzy 3-point pharmacophore fin-
gerprints that are subsequently used to assess this similarity.[26a] Be-
sides the “Fragment information” and the “Similar fragments”
KRIPO nodes that were previously published,[26a] a new KripoDB
KNIME node has been added for the retrieval of the pharmaco-
phores themselves that where used for the creation of the KRIPO
fingerprints. This allows a user to obtain the pharmacophore of in-
terest, and to align and visualize it in combination with the new
set of “Pharmacophore” nodes as well as the “Pharmacophores
Viewer”.

Molviewer nodes : The freely available molecule viewers in KNIME
are primarily oriented at visualization of small molecules. To enable
displaying proteins, protein–ligand complexes, and pharmaco-
phores in KNIME we created a set of visualization nodes. When
opening a KNIME view of one of the new viewer nodes a web
browser will be opened with an interactive 3D canvas portraying
the input molecule(s). There are four molecule viewer KNIME
nodes: one to view a set of (aligned) small molecules (e.g. , shape-
it results), one to view a set of (aligned) small molecules and pro-
teins (e.g. , for visualizing PLANTS docking results), one to view a
set of (aligned) proteins (e.g. , obtained from KLIFS), and one to
view a set of pharmacophores and their aligned protein and/or li-
gands (e.g. , from aligning KripoDB pharmacophores). The molecule
viewer KNIME nodes supports HiLiting, which means that a selec-
tion of molecules inside the viewer can be sent to other KNIME
nodes and vice versa. The web-based molecule viewers use the
NGL protein viewer[61] (https://github.com/arose/ngl) as its 3D
canvas and use React, Redux, and Bootstrap for controls. The
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KNIME nodes are written in Java. The web application files are
hosted by a Jetty-based webserver and the Jersey-based web ser-
vice, which are both embedded inside the nodes.

Pharmacophore nodes : The pharmacophores nodes are a set of
KNIME nodes that enable the conversion and alignment of phar-
macophores. The nodes support (directed) pharmacophore fea-
tures with the following supported types: aromatic, H-bond donor,
H-bond acceptor, lipophilic, positively charged, negatively charged
and exclusion. The pharmacophores nodes comprise nodes that
read and write pharmacophores in the Silicos-it phar file format,
nodes to convert a pharmacophore from or to a molecule by map-
ping the pharmacophore types from or to elements, nodes that
convert 3D points with a type information into a pharmacophore
and vice versa, and finally there is a node to align pharmaco-
phore(s) to a reference pharmacophore. The pharmacophore align-
ment is performed by comparing all the point pair combinations
the pharmacophores can have in common and then identifies the
maximum point pair combinations using Bron–Kerbosch[62] clique
detection algorithm. It subsequently uses the Kabsch[63] algorithm
to compute the optimal translation and rotation matrices using
singular value decomposition, which are then applied to the probe
pharmacophores to get the aligned probe pharmacophores for
each point pair combination. The pharmacophore KNIME nodes
are written in Java and depend on the ejml Java library (http://
ejml.org/) for matrix operations. The alignment algorithm is based
on the KRIPO[26] codebase.

PLANTS : PLANTS[27] is a free-for-academics docking tool that em-
ploys an ant-colony optimization algorithm for sampling potential
ligand binding modes and uses a semi-empirical scoring function.
The PLANTS KNIME nodes are: i) binding site node to calculate the
binding site definition based on the ligand molecule or pocket
atoms of the protein, ii) configuration reader to read PLANTS defi-
nition files which are used for configuration and to determine the
docking output file names, iii) configuration generator to generate
a PLANTS config file using the nodes dialog with almost all
PLANTS configuration fields divided into tabs, iv) runner, the node
that executes the PLANTS executable, v) session builder, which
takes the protein, binding site, and ligands from KNIME as input
and writes them in a session directory as files as input for the
PLANT executable, vi) virtual screening runs the PLANTS executable
in screen mode and will read the files written by the session build-
er, and finally vii) the virtual screening results reader which reads
the output files generated by the virtual screening node into
KNIME. The PLANTS runner and PLANTS configuration generator
KNIME nodes are written in Java and use the Mustache template li-
brary[64] to write the PLANTS config file. All the other PLANTS
nodes are implemented as KNIME meta nodes. A PLANTS executa-
ble for Windows, Linux and Mac OS X is bundled with the PLANTS
KNIME nodes and is provided under a free academic license. The
location of the PLANTS executable defaults to the bundled version,
but can be overwritten in the KNIME preferences. The initialization
and combination of PLANTS KNIME nodes for docking runs re-
quires great care. Therefore, an example docking workflow has
been made available at https://github.com/3D-e-Chem/knime-
plants/blob/master/examples/plants-virtual-screening-exam-
ple.knwf.

Silicos-it nodes : Silicos-it[25] released several of their cheminformat-
ics tools to the open source domain. These KNIME nodes bring
their functionality to the KNIME environment. The nodes are:
i) align-it,[65] which aligns molecules to a reference molecule based
on their pharmacophore, ii) shape-it,[65b,c, 66] which aligns molecules
to a reference molecule based on their shape, iii) filter-it,[67] which

can filter molecules with undesired properties from a compound
set, iv) strip-it, which generates the Murcko,[68] Oprea,[69] or Schuf-
fenhauer[70] scaffold of a molecule v) Qed,[71] which calculates the
Quantitative Estimation of Drug-likeness (QED) for a (set of) mole-
cule(s). The Silicos-it executables are written in C + + and have
OpenBabel as a dependency to read and write different molecule
formats. The KNIME Silicos-it nodes come bundled with the align-
it, filter-it, shape-it, strip-it executables for Linux and Mac OS X. The
location of the executable defaults to the bundled versions, but
can be overwritten in the KNIME preferences. All the Silicos-it
KNIME nodes are implemented as KNIME meta nodes, except for
the node that executes the actual Silicos-it executables. The silicos-
it execute node is implemented in Java and is used by all meta
nodes. The align-it executable is wrapped into two KNIME nodes. A
node to align SDF formatted molecules to a reference molecule
and another node to generate pharmacophores from molecules.
The align-it KNIME nodes are part of the Silicos-it KNIME nodes
plugin. The shape-it executable aligns molecules to a reference
molecule based on their shape. The shape-it executable is wrapped
in a KNIME node, which aligns SDF formatted molecule to a refer-
ence molecule. The output of the node has the aligned molecules
and alignment scores.

ss-TEA : The ss-TEA score[28] is an abbreviation for subfamily-specific
Two Entropy Analysis score. The score is calculated for each residue
position of a large sequence alignment based on a comparison of
the level of conservation within a subset (i.e. , a subfamily) of pro-
teins (internal entropy) compared to all other proteins (external en-
tropy). By identifying positions that are highly conserved within,
but not outside of the subfamily, the ss-TEA score can identify resi-
due positions specifically related to ligand binding or protein func-
tion for that specific subset. This methodology is, however, depen-
dent on a high quality and large quantity sequence alignment as
input. The ss-TEA algorithm has been implemented as a KNIME
node, is written completely in Java and has no dependencies. The
node requires a sequence alignment and a list of sequence identifi-
ers, which will be used as the subfamily.

Workflows : All KNIME workflows described in this article, including
the source code for all 3D-e-Chem nodes, are available from the
3D-e-Chem GitHub repository (https://github.com/3D-e-Chem/
workflows). The individual steps of each workflow are described in
more detail in the main text. All 3D-e-Chem nodes used to perform
the analyses described in the current work are available under
community contributions in KNIME under “3D-e-Chem” (https://
www.knime.com/3d-e-chem-nodes-for-knime).
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