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Background. )e complexities of surgery require an efficient and explicit method to evaluate and standardize surgical procedures.
A reliable surgical evaluation tool will be able to serve various purposes such as development of surgery training programs and
improvement of surgical skills. Objectives. (a) To develop a modeling framework based on integration of dexterity analysis and
design structure matrix (DSM), to be generally applicable to predict total duration of a surgical procedure, and (b) to validate the
model by comparing its results with laparoscopic cholecystectomy surgery protocol.Method. A modeling framework is developed
through DSM, a tool used in engineering design, systems engineering and management, to hierarchically decompose and describe
relationships among individual surgical activities. Individual decomposed activities are assumed to have uncertain parameters so
that a rework probability is introduced. )e simulation produces a distribution of the duration of the modeled procedure. A
statistical approach is then taken to evaluate surgery duration through integrated numerical parameters.)emodeling framework
is applied for the first time to analyze a surgery; laparoscopic cholecystectomy, a common surgical procedure, is selected for the
analysis. Results. )e present simulation model is validated by comparing its results of predicted surgery duration with the
standard laparoscopic cholecystectomy protocols from the Atlas of Minimally Invasive Surgery with 2.5% error and that from the
Atlas of Pediatric Laparoscopy and -oracoscopy with 4% error. Conclusion. )e present model, developed based on dexterity
analysis and DSM, demonstrates a validated capability of predicting laparoscopic cholecystectomy surgery duration. Future
studies will explore its potential applications to other surgery procedures and in improving surgeons’ performance and
training novices.

1. Introduction

)ere is a long-standing interest among medical profes-
sionals to evaluate surgical outcomes resulting from the
advancement of surgery techniques. )e traditional ap-
proach is to compare different procedures, such as open
surgery versus endoscopic procedures, with regard to
physical concepts and statistical analyses. Usually, the ad-
vantages and disadvantages of two surgical procedures can
be compared in terms of duration of operation, recurrence
rate, complications, postoperative pain, cost, and duration of
hospital stay [1]. Such comparisons are also useful for
teaching and training purposes or estimating the dexterous
skill [2–4]. However, the skill level varies among surgeons

with different levels of training and experience [5, 6]. Be-
cause operating equipment, techniques, and procedures
have become increasingly complex over the past decades,
discrete comparisons using traditional distribution charts of
the parameters, such as surgery duration, may reveal ten-
dencies but fail to discriminate between procedures at a
satisfactory level of granularity. )e tendency toward
complexity adds difficulty in applying these comparative
results for teaching and training purposes, and lack of
granularity of data forces a surgeon to improve his/her
specific surgical skills largely based on personal experience
rather than scientific methods.

)ere are many possible methods to solve this issue. One
practical way is dexterity analysis [7, 8]. In general, dexterity
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analysis is based on descriptive statistical analysis [9–13] and
a language model of structural decomposition [14–16].
Dexterity analysis is different from the aforementioned types
of general comparison in that it focuses narrowly on the
specific tasks that the surgeon performs, rather than viewing
comprehensively the general parameters mentioned above.
Compared with other methods, dexterity analysis allows
capture of the key features of the surgery and better presents
the structure of the surgery. It also affords integration of the
discrete data into a model for surgical training.

)e present work differs from the existing dexterity
analysis by aligning the tasks performed with the objectives
and procedures of which they are a part and by connecting
them with a simulation approach to estimate a distribution
of surgery duration. For the purpose of simulating surgical
procedures and improving the performance of surgeons, we
propose to integrate dexterity analysis introduced above
with a tool from engineering design—the design structure
matrix [17, 18]. Design structure matrix (DSM) simulation
can be used as a tool to integrate the result of dexterity
analyses, such as hierarchical decomposition, with a
probabilistic approach to evaluate the complete surgical
procedure. )e integrated DSM represents the important
patterns of all activities in a dexterity language model, while
the uncertainty of activity, such as rework [19, 20], cor-
responds to the dexterity descriptive data. )is innovative
application of DSM to surgery not only combines the two
views of dexterity analysis but also provides a numerical
simulation to predict the duration of a modified surgical
procedure.

)e present work takes laparoscopic cholecystectomy
(LC), one of the most common surgical procedures in the
US, as an example to illustrate the proposed innovative
framework for surgery simulation. )e LC surgical activ-
ities are integrated as the matrix inputs of the numerical
DSM. )e proposed framework for surgery simulation is
validated by two standard protocols from surgical text-
books. An alternative LC surgical procedure is suggested by
the Atlas of Laparoscopic Surgery, which may reduce sur-
gery time. However, implementation of such modified
procedure would incur time and cost for retraining sur-
geons. )e current work enables estimation of the possible
benefit in terms of shorter operation time that the suggested
alternative surgical procedure may entail and helps the
surgeon determine whether to adopt the modified
procedure.

In light of the introduction above, the objectives of the
present work are (a) to develop a modeling framework based
on integration of dexterity analysis and DSM, which can be
generally applicable to predict total durations of surgical
procedures, and (b) to validate the model by comparing its
results with the LC surgery protocol. Although dexterity
analysis has been applied to the analysis of surgical proce-
dures in previous studies, the model developed in this work
represents an innovative approach that no previous study
has ever reported. In particular, this is the first work where
(a) DSM is applied to analyze surgical procedures and (b)
dexterity analysis and DSM techniques are integrated and
applied to the analysis of surgical procedures.

2. Method

)e current numerical model was developed in two phases.
Phase 1 involved the generation of hierarchical structures of
dexterity analysis [7] in which corresponding data based on
video samples were collected and analyzed. In Phase 2, a
numerical DSM was developed to predict duration for
different surgical procedures by generating the statistical
distributions for comparison [17, 18].

)is work involves secondary analysis of de-identified
existing data and is eligible for exemption of review by the
local institutional review board.

2.1. Model Development for Simulation of Surgery. As stated
as an objective above, a model based on integration of
dexterity analysis and DSM is developed in this study to
predict the total duration of a surgical procedure. Devel-
opment of the model involves the following procedures: (1)
decomposing the surgical procedure recorded by video into
activities through dexterity analysis, (2) identifying the in-
teractions among all the surgical activities and constructing a
network, (3) building a DSM to show details of the inter-
actions among all surgical activities, and (4) developing an
algorithm to calculate the surgery duration based on the
DSM. Figure 1 illustrates the steps in integrating hierarchical
dexterity analysis with the DSM using the video data: )e
surgical procedure is first decomposed into a number of
activities through dexterity analysis in Figure 1(a). )e in-
teractions among all activities are identified in Figure 1(b),
and a DSM showing interactions among activities is con-
structed in Figure 1(c).

2.1.1. Dexterity Analysis. )e video surgical data collected
were compared with the surgical protocol. )e surgical
protocol defines the standard surgical activity for the pur-
pose of characterization or categorization of surgical activity
extracted from surgical videos. Protocol analysis refers to the
characterization of surgical activities captured from video to
match the definitions of the activities in a standard surgical
protocol. )e significant advantage of protocol analysis
compared with other analyses is producing a systematic
model to describe the relationships among the activities [21].
)e current protocol analysis was based on the design
concepts of function behavior structure [22], and categories
were created to provide an understanding of the processes in
the model and to aid analysis of the surgical activities. )is
method defines the standard for how a particular task should
be executed set by experienced and seasoned instructors or
experts in the discipline.)e protocol analysis of the surgical
activities recorded in the videos provides the required in-
formation for the surgery modeling. )e general protocol
considered the standard in the current field of LC can be
found in theAtlas of Minimally Invasive Surgery (AMIS, [1]).

)e goal of dexterity analysis is to decompose surgical
procedures into modular and reusable activity segments,
termed surgemes. Cao et al. [23] first defined several sur-
gemes as common surgical tasks using a tool/tissue and tool/
object vocabulary consisting of actions based on the
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interaction between the tool and the environment. In their
work, different levels of activities were recorded through a
data collection system, such as VCR, and then segmented
using a computerized system for video annotating and
coding to analyze these surgemes in terms of the average
times taken to execute the surgemes, the number of com-
ponent motions, and the number of attempts for each
motion to achieve the goals of the surgery. MacKenzie et al.
[24] further developed a hierarchical approach for assess-
ment based on plans and the structure of goal-directed
human behavior on videotaped laparoscopic Nissen fun-
doplications. )is hierarchical decomposition approach was
extended to analyzing complex systems that involve the
surgeon and operating room team [14, 16, 25, 26]. De-
composition of surgical procedures by these analytical
methods is important as it defines the surgemes required for
DSM modeling. As illustrated in Figure 1(a), the first step of
the current analytical method takes a hierarchical approach
for dexterity analysis by decomposing the surgical procedure
into a number of surgemes (activities).

Due to the small sample size and large variation, the
current surgical video data for the decomposed activities are
represented as triangular distributions using the maximum
and minimum values identified. )e triangular distribution
requires only three data points for each activity: optimistic or
the best case value (BCV), most likely value (MLV), and
pessimistic or the worst case value (WCV). )e triangular
probability density function (PDF) is defined by BCV, MLV,
and WCV of each activity.

2.1.2. Design Structure Matrix. A DSM model was devel-
oped to delineate the relationships among the activities
involved in the surgical procedure; this model was then used
for simulation. )e concept of DSM has been widely applied
to various categories of engineering design, engineering
management, management/organization science, and

systems engineering [18], and even communication in
healthcare [27]. A DSM displays the relationships between
the activities of a process in a compact, visual, and ana-
lytically advantageous format [17]. It is a square matrix with
identical row and column labels. For each activity, its cor-
responding column(s) represent(s) the input(s) of the ac-
tivity and the row(s) represent(s) its output(s) [19]. )e
number “1” in an off-diagonal cell indicates an input and
output link between a pair of activities. An empty cell (or
“0”) indicates no relationship between the activities. )e
diagonal cells are blank to preclude self-linking of each
activity. More precise estimation of interactions between
activities can be represented if different numbers (2, 3, . . .,
etc.) are employed.

2.1.3. Calculation of Surgery Duration

(1) Definitions of Input Parameters. During the surgery, some
activities may need to be repeated before the subsequent
activities may proceed. )e total time duration required to
complete the surgery therefore depends on three parame-
ters—rework probability, rework impact, and improvement
curve—of each activity included in the surgical procedure.

Rework probability (RP) is the probability that an activity
needs to be repeated in order to correct or to repair a defective
or failed trial of the activity. For an activity that produces an
output based on the inputs of preceding (upstream) activities,
rework (repetition) of the activity is required if the (upstream)
input to the activity changes, and such change in the input
causes the activity itself not to be able to produce a satisfactory
output and thus needing to repeat.)eoretically, each input to
an activity has a probability of change defined as volatility
[28, 29] and a probability of a change in the input causing
rework of the activity defined as sensitivity [28, 30]. )ese
probabilities are multiplied to determine the rework proba-
bility (RP) for the activity caused by the change in the input:
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Figure 1: Integration of hierarchical dexterity analysis and DSM.
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Pir � Pi × Pr, (1)

where

Pir � the probability that a change occurs to an input
activity “I” of a certain activity “A” and resulting in a
rework of “A”
Pi � the probability of change in the input activity “I”;
i.e., “volatility”
Pr � the probability that the activity “A” needs rework
due to this change in the input activity “I”; i.e.,
“sensitivity”

In this study, using the surgical video data, Pi is
estimated:

Pi �
Noc

No

, (2)

where

No � the total number of times that a certain input
activity “I” of a certain activity “A” is observed in the
surgical procedure
Noc � among No, the number of times that the input
activity “I” is performed in an unusual way (i.e., in-
volving certain change/deviation) compared with the
standard procedure defined by the protocol

Pr can be calculated by the following equation:

Pr �
Nir

Nic

, (3)

where

Nic � the total number of times that the input activity
“I” is performed in an unusual way (i.e., involving
certain change/deviation) compared with the standard
procedure defined by the protocol
Nir � amongNic, the number of times causing rework of
the subsequent activity “A”

Note that Nic −Nir � the number of times that the
change in “I” does not cause rework of “A.” Different
types of changes in an input activity may have different
probabilities of causing rework of the subsequent
activity.

Rework impact (RI) is the impact of rework on an ac-
tivity, i.e., the portion of a particular activity to be reworked:

RI �
Wr

Wtotal
�

Dr,nic

Do

, (4)

where

Wr � the amount of work that needs to be repeated in
the activity, i.e., the amount of rework
Wtotal � the total amount of work in the activity
Dr,nic � duration required to complete the rework in the
activity without considering the improvement-curve
effect

Do � duration for the first execution of the activity
before any rework, i.e., the original duration

While some changes causing rework can possibly be
absorbed by a robust activity with little impact [31], the
consequences of other changes may be more severe. A
typical approach to estimating RI is through interviewing
experts to solicit feedback based on their professional skills
and experience [29, 32]. In the present study, senior sur-
geons were interviewed for such purpose. )e RI for each
activity is evaluated for various situations including extreme
cases (e.g., bleeding or complication) and different operation
areas (e.g., left or right side of gallbladder). A range of
possible RI values was generated, and the average was cal-
culated for the simulation.

An improvement curve (IC or learning curve) quantifies
the decrease of time required to perform the activity with
experience and is defined as

IC �
Dr,ic

Dr,nic

, (5)

where Dr,ic is the reduced duration required to complete the
rework of the activity due to the improvement-curve effect.

Various models for learning curves in surgical practice
have been proposed [33]. In general, IC is related to RI
because it may take less time to rework an activity than the
first time.)us, IC needs to be modeled for each activity as a
step function, where an activity initially takes 100% of its
duration to accomplish, while the subsequent executions of
the activity take less than the original duration [28]. In
principle, the learning curve could be estimated statistically
using data collected from a surgeon’s training program. If
the surgeons are experienced and have performed the
surgery numerous times after rigorous professional training,
and that their execution of the surgical activities is con-
sidered to have little room to improve, IC is taken as a
constant at 100% (no improvement).

Based on the above definitions, the duration for rework
of a particular activity is calculated as

Dr,ic � D0 ×
Dr,nic

Do

×
Dr,ic

Dr,nic

� D0 × RI × IC. (6)

(2) Simulation Algorithm. )e current simulation algorithm is
based on a series of works in the fields of systems engineering
and management by Browning and coauthors [17, 28, 34, 35].
)is is the first application of such works to surgery.

)e simulation begins with input of a random duration
data based on a triangular probability distribution estab-
lished by data from the surgery videos for each surgical
activity.)e simulated surgery then proceeds by executing as
many activities as possible following the sequence estab-
lished in the DSM, until encountering an activity that de-
pends on certain upstream activity/activities that have not
yet been executed, or no further downstream activity exists
(i.e., end of the surgical procedure). )is group of executed
activities constitutes an active set that appears as a submatrix
in the DSM. )e total duration of the activities in this active
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set is then calculated by adding the durations of all activities
in this set.

For a rework loop involving two activities A and B, for
example, a random probability between 0 and 1 is first
generated (using RND function in the Visual Basic macro of
the simulation program) for the simulation value of rework
probability of B due to a change in its input A, SPir,A−B.
Rework of B continues if SPir,A−B >Pir,A−B, until
SPir,A−B ≤Pir,A−B, where Pir,A−B is the actual rework prob-
ability of B due to a change in A based on observation (of
surgery video), as specified in the DSM.)e total duration of
the rework of the activity B due to a change in its input A in
this rework loop is then calculated as follows:

Dra � D0 × RI × 􏽘
nr

i�1
(IC)i, (7)

where

Dra � duration required to complete activity (B) in a
rework loop

nr� the number of rework times of activity (B) due to a
change in its input (A), determined by the criterion
SPir,A−B ≤Pir,A−B

)e same method applies to calculating the total dura-
tion of the rework of the activity A due to a change in its
input B in this rework loop involving A and B. )e same
method is also applied to a rework loop involving more than
two activities. For example, for a rework loop involving three
activitiesA, B, andC, this method is first applied to rework of
activity B due to a change of input activity A, then rework of
activity C due to a change of input activity B, and finally
rework of activity A due to a change of input activity C. )e
total time duration for a rework loop is

Drl � 􏽘
nal

i�1
Dra( 􏼁i, (8)

where nal is the number of activities involved in the rework
loop.

For a surgical procedure involving multiple rework
loops, the total simulation duration for the entire surgical
procedure is then calculated as follows:

Total duration � (Duration of the first trial) +(Total rework duration),

Dtotal � 􏽘
na

i�1
Do( 􏼁i + 􏽘

nl

i�1
Drl( 􏼁i,

(9)

where

na� the total number of activities in the surgical
procedure
nl� the total number of rework loops in the surgical
procedure

DSM Program 2.0 Excel Macros for Partitioning and
Simulation, available online (https://www.dsmweb.org), was
modified according to the algorithm illustrated in Figure 2.

Figure 3 shows an example how the algorithm works for
different levels of activities in a hierarchical decomposition.
All the downstream activities Xs and Ys related to the first
activity F1 are identified and executed. Activities Ys are then
checked for dependence on any downstream activity X1
through Xn. Probabilistic rework is the key to identify all the
upstream activities that are dependent on the downstream
activities that create rework loops. )e relationship is il-
lustrated by the broken arrow line between Xk and Yk in
Figure 3. To simulate the rework loop, the rework proba-
bilities of the corresponding activity, the superdiagonal cells
and subdiagonal cells in each column of the DSM are used to
estimate the most probable number of rework times for the
loop. In individual rework iteration, the rework duration of
the activities in the loop is calculated using the input du-
ration, rework impact, and learning curve. After the entire
active set is simulated including rework loops, the first active

set is ignored and the program will reexamine the new
unfinished highest rank order activities Os (O1, . . .,.On) and
unfinished downstream activities Rs (R1, . . ., Rn). By running
the simulation a number of times until no downstream
activities remain, the total surgery duration is calculated by
summing up all the durations of the sets.

(3) Risk Factor in Simulation Algorithm. Risk factors are the
major parameters accounting for various unexpected
simulation results. In a simulation, outliers of the simu-
lation results represent significant consequences. )e input
parameters causing these outliers are the risk factors. )e
main simulation inputs in the present model include du-
ration estimations (BCV, MLV, and WCV), Pir, RI, and IC.
BCV, MLV, and WCV, according to the definition, are
directly proportional to the duration output. IC is a con-
stant in our case. )us, only Pir and RI need to be con-
sidered risk factors.

Browning and Eppinger [28] proposed the risk factor R
for different consequences as a function of both the cor-
responding rework probability and rework impact:

R � Pir × RI, (10)

where R is the risk factor. )e cumulative impact of R in the
rework propagation is calculated by a step function [17]. )e
n-step risk of rework propagation for activity Aij in row i and
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column j of an m × m DSM is estimated by the power
function Rn. )erefore, the maximum cumulative risk of
rework propagation, CR, is

CRij � 􏽘
∞

n�1
R

n
ij � (1 − R)

− 1
− 1, i � 1, 2, . . . , m; j � 1, 2, . . . , m; i≠ j.

(11)

For an m × m DSM, let fj � 􏽐
m
i�1 CRij, i � 1, 2, . . . , m,

and ei � 􏽐
m
j�1 CRij, j � 1, 2, . . . , m, where fj is the total

maximum risk transferred from activity Aij to other ac-
tivities and ei is the total maximum risk that activity Aij

receives from the other activities. To measure the role that
CRij of Aij plays in the rework propagation caused by both
output and input, the total risk TRij is calculated as follows:

TRij � 􏽘

m

i�1
􏽐
m

j�1
CRij, i � 1, 2, . . . , m; j � 1, 2, . . . , m; i≠ j.

(12)

3. Results

3.1. Validation of Simulation Model

3.1.1. Model Validation by Standard Laparoscopic Chole-
cystectomy Surgical Protocol. )e present simulation model
was first validated by comparing the duration results of its
simulated surgery with that of the LC video in the Atlas of
Minimally Invasive Surgery (AMIS, [1]). )e recording and
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Figure 2: Flowchart of simulation algorithm.
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editing of the video were based on one chapter of the
standard surgical protocol by Frantzides et al. [36]. )is
protocol was first chosen to validate the proposed model
because it is short and simple and also considered a standard
for the LC procedure. )e video clearly presents the major
activities involved in the surgery, with snapshots of the key
activities shown in Figure 4. Detailed description of all
activities can be found in Chapter 20 of AMIS [1].

(1) DSM of AMIS Protocol. Nine activities (A1–A9) are
identified in the AMIS video (see Figure 4), with the input
DSM shown in Figure 5. )ere are few deviations from the
normal activities and few reworks in this standard procedure
video, which may have been edited for training purpose. A
single rework loop in Figure 5(a) is identified as associated
with activity A6 (dissection and clipping the cystic artery)
and activity A7 (cutting the cystic artery). )ese two ac-
tivities are reworked due to bleeding when the cystic duct
and artery are dissected or cut. As a result of the bleeding, the
rework probabilities of this loop are very high (taken as 1
because there is only one sample). Although no other rework
is observed in this training video, the RPs of the other ac-
tivities are all taken as 0.1 as a realistic estimation. Other than
this loop, the interactions between A4–A7 and A8 (marked

by cells below the diagonals in Figures 5(a) and 5(b)) rep-
resent the additional cleaning (A8) required due to serious
leakage of bile from the cystic duct and/or bleeding from the
cystic artery caused by dissection and cutting activities
(A4–A7). Coincidentally, RIs are the same as RPs in this case.

(2) Result of Simulation Model Compared with AMIS
Protocol. Based on the MLV data for the durations of all ac-
tivities (Figure 5(c)), the total duration of the surgical proce-
dure is calculated as 10 minutes, which is in excellent
agreement with that of the AMIS surgery protocol of ap-
proximately 9 minutes and 45 seconds (2.5% error). )e
primary reason causing the error may be related to estimations
of MLVs. Based on the video, it is very difficult to estimate the
activity durations with better than 0.1-minute accuracy.

3.1.2. Model Validation by Pediatric Laparoscopic Chole-
cystectomy Protocol. )e present simulation model was also
validated by comparing its prediction result with that of the
LC video in the Atlas of Pediatric Laparoscopy and -or-
acoscopy (APLT, [37]). )e video was short and well edited
based on Chapter 22 of the standard surgical protocol by
Holcomb et al. [37].

(a) (b) (c)

(d) (e) (f )

(g) (h) (i)

Figure 4: Surgical activities in AMIS video for laparoscopic cholecystectomy protocol: (a) peritoneal dissection, left side (activity A1); (b)
peritoneal dissection, right side (activity A2); (c) dissection of the triangle of Calot (activity A3); (d) dissection and clipping the cystic duct
(activity A4); (e) cutting the cystic duct (activity A5); (f ) dissection and clipping the cystic artery (activity A6); (g) cutting the cystic artery
(activity A7); (h) cleaning bile and/or blood (activity A8); and (i) separation of the gallbladder from liver (activity A9). Ca: cystic artery; Cd:
cystic duct; Cl: clip; Fo: forceps; Ga: gallbladder; Gr: grasper; Hc: hook cautery; Hs: hook scissors; Ir: irrigator; Li: liver; Tr: trocar.
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Most of the activities in this APLT protocol are similar to
AMIS, with the only difference being in the activities related to
dissection of the triangle of Calot suggested by Holcomb et al.
[37] particularly for pediatric LC surgery.)e triangle of Calot,
also known as the hepatobiliary triangle, or cystohepatic

triangle, is an anatomic space bordered by the hepatic duct
medially, the cystic duct laterally, and the cystic artery supe-
riorly. )e APLT procedure features grasping the infundibu-
lum of the gallbladder (distal to the cystic duct) using the
grasping forceps and retracting inferiorly and laterally. Such a
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Figure 5: DSM, rework probability, rework impact, and activity duration data for the AMIS protocol. (a) DSM. (b) Rework probabilities and
rework impacts for all activities. (c) Most likely values for activity durations.

Gallbladder

(a)

Gallbladder

(b)

Figure 6: Difference between (a) pediatric laparoscopic cholecystectomy protocol (APLT) and (b) standard laparoscopic cholecystectomy
surgical protocol (AMIS).
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treatment creates a larger angle (90°) between the cystic duct
and the common bile duct (Figure 6(a)) than the AMIS
procedure (Figure 6(b)). It is especially useful in pediatric
application because it can avoid accidentally cutting the
common bile duct while attempting to cut the cystic duct.
Although it entails more activities in the DSM input, thus
increasing the matrix size, the APLT procedure has certain
advantages such as no loop connected to any other activity in
the DSM compared with the AMIS protocol.

(1) DSM of APLT Protocol.)e video for APLT has been
edited with significantly shortened durations of the activities
just to demonstrate the surgical procedures. Nevertheless,
ourmodel can be applied to estimate the total duration based
on the edited video. Eleven activities were identified in this
video, with the DSM shown in Figure 7(a) and no loop
identified. )e RPs of the activities are all zero (no reworks),
while the RPs and RIs are taken as 0.1 for a realistic esti-
mation, similar to the analysis of AMIS above. )e direct

relationship between rework probability and rework impact
is shown in Figure 7(b).

(2) Result of Simulation Model Compared with APLT
Protocol.)e total duration of the APLTsurgery protocol is 5
minutes and 30 seconds, while the current simulation model
based on data in Figure 7(c) yields 5.7 minutes, which is
within 4% error compared with the APLT protocol. )e
error is larger compared with validation with AMIS, most
likely due to the errors associated with estimating the du-
rations of a larger number of activities involved in the
procedure.

4. Discussion

)e present simulation framework provides a tool for an-
alyzing surgical procedure and predicting surgery duration.
It integrates dexterity analysis and DSM to provide a clear
and simple insight of the complex structure inherent in a

1
1

1
1

1
1

1
1
1

1
1

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11
A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11

(a)

0.1
0.1

0.1
0.1

0.1
0.1

0.1
0.1
0.1

0.1
0.1

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11
A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11

(b)

A4 Application of the 90-degree bend 
technique

0.5

A5 Further dissection of the Triangle of Calot 0.1

A6 Clipping and cutting the cystic duct 0.5

A7 Clipping and cutting the cystic artery 0.5

A8 Separation of gallbladder from liver 0.5

A9
Inspection and cleaning the triangle of 

Calot region 0.5

A10 Removal of gallbladder 0.2

A11 Closure 0.1

Activity MLV (min)

A1 Preparation of patient

A2 Peritoneal Dissection 0.15

A3 Dissection of the Triangle of Calot 1

1

(c)

Figure 7: DSM, rework probability, rework impact, and activity duration data for the APLTprotocol. (a) DSM. (b) Rework probabilities and
rework impacts for all activities. (c) Most likely values for activity durations.
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surgical procedure. Validation of the present framework by
comparing with two standard surgery protocols represents a
progress toward better prediction of the total surgery du-
ration for not only laparoscopic cholecystectomy but also
possibly other types of surgery that can be simulated. Pre-
diction of surgery duration is important as prolonged
surgery time may be associated with anesthesia time, blood
loss, tissue-air exposure time, risk of infection, surgical
insult, surgeon’s performance, among others.

)is work is limited in terms of validation. In addition
to the validation by the standard LC videos developed for
teaching purpose reported in this work, the present sim-
ulation model can be further validated by comparing its
results with LC videos documenting the entire surgical
procedure performed by different surgeons on different
patients. )e surgery duration predicted by the present
model can be compared with the duration of the video
samples. One way to generate more accurate simulation
results is to collect the video samples of only one surgeon
operating on multiple patients. Detailed clinical informa-
tion such as gender, body mass index, previous surgery,
inflammation history, and sonographic diagnosis can also
be integrated into an advanced version of the model.
However, these additional parameters may dependmore on
empirical knowledge and subjective evaluation. It is easy to
determine statistical parameters associated with age, gen-
der, and body mass index, but parameters associated with
previous surgery or sonographic diagnosis may have false
positive or false negative impact on the estimation of the
total surgery duration. )is problem may be solved by
modeling specific surgery procedures with highly stan-
dardized algorithms developed particularly for a certain
type of surgery.

)e present model demonstrates a potential application
in improving surgeon’s performance by eliminating factors
causing variation of the operation time, estimating change
of operation time by modifying a part of the surgical
procedure, analyzing advantages and disadvantages of such
modification, and comparing with standard protocol. )e
surgery procedure can be improved by decoupling activities
identified in the DSM in order to reduce complexity of the
operation procedure, and our model can further predict
how much total surgery duration is reduced by such
decoupling. In fact, the present model can evaluate any
alternative techniques that may reduce the total surgery
duration.

Another possible application of the current model is to
help train novices and improve their dexterity of the surgical
procedures. In the current framework, input parameters
such as rework probability and rework impact are employed
to predict the total surgery duration, and these parameters
can also be employed for training purposes. A novice’s
performance can be evaluated by examining these data
collected from the dexterity training as the model’s input
parameters. In particular, the present framework can be an
effective tool to train novices by reducing large differences
between BCV and WCV and lowering high rework prob-
abilities associated with their surgical activities identified
using the present tool.

5. Conclusion

Tools for improving surgical outcomes, such as reducing the
duration of common surgical procedures, are highly sought
after by medical professionals. )e current study contributes
to this goal by providing a simulation framework that can
predict the duration of a surgical procedure based on
analysis of the activities performed during the procedure,
rather than statistical analysis of a procedure as a whole. )e
framework presented combines dexterity analysis of surgery
videos, modeling of the procedure using DSM, and calcu-
lation of the surgery duration. )e current study develops
and validates a numerical DSM simulation model of the
entire laparoscopic cholecystectomy surgery procedure,
including couplings (loops) and reworks identified. Further
study will test this model as a tool to investigate the ad-
vantages and disadvantages of modified and alternative
surgical activities, to test surgical procedure redesign, and to
compare different versions of surgical protocol through
simulation.

Nomenclature

D: Time duration
IC: Improvement curve (learning curve)
N: Number
P: Probability
RI: Rework impact
SP: Simulation probability
W: Work
Subscripts

a: Activity
c: Change
i: Input
ic: Improvement curve
l: Loop
n: Number
nal: Number of activities involved in the rework loop
nic: Without improvement-curve effect
nr: Number of times of rework
o: Observed
r: Rework.
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